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ABSTRACT

NEW BILINEAR ESTIMATES FOR QUADRATIC-DERIVATIVE NONLINEAR
WAVE EQUATIONS IN 2+1 DIMENSIONS
SEPTEMBER 2012
ALLISON TANGUAY, B.A., CENTRAL CONNECTICUT STATE UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrea Nahmod

This thesis is concerned with the Cauchy problem for the quadratic derivative nonlin-
ear wave equation in two spatial dimensions. Using standard techniques, we reduce local
well-posedness in Fourier Lebesgue spaces to bilinear estimates in associated wave Fourier
Lebesgue spaces, for which we prove new product estimates. These estimates then allow
us to establish local well-posedness in a parameter range that gives improvement over

previously known results on the Sobolev scale.
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CHAPTER 1

INTRODUCTION

In this dissertation, we prove bilinear space-time estimates related to local existence
and uniqueness for the quadratic derivative nonlinear wave equation (DDNLW) in di-

mension n = 2. The problem we study is

Ou = Qudu
u(0, ) = up(z) (1.0.1)

ut(0, ) = uy(x)

where u = u(t,z) for (t,z) € R x R", 0 = dy — A is the d’Alembertian, A = Y7 | 92 is
the Laplacian, and 0 = 0, or 0 = 0, fori =1, ..., n. We are interested in finding suitable
Banach spaces for the initial data ug,u; for which the problem is locally well-posed in
dimension n = 2. In particular, we want best results for local well-posedness in terms of
regularity of the initial data.

These equations have a natural scaling and for initial data (ug,u;) € H® x H~! in
Sobolev space there is a unique exponent s = s. for which (1.0.1) is invariant under
this scaling. For initial data with regularity s > s., one expects to have local in time
well-posedness. The exponent s. is called the critical scaling exponent, and for (1.0.1)
one can easily show that s, = 5 (c.f. Section 1.2).

We therefore expect local well-posedness in H® for s > 1 in two dimensions. Using

energy estimates alone (c.f. Klainerman and Selberg [12]), one achieves this result only

for s > 2. The best known results are for initial data (ug,u1) € H® x H*~! with s > 7/4,



a gap of 3/4 above the critical scaling s., and they follow from Strichartz estimates (c.f.
Section 1.2). We are not aware of any well-posedness results for initial data in H*® with
s < 7/4. In this dissertation, we are able to improve upon the previously known well-
posedness results by instead considering initial data in the Fourier Lebesgue spaces lE\IST
defined in Section 1.3.

In [6], D’Ancona, Foschi, and Selberg prove bilinear estimates in the Fourier L2-based
XY spaces, from which one can also obtain the s > 7/4 result by standard arguments.
In this dissertation, we thus prove analogous estimates in Fourier L" -based spaces, X;b,
where 7’ is the conjugate exponent of r for % < r < 2. As a consequence, we obtain local
solutions in the associated wave-Fourier restriction spaces X{, (see also Section 1.3),
which embed into the continuation of the initial data space for b > 1/r. When r = 2, we
of course recover the 7/4" result as a particular case of our local well-posedness theorem.

Our main result is the following.

Theorem 1.1 (Main Theorem). The Cauchy problem (1.0.1) is locally well-posed in

ﬁ;(R2)f0T%<T§2(ITLdS>%+1.

Remark 1. For a definition of well-posedness see Section 1.1 and for a more precise
statement of our theorem see Section 1.4. There is a scaling correspondence between
the homogeneous Sobolev and Fourier Lebesque spaces that allows us to compare results.
Specifically, the space ﬁg scales like H® for o =s+n (% — %), see Section 1.3 for more
details. In this sense, our results correspond to o > 5/3 on the Sobolev scale and can

therefore be thought of as an improvement of 1/12 derivative over the previously known

results.

This work is motivated by Griinrock, who in [8] was able to use an X, approach to
circumvent counterexamples of Lindblad [14], in dimension n = 3.

If one assumes that the derivative nonlinearity has some additional structure, then



better results are generally possible. For instance, suppose we have

Ou! = Q(u”, u)
u(0,x) = up(x) (1.0.2)

ut(0,2) = uy(x)

where @ is a real linear combination of the basic null forms Qo(u,v) = > 7" judiv —
O, Qij(u,v) = diudjv — Ojud;v and Quj(u,v) = Oudjv — djudw. The algebraic
structure of the null forms, in particular the cancellation properties they exhibit, allow
for better ranges of s. For (g, naturally arising in the wave map problem, Klainerman and
Selberg [13] were already able to prove optimal local well-posedness for the full subcritical
range, s > n/2. For the null forms Q;; and Qo;, the best known local well-posedness
results in two dimensions with initial data in H* x H5~! are with s > 5/4, found in Zhou
[25]. Moreover, Zhou proves this is sharp for fixed point methods. Note that this is still
1/4 above the critical scaling regularity s, = 1. Ultimately, we would like to improve
upon these results for the null forms Q;; and Qo;, but first we focus on the more general
problem (1.0.1).

The null forms @;; and Qo; appear naturally in the study of the Monopole equation
Fy=%Dag

where A denotes a one-form connection on R2, F, is its curvature, ¢ is the Higgs
field, D¢ is a covariant derivative, and * is the Hodge star operator with respect to the
Minkowski metric on R'*2. The space-time Monopole Equation is an integrable wave
system and an example of a non-abelian gauge theory arising from the anti-self-dual
Yang-Mills equation. It has a natural scaling and the critical exponent in the Sobolev
scale is s, = 0. Thus, the scaling predicts well-posedness in L?(R?). The system is gauge
invariant and takes different forms depending on which gauge one chooses to fix; however,
how results in one gauge might translate into results in another is unknown. In [3] and

[4], Czubak fixed the Coulomb gauge and derived a system of nonlinear wave equations



coupled with a nonlinear elliptic equation for the gauge transformation. The resulting
nonlinearity in the wave part of the system is a combination of terms with different

null-form structures and roughly has the form

Q(p,¥) = 8 Rip(dy + iD)p — (8, + iD)pd; Ritp

where D = (—A)1/2 and R; = (—A)_l/2 0;. Within this equation one has the basic null
forms Q;; and (Qg;. Using a fixed point argument in suitably adapted variants of the wave
Sobolev spaces H%?, Czubak was able to prove local in time existence for the monopole
equation with data in H*(R?) for s > 1/4. Furthermore, the needed bilinear estimates in
the H*? spaces are known to be false without this extra 1/4-regularity in two dimensions
(c.f. Foschi and Klainerman [7]).

In Chapter 1, we review some general theory of local well-posedness and classical
results for the system (1.0.1). We then introduce the solution spaces Xob and, following
Griinrock’s approach in dimension three [8] give an argument that reduces local well-
posedness to proving bilinear estimates. In Chapter 2 we prove some technical results
that will be used to establish the needed estimates. Using the approach of D’Ancona,
Foschi, and Selberg in [6], we reduce our bilinear X p estimates to trilinear L estimates.
By suitable dyadic and Whitney type decompositions, we then further reduce the problem
to bilinear restriction estimates on thickened subsets of the null cone, as in Selberg [17].
Finally, in Chapter 3 we prove the estimates that allow us to conclude our main local
well-posedness theorem.

Our results for the product nonlinearity (1.0.1) give a strong indication that a similar

;b approach would bring corresponding improvements for the null form (1.0.2) as well.
This is still unknown, as our methods do not readily exploit the null structure of equations
of this form. We suspect that gain may be achieved, as for Griinrock in dimension three,
by utilizing results of Foschi and Klainerman in [7]. It seems possible that combining
our methods with those described in [7] and employing instead an angular decomposition

closer to that in Barcelo et. al. [1] could give further improvements for the null form.



We include a discussion of these techniques in the appendix for future reference.

1.1 Local well-posedness

Classical solutions of (1.0.1) require data with enough regularity so that the equations
make sense pointwise. Since we wish to study local existence and uniqueness for systems
with lower regularity on the initial data, we must instead look for solutions in a weaker
sense. To define this notion, we will reformulate the problem as an integral equation.

Suppose that we have the general inhomogeneous equation
Ou = F(u) (1.1.1)
subject to the initial conditions
u(0,z) = up(z), u (0, z) = uy(x). (1.1.2)
We consider first the corresponding linear homogeneous problem
Opu — Au =0 (1.1.3)

with the same initial conditions (1.1.2). Now if u is sufficiently smooth, for example if

u € Czl oSz, then taking the Fourier transform in space, we obtain the system

Ay(t, ) + |€[*u(t,€) = 0
u(0, &) = uo(§)
u(0,8) = ur(§)
where ]?denotes the spatial Fourier transform on R", i.e. f(f ) = fR” e~ E f(x)dx. This

produces an ODE with solution

At €) = % (eilﬁlt i efi|€|t> T (E) + S (eili\t i efilflt) ai(€) (1.1.4)
or equivalently,
(0, = cos(llmn(e) + )



By Duhamel’s principle, the solution of the inhomogeneous problem (1.1.1) is then

a(t,€) = cos((€]1)n(E) + “,(f‘f D56 + / Wﬁm(s,&))ds.

Now define |D| = v/—A to be the Fourier multiplier operator with symbol |£|. That
is,
(ID1£)"(€) = I€1£(€)

Taking inverse Fourier transforms, we have

sin(tyv/—A) () + /t sin ((t — s)v—A4)
V-A 0 VA

u(t, ) = cos(tv/—A)ug(z) + F(u(s,z))ds.
(1.1.5)

This integral equation makes sense also for tempered distributions that are locally LP in

time and space, and so we will say that solutions of (1.1.5) are distributional solutions or

weak solutions. Note that if u is a weak solution and also u € C?(R x R") then u is also

a classical solution. We then define local well-posedness (LWP) as follows.

Definition 1.2. We say that the Cauchy problem (1.1.1), (1.1.2) is locally well-posed
(LWP) in a Banach space X if, given initial data (ug,u1) € X, there exists a time T > 0

and a solution space X7 C C([0,T]; X) such that the following are true.

1. There is a unique u € X that solves (1.1.1) on [0, T] x R™ in the sense of distribu-

tions, satisfying the initial conditions (1.1.2).
2. The map (ug,u1) — wu is locally Lipschitz.

In general, one tries to establish local well-posedness for a system such as (1.1.1),
(1.1.2) by using a fixed point argument in an appropriate Banach space, Xp. Following
[12], we briefly discuss how a contraction mapping argument leads to well-posedness
results. We can define a mapping A for the equation (1.1.1) using, for instance (1.1.5).

We set

sin - t sin - S —
AQu)(t, 2) = cos(ty—B)uo(z) + VD)o o /0 ((t—s)V=A)

A A F(u(s,x))ds.



Then from distributional theory, finding weak solutions of (1.1.1) is equivalent to finding
fixed points for A. A common technique is to use a Picard iteration in the Banach space
Xr, as follows. Define v_; = 0, and for j > 0, v; = A(vj—1). Provided F(0) = 0,
such as when F(u) = dudu, it follows that vg is a solution of the homogeneous equation
(1.1.3) with initial conditions (1.1.2). For subsequent iterates we have Ov; = F(vj_1)
with (vj, 9v;)|,_y = (uo,u1). Equivalently, we can write v; = vo + 071 F(vj_1) where
O~! is the Duhamel operator that assigns to F' the solution v = O07'F of the problem
Ov = F with zero initial conditions v(0,z) = v:(0,x) = 0.

Finding the correct Banach space in which to perform these iterations can be rather
difficult. Classically, the Cauchy problem has been studied with initial data in Sobolev
spaces, (ug,u1) € H*(R") x H*(R™). If we denote (£) = (1 + |€|?)V/2, then the inhomo-
geneous Sobolev space H® and the corresponding scale-invariant homogeneous Sobolev

space H* are defined to be the completion of the Schwarz class under the norms

1l = ( / |f<s>|2<5>28d5> " and 1l = ( / |f<a>|215|28d5) "

respectively. Observe that

e || = ||igle €l | = luoll .
Hs 2
and similarly
+ity/—A +itl¢|
| =S| = e
*A s |£| 2

From (1.1.4) we have the representation for the homogeneous solution

1 itV=A | —itV—A
RV (e +e ) uy(x)

and it is therefore natural to look for solutions u in subspaces of the continuation space
CY(H*) N CH(H*"'). However, if we want initial data (ug,u;) € H*® x H*~! then to
remain in the space, each iterate must also satisfy v; € H® and Ojv; € H 51 Thus, Xr
will depend on the nonlinearity F' and the Sobolev exponent s. Consequently, we replace

Xr with X7 and note that in this case we must have the embedding X}, — C([0,T], H®*)N



C([0,T), H*~'), where C([0,T], X) denotes the space of continuous functions from the
interval [0, 7] into X.

We want to show that the sequence of iterates v; is Cauchy in the X} topology, so
that there is a limit u. Provided we can show also that A(v;) — A(u) or F(v;) = F(u) in
the distributional sense, we will have proved local existence in X7. For the uniqueness,
we also need to show that the iteration map is a contraction. Thus, in general we will

need to prove linear estimates, such as
lvoll g < Clluollms + [lulgs—1)
and nonlinear estimates such as
107 F(u)|las < CrA(|Jullxs)

where A is a continuous function satisfying A(0) = 0, to show that the iteration is well

defined in A}. Estimates of the type
IO (E () = F()lag < CrA (J[ullag, lollag)llu —ollx;

for A’ continuous will show that we have a contraction for T sufficiently small, and also
imply the Cauchy property when combined with the estimates above. Later we will see
how using the product structure of the nonlinearity F'(u) = dudu in these estimates gives

rise to the bilinear estimates that we prove in Chapter 3.

1.2 Classical results

We now review some classical results concerning existence and uniqueness for the
general system (1.1.1) and (1.1.2) where u : R™" — R¥ and F is a smooth R¥-valued
function satisfying F'(0) = 0. For certain nonlinearities, such as F(u) = u? or the
derivative nonlinearities considered in this dissertation, these equations have a natural

scaling. For the quadratic derivative problem (1.0.1), we see that if u = u(t, x) satisfies



(1.1.1) then so does uy(t, z) = u(Mt, A\x). If we take initial data (ug,u;) € H® x H*~!, we
find that the H* x H*~! norm is invariant under this scaling if and only if s = 5. Indeed,

we have

[u(0, ) g = II1€1°T(0,€)]| 12
= A" 1€ (0, /M) 2
= A2 INEPFT (0, €)1z

= X2 (0, )| -

Thus, for (1.0.1) the critical scaling exponent is s, = n/2.

With regard to local well-posedness, the scaling suggests a relationship between the
size and regularity of the initial data and the time of existence. In the subcritical case,
s > s., we expect to be able to extend local well-posedness results for data with small
norm to large data by shrinking the interval of existence. This is the best possible case
for local well-posedness. On the other hand, in the supercritical case, s < s., we are
likely to encounter finite time blow-up, even for small initial data. Finally, in the critical
case, s = S¢, since the norm of the initial data is invariant under scaling, we expect
global existence and regularity for sufficiently small data. This can be summarized by

the following conjecture, c.f. [12].

Conjecture 1.3 (General Well-posedness Conjecture). Consider the initial value problem

(1.1.1), (1.1.2). The following should hold.
1. Local well-posedness for initial data in H® x H*7!, s > s,.
2. Global well-posedness * for initial data with small H x H%1-norm.
3. Ill-posedness for initial data in H® x H*™1, s < s,.

One approach to proving local well-posedness is to use energy estimates to close

the fixed point argument. For u with initial data (ug,u1) € H® x H*"' the equation

Ymaybe in a weaker sense



Ou = F(u) satisfies the following energy inequality.

t
Jut, ) zs + [ Ocult, )l gs-r < C(1+1) (IluoHHs + luall s +/0 IF (¢, -)I!Hsldt’>

The same estimate holds with H*® and H5! replacing H® and H*~!, respectively, with

constant C' instead of C(1 + t). In particular,
[Dullzgerz S llwoll g + llurllze + [[Fllpizz

where we use the notation 2, <, and =~ to denote the relations >, <, and = up to multi-

plicative constants depending on fixed quantities. We write X ~Y tomean X <Y < X.

Using the energy estimates, one can obtain the following theorem, see [12].

Theorem 1.4 (Classical Local Existence Theorem). The equation (1.1.1) is locally well-

. e . _l
posed for initial data in H® x H*=(R") for all s > 5 + 1.

In dimension n = 2, this is still well above the scaling prediction for (1.0.1). However,
one can improve upon this result using Strichartz estimates, which can be found in Sogge
[19] or Tao [23]. We state these estimates below and then use them to show (1.0.1) is
locally well-posed in H*® x H*"! for s > 7/4. This is a gain of 1/4 over the energy

estimates, but still a gap of 3/4 above critical scaling.

Theorem 1.5 (Strichartz estimates for the wave equation). Let n > 2 and consider the
wave equation (1.1.2) with initial data (ug,uy) € H* x H*~'. Define the admissible family
of pairs to be

n—1 n—1
<
r = 2

A= {(q,r) 1 2<q,r < o0, z+ , (q,r,n);ﬁ(2,oo,3)}.

Suppose (q,7),(q,7) € A and s > 0 is such that the following gap condition holds:

for (r,7) < co. Then

lellzg s + Neloog s + I00llcoporyies S Nuoll s + el s + 1l

10



Furthermore, for derivatives D7u, we have

1D ull oy < luollgrs + luallgroms + 1DV El g o

provided the gap condition with derivatives

(1.2.1)

holds.
With n = 2, take (¢,r) = (4,00) and (¢,7) = (00,2) in A. For s =1, v = 1/4, and

4 =0, (1.2.1) holds, and hence we have
1
D3 ullparee S luoll gr + luallzz + 11 gy rz-
Applying this to D%m
[1Dullpree S lluoll 7+ lluall 5 + HF||L%H§' (1.2.2)

From the energy estimate with s = 7/4, for fixed 0 < ¢t < T we have
t
!/ /

e Mg + 1000t gy S (oolyg + lllyg + [ 1F@09a0) . (23

On the other hand, for F'(u) = dudu,
t t 3/4 t .
/ / !/ / / / /
/0 ||Ou(t', -)ou(t, -)HH%dt < </0 dt) </0 |Ou(t', -)ou(t, -)HHidt)

¢ 1/4
<713 (/ [Ou(t’, | oo llOult’, I sdt’>
0 ¢ H4

< T¥|0ull g oo |0

1/4

LgOH%
whence by (1.2.2) and (1.2.3) we can obtain a contraction on Xr = C’?HZ/4 N C’,}HgM N
L?Wg} "% provided T is sufficiently small.

The Strichartz estimates arise from the dispersive qualities of the wave equation. Here
the term dispersive means that different frequencies will propagate at different velocities,

and hence disperse. Thus, energy cannot concentrate in small spatial regions for a large

11



period of time. In contrast, frequencies in diffusive equations, such as the heat equation,
do not propagate, but rather dissipate over time. For the heat equation, singularities in
the initial data weaken as time evolves, giving rise to smooth solutions. However, for
the wave equation solutions do not get smoother, but tend to spread and decay in time,
which is reflected in the dispersive estimates.

The Strichartz estimates give the best known results for (1.0.1) in dimension n = 2
with initial data in Sobolev space. For initial data with lower subcritical regularities,
we will instead look at the problem in different spaces. In the work of Klainerman and
Machedon [11] and Bourgain [2], the Fourier restriction spaces X*? have also been useful

in studying nonlinear dispersive equations, so we turn our attention now to these spaces.

1.3 The Fourier Lebesgue spaces ﬁ;" and associated X, spaces

Using ffor the spatial Fourier transform on R", we define the Fourier Lebesgue spaces
ﬁg = ﬁ;(R”) by the norm
1z = 166 fll oo

and their homogeneous counterparts
£l 5 = & Fll -

When s = 0, we shall write ﬁg = ET, ie.

~

1l = 11l

We will take initial data in suitable f[;“ spaces, and find solutions in the related Xeb
spaces described below. To compare our results on the Sobolev scale, we again consider

the natural scaling of the equation. Define fy(§) = f(A§) for A > 0 and recall that

12



1Al zrs = A*~2|| f|| j7+- Similarly, we obtain

PR [SEAG]

=\ "

R

_ )\n/r’—n

’

el

= X ]

Thus, from a scaling viewpoint

fI:rvH“ if a:s+n<1—1>.
2 r
For n = 2, this givesa:s—i—l—%.
We now present some theory of the L?-based Fourier restriction spaces X following
Tao in [23, Chapter 2]. If ¢ : R" — R is a continuous function, and s,b € R, we define

the Fourier restriction space X‘Tgﬁ () (R'*™) to be the completion of the Schwartz class

S(RY™) with respect to the norm

(€)°(7 — SN (T, )z,

u s =
fullgs =1

where (-) = (1+]->)"/? and a(r, ) = //e_i(””'g)u(t, x)dtdz is the space-time Fourier
transform on R!*". Recall that for dispersive equations, such as the wave equation, the
phase velocity varies with frequency. Here, the function ¢ is the phase velocity associated
to the equation, while the group velocity, h, or the overall velocity of wave groups or
packets, is h = V¢.

Recall also that for the homogeneous wave equation (1.1.3), we can write the solution
in terms of its spatial Fourier transform (1.1.4). In the sense of distributions, the Fourier
transform of ™! is the measure 276(7 — w) and so we can write the space-time Fourier

transform of the homogenous system as

U(r,€) = 7 (8(r — [€]) + (7 + |ED) T (&) + ¢ (3(r — [€]) + (7 + |£1) T (E).

il¢]

13



In this way, the Fourier transform of the solution is a measure supported on the light
cone {(1,€) : || = |¢]}. Assuming solutions to (1.1.3) are plane waves e/‘"=%€) e
derive the dispersion relation 7 = £|{|. Then the phase velocity is ¢(§) = £[£| and the
group velocity is h(§) = Vo(§) = i%. So, the group velocity depends not on speed, but
only on direction. In fact, from the dispersion relation, we see that all waves propagate
in concentric circles with the same constant speed. For this reason, the wave equation is
sometimes referred to as weakly dispersive.

Since we are concerned with the wave equation (1.0.1), we will focus on the Xfﬁ 5()
spaces with ¢(¢) = +|¢|, which we will denote simply as X*’. However, since the
phase velocity ¢ is multi-valued, we adapt the definition slightly and for s,b € R, define

the wave-Sobolev space X** = X*’(R1*") to be the completion of the Schwartz class

S(R™) with respect to the norm

lll s = €€ (7] = €D a(m, )l 2 -
In much the same way that the elliptic weight ({) measures regularity in Sobolev space,
the wave-Sobolev index s measures elliptic regularity. On the other hand, the index b
corresponding to the hyperbolic weight (|7| — |£|) measures the hyperbolic regularity of
the solution in L?.

From [23, Corollary 2.10], we have X** < C(R, H*) N C*(R, H*~1) for b > 1/2 and
hence one can look for solutions to (1.0.1) with (ug,u;) € H® x H*! in these wave-
Sobolev spaces. An X*! space approach has been used to show improvement over the
Strichartz results for (1.0.1) in dimensions n > 3, such as in Foschi and Klainerman [7],
Griinrock [8], and Tataru [24]. In dimension n = 2, these methods have produced the
s > 5/4 results for null forms [25]. For the product (1.0.1) in two dimensions, however,
there has been no improvement over the Strichartz results using X**. Motivated by the
n = 3 results of Griinrock in [8], we instead turn to the more general Banach spaces Xob

for 1 < r <2 endowed with the norm
lullxr, = K& — IEDbﬂ(T,é)HL;'E

14



where 7’ > 2 is the conjugate exponent of r, i.e. % + % = 1. The hope is that lowering
the value of r, and hence increasing r’ on the Fourier side, will also lower the bound on s.
At times we will also wish to restrict our attention to the forward and backward waves,

and thus define also the spaces

fullpe = €Y (r £ 1607, ),

These spaces are particular examples of the more general Xg’l‘f spaces associated to a

phase function ¢ = ¢(£). As in the r = 2 case we define

lallrp = IE*(r = ST, Ol

When a fixed phase function ¢ is clear, we will simply write X;:Z) = X ;- We now give
some properties of X{, spaces, following Griinrock [9] and [23].

First note that we have the following containment X§117b1 - Xsr&bo if 1 < rg, 51—
n/ry > so—n/ro and by —1/r1 > by — 1/rg. Indeed, since r] > r(, we can apply Holder’s

inequality to obtain

lull o, = 6™ (Il = S @, &) g

:H@vwhw—¢@»hmn5>
(€= ([l = (O

!
To

= (/ ((€>S°_Sl<|T| - ¢(5)>b0_b1) EE d(r, )) oo

< lullxg,

(€)1 (7] = ¢(€))™ (7, €)

where in the last step we have used the fact by — by > % — % and s1 —sgp>n (% — %)

With D = /—A as above, we write Uy(t) = ¢?(P)  For the operators associated to
free wave solutions, V=2 and e*“\/j, we write Uy (t) = ¢*iV=A First note that for
any smooth cutoff function ¢ € S(R), we have

~

Fp(t)Us(26)f] (1,€) = / SO Fle)etay

~

= (T F ¢(€)) F(€). (1.3.1)

15

!
™



Furthermore, this implies

e OUs (=D fl,, = [[(€)(7) 0 + () F(E)
= @ - een*énfte)
= 19 Slx, (1:3.2)

On the other hand, we have the following lemma.

Lemma 1.6. Let 1) € S(R) be a smooth time cutoff. Then for any f € HT(R™), we have

e OUs(t) 1 x:, Sw 17 - (1.33)
Proof. By, (1.3.1),

IO F N, = [[(€) (7 = S (7 — 3D ()

o (GRGRIGHS

= [¥llg 1fl 7, (1.3.4)

,r,l

,r/

To show X{, — C(R, fAI;'), we use the following result from [9, Lemma 2.1].

Lemma 1.7. Let Y C 8'(R'™) be a Banach space stable under multiplication with L$°,

t.e. forally € L¥ andu €Y,

[Pully S 19/l llully- (1.3.5)

Suppose that Y also satisfies the inequality

le™ts () flly < I1f 1 g (1.3.6)
for all f € fl; and 19 € R. Then, for all b > %, we have the estimate
lully Se llullxr, (1.3.7)

with a fixed constant that depends only on b.

16



Proof. By Fourier inversion,

u(t,x) ~ / IO (1, €)d(T, €). (1.3.8)
Define

(@)= [+ 6(6), e e
where 79 = 7 — ¢(£). Note that if u € Xpp for any b > 0 this implies that f-, € L". Then

Us(O)fry = [ IO ()
= [ ©in + o(0), )¢
and hence
/ei”ouqﬁ(t)fmdm ~ //eim'ye“m“td)(@ﬂ(m + ¢(§),&)dédy

://emye“mﬂ(m,f)dmdf.

By Minkowski’s inequality,

[[ully 5/|(€“T°U¢(t)fToHydTO

S [l dn

by hypothesis. Then, by Hélder’s inequality,

fully S o) ~*(r0)? Ul

: (/ <T°>_brd70>l/r (/ [ <£>”’\%(5)’”’dsdm)w.

Now since br > 1, the first term is finite and so

ully S <//<To>br’<§>sw|ﬂ(70 N ¢(§),§)T'd§dro)l/w

S llullxr,-

17



Letting Y = C(R, H"), we see that (1.3.5) clearly holds and

gitmo </<£>s

/

e f(¢)

T,/>1/r’

is (1.3.6). Thus, Lemma 1.7 gives the following important result.

e mutst) £l

T/>1/7‘

i
t L

Corollary 1.8. Let u € X;”’b for any b > % Then we have the inequality

Hu”c?ﬁg’w Sb ”uHXg,b. (1.3.9)
Now define the spaces Z7, = Z7,(R'™) by the norm

lullzr, = llullxr, + 19wl x; (1.3.10)

s—1,b
and for ¢(§) = £[¢| define the associated spaces Z;’;t accordingly. Analagous to the case
when 7 = 2, we have from above that if b > 1/r, Z, — C([0,T7, HT)Yn (o, T), ﬁ§—1)-
As in Sobolev space, for the operators associated to the free solution we see that
etitV—A
v=a |,

Thus, we take initial data (ug, u1) € Er;“ (R™) x .F_A[gfl(]R”), and look for solutions of (1.0.1)

Heiit\/fAuO

L= Nl

g = luollzr and

in X‘Qb for appropriate ranges of the exponents s,b, and 7.
The main result of this dissertation gives local well-posedness in H s with s > % +1
for % < r < 2. From the scaling, this corresponds to o > 2— % When r = 2, this delivers

o > g, which is the best known result for local well-posedness in H?. However, when

1

r=3/2, weobtain 0 > 2 =7 — L.

In this way, this can be viewed as an improvement

over the Strichartz results, but still leaves a gap of 2/3 over the scaling prediction.

1.4 Statement of the main result

When studying local well-posedness, it can be useful to reformulate (1.1.1) as a first

order system. This may be done in various ways, some of which we include here. For

18



example, letting w = (u,u;)" and N(w) = (0, F(u))?, we can write

dw

0 I

where L = is a 2 x 2 matrix. If U(t) = e'* is well-defined, this generates the
A0

solution to the linear equation %’ = Lw, and by the Duhamel principle or the method of
superposition,
w(-,t) = eFw(0) + /Ot eI N (w(s))ds.
Another way is to use the operator D = (—A)Y/2 from above. Note that D' =
(—A)~1/2 is the Fourier multiplier operator with symbol |¢| . Defining us = uiD ™ uy,

we have

(10 — D)uy = (i0; — D)(u + iD  uy)

= —D_lutt — Du
= —D_l(utt — AU)
= —D Y(Ou)

and similarly, (i0; + D)u_ = D~*(Ou). So, we can reformulate (1.1.1) as
(i0; £ D)uz = =D~ (F(u)).

Similarly, using the Bessel potential operator J = (I — A)1/2 with inverse J—! =

(I — A)~12, we define uyx = u +iJ 'uy. Observe that
1T el g, = 146 (U + 162 2@l = el (14.1)
and also HJUHE’L1 = H“Hﬁg Then
(10 + J)u— = (10 + J)(u — iJ uy)
= Jﬁlutt + Ju
=J YNuy + (I — A)u)

=J NOu) +J

19



and in the same way, +J 1 (0u) = (i0; = J)ux F J~tu. Using this, we can rewrite (1.1.1)

as
(i0, £ J)ugs = +J 1 F(u) + J tu.
For the nonlinearity F'(u) = dudu in (1.0.1), define the corresponding bilinear form
Bs(u,v) = dudv. Then, since uy + u_ = 2u, we have

Foy - (L s o)

1
= ZBQ(’UJ+ +u_,up +u_).
From this, we write (1.0.1) as the first order system
. L. L.
(10 £ J)ug = :I:ZJ By(uy +u_,up +u_)+ iJ (ug +u_)
or dividing by i,
. 1oy 1oy
(O i) ug = iZZJ Bo(uy +u—,uy +u_)+ Z§J (uy +u_) (1.4.2)
with initial conditions
fi=us(0,") =ug+iJ ‘u; € H. (1.4.3)

We then understand a solution (u4,u_) to be a solution of the corresponding pair of

integral equations

uy(t,) = e fo 4 / e =) B (u(s, -))ds. (1.4.4)
0

where

1 1
Fy(u) = :l:zZJ_lBg(qu +u_,up +u_) =+ iiJ_l (uy +u_)

(see Section 1.5 for more details).

We are now ready to state our main result concerning local well-posedness for (1.0.1).
We give a theorem for the equivalent first order system (1.4.2) and (1.4.3). Our initial
data will be in ﬁ;’ X ﬁ;’ and solutions will lie in time localized Z{, product spaces,

denoted Z{,(T"), with the norm
lullzr () = mf{l[allzz, = @l g pppn = ul-

20



In particular, the norm on Zg’f (T) is given by

el 7 ry = i0f 1l e + 10l sy = 0}

We define similarly any time restricted spaces X;b(T). Note that if b > 1/r then
Z;’bi(T) < ([0, 7], HT) N Cl([O,T],ﬁg_l). Hence, if the initial data are in HT x HT,

then the solution embeds into the continuation space C([0,T], HT) x C([0,T], HT).

Theorem 1.9. Let % <r<?2, s> % + 1, and % < b < 1. Given initial data fy € fI;,
there exist T = T(||f+| g, [1f-l5-) > 0 and a unique solution (ui,u_) € Z05(T) x

Zy (T) of the system
. 1 1
(O i) ugr = iZZJ Bo(uy +u_,uy +u_) + Z§J (uy +u_) (1.4.5)
satisfying the initial conditions
fe(x) = us(0,2) = ug(z) £iJ Tup(z). (1.4.6)
The solution is persistent and the flow map
(Fir fo) m (usyus), BT x HE — 200 (T) x 205 (T)
1s locally Lipschitz continuous.

In the next section, we reduce the proof of this theorem to bilinear estimates in X ,.
This relies on a general local well-posedness scheme introduced by Bourgain and adapted
to X!, by Griinrock in [9]. We will prove general estimates of this form in Chapter 3

from which we will obtain our result.

1.5 Reduction to bilinear estimates
The general scheme in [9] reduces local well-posedness for the Cauchy problem
Ou —ip(D)u = N(u), w(0) =ug € H” (1.5.1)
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to proving sufficient estimates for the fixed point argument. Here N(u) is a nonlinear
function of u and its derivatives. As we showed earlier for the wave equation, we can
reformulate (1.5.1) as an integral equation by taking Fourier transforms and finding the
solution of an ODE. Then Ug(t) is the operator associated to the homogenous linear

equation and by Duhamel’s principle, we have the integral representation
t
u(t, ) = Au(t) = Uy(t)uo + / Uy(t — s)N (u(s,-))ds. (1.5.2)
0

We begin with the following result [9, Lemma 2.2], which gives the estimate needed

for the Duhamel piece

Upn F(t) = /0 Ut — s)F(uls,-))ds. (1.5.3)

In the following, ¢ € C§° will be a smooth function compactly supported in the interval
(=2,2). For 0 < T < 1 we will write ¢5(t) = 1(%). The space Xg’l? with the phase

function ¢ corresponding to (1.5.1) will be denoted simply by Xep

Lemma 1.10. Assume —1/r' < <0<b <V + 1. Then for the linear inhomogeneous
system

O —ip(D)v = F, v(0) =0

we have the estimate

sl Pl o < cab’—b+1||Fy|X;b,. (1.5.4)

Proof. The proof is found in [8, Section 2.2], so we will just give a sketch. The idea
is to first prove the estimate for Kg(t) = 15(t) fg g(s)ds, a function of time only. The

corresponding estimate is then
159l < c8’ _b+1||9||g;,- (1.5.5)

Once this is established, we can take a function g = g(t,x) of both time and space, and

for a fixed & apply (1.5.5) to g(t,£). This gives
/ - ! l/r/ / AN} ! 1/71/
([orRamorar) <o ( [waeer)
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Multiplying by (£)”'* and then integrating with respect to & gives
1Kgll7, < e’ gl

where we use the notation ITI;“b = f[;"b(RH”) for s,b € R to denote the Banach space

with norm
1717, = 1€ () il

To establish (1.5.4), we then let g(t,x) = Uy(—t)F (t). This yields

Now note that we can write U(—s) = U(—t)U(t — s). The result then follows from the

ba(t) /0 Uy(—5)F(s)ds||

-
Hs,b

< e Uy(~0)F g
s,b7

following fact. Analagous to Lemma 1.6, for a general h = h(t,z) we have

o s(-0n(t g, = (%) [0 [ e OR(e e ar as

,,-./

[t = ot [0 [ e as

7./

= |[¥hllx:,
and similarly,
Jtho ()t 0) 3 = N,

We also remark that if h = h(x) then

(o005, = 6B, = 1] I

a fact we use in establishing the one dimensional estimate (1.5.5).

This generalization allows us to apply the estimate (1.5.4) to the nonlinearity N (u)
below. The remainder of the proof is devoted to proving the one dimensional estimate,
by first rewriting g using the Fourier inversion formula and then integrating in time and
multiplying by 15 to get the expression

eth _ 1/\

Kg(t) = cvs(t) / Lo

1T

for Kg. The integral is split over the regions |7| < 1/6 and || > 1/0 and is then estimated

depending on the size of 7 and the exponents b and b'. ]
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The following theorem [8, Theorem 2.3], which relies on Lemma 1.10, is the foundation

for our local well-posedness argument.

Theorem 1.11. Assume that for s € R and r € (1,00) given, there exist b > 1/r and

b € (b—1,0] such that the estimates
IN@lx, < Cllul, (156
and

ING) = Nz, < (lal57: + oI5 ) lle = vllx, (15.7)

s, T
are valid with o > 1. Then there evist T = T(|luol|z,) > 0 and a unique solution
u € X;"’b(T) of (1.5.1). This solution is persistent and the mapping data upon solution

ug — u, I/i\'g — X1 (To) is locally Lipschitz continuous for any Ty € (0,T).

Proof. The proof of this theorem is found in [8, Section 2.3], however we will include
some details that will be useful later. We begin by defining an extension of A to X;"?b(d)
for any 0 < 6 < 1. Let ¢ be a smooth cutoff function compactly supported in (—2,2)

with ¢ =1 on (—1,1). For any u € X[ () with an extension u € X, let

Rult) = (U (Euo + 5 (1) /0 U (t — 5)N (a(s, -))ds. (1.5.8)

and note that Au(t) = Aw(t) is well defined for t € (=4, §). Furthermore, for any extension

[Aullxr, ) < IWUs(B)uollxr, + [slhpe N (W)llxr,

< Clluollg, + 8" "IN (@)||x:,
by Lemma 1.6 and Lemma 1.10. Then using the hypothesis (1.5.6), we have
A Y —b+1 |-
1l xr,5) < Clluoll g, + O~ s,
Since this holds for any u, taking the infimum over all such extensions, we obtain

- b—b
IAullxr ) < Clluollg, + CO" " ull%s, 5)-
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Thus, A : X7, (6) = X7,(6). Now to show that A is a contraction, for u,v € X7 ,(9), let

u,v € X!, be any corresponding extension. Then by Lemma 1.10,

18w = Rol|xr 5y < [l (N (7) = N(@))llx7,
< C&" " IN(@) - N(@)||x-,

< Co" 7 (Jlali? + ollsg ) la - vllxc,
by hypothesis (1.5.7). Since this holds for any extension, we must have

||j\u - AU||Xg,b(5) < Co¥' b+t <||U||_C>gi(5) + ||U”?<§(5)) l[u— “||X§,b(5)

< C8" 7 (2R [|u — vl k7 5)

for any u,v in a ball of radius R = [Jug|| 5, in X7 ,(d). Since b’ —b+1 > 0, we can choose

0 < § < 1 sufficiently small so that

/ 1
51) —b+1
< 5CRaT
and hence for T = %C’(SbLbHRO‘*I,
- - 1
1Aw = Avlixr o) < llu=vllxr, (7). (1.5.9)

Thus, A is a contraction, and by the contraction mapping principle there exists a solution
u of the equation Au(t) = u(t) = Au(t) on for t € (—T,T). The uniqueness and Lipschitz
continuity statements then follow from the contraction (1.5.9) by standard arguments,
c.f. [18, Section 4.1]. The requirement b > 1/r ensures persistence of higher regularity,
since we then have X{, — C([-T,T], HT) for any s.

O

Now we apply this scheme to (1.4.5) with initial conditions (1.4.6). Since the symbol
of Jis (14 |£[2)Y/2, we have ¢(€) = F(£). Let us write the corresponding Xty and Z7,

spaces as )?g;t and ZZ;E and call
| -1
N(u) = ZJ Bo(uy +u—,uy +u_) =J "Ba(u,u),
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Flu) = éj_l (uy +u) = T (w)

and

Aug = (U (t) f £ iv)s Upsy N (@) £ itps Ups, F(00) (1.5.10)

where u = %(UJF +u_). For the fixed point argument, we need to show that A = (A, A) is
a contraction on the space Z:; (T) x Z:; (T') for some T, which is equivalent to having
a contraction for A on each component.
Reduction to estimates for Bs in Z:bi .

e Estimates for A. First we verify that A : Z:;(&) X Z:; (0) — ZST;((S) X Zg;(é)

for 0 < § < 1. For any extension u+ of u4+ we use Lemma 1.6 and Lemma 1.10 to obtain

Rl gy < 162ho il e + U@ i+ slhpor N (@) 1
< Clfelz, + 084 (IF@grg + IN@ g ).
We will use the following facts. First, by the triangle inequality, we have
7| < l&l +[I7] = [€]]- (1.5.11)
Next note that
Il =€l < |7 = [£]] (1.5.12)

which is easy to check by splitting into the cases 7 > 0 and 7 < 0. Finally,

1/2

)= (14 (rxas1eP)) ~ (1 i) = 2 ass)

which can be verified by checking the cases || < |7| and |£| > |7| for [{] > 1 and [£| < 1.
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Since v/ < 0 < b,

IF@llgrs = €Y (r 2 ()" () all
~ 1) £ 1) all
S 1 Hrl = 1 all,-
S I NIl = leh el
S IKEY Il = lel axll + 1€~ (|| — I’ a=]l
S IKE ™ + L€l ax [l + (€)™ — I€l) u= v
S llusligry + lu-llgr
and similarly

IF(0) = Fo)llgrs < lur = vl oy + lu- = v-lLgr,

Thus, we already have the estimates needed for F' in the non-derivative part of the norm.
It remains to establish the corresponding estimates for N, which are given by (1.5.6) and

(1.5.7). But note that

IN@ g = 177 o, w)l o
= ”BQ(U’U)”XSE,M
so it is enough to show

1Ba(u )l e S (Ml iy + )

and similarly for the contraction.

e Estimates for 9;A. Now for the derivative piece of the Z:;[ norm, we have

10 Aus] gre 5 SN0 WU f)l gt + 10 (Yslonn (@) grt | + 10 (Vs N (@) g7
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Using the relations (1.5.11) - (1.5.13) from above, for a suitable function h, we see that

|9uhllgrs = 14€)°~ 6 % ()Pl Al
< €Y (€Dl + 1)~ + @)Vl — Il

SIHE (£ () Rl + 11€6)° (7 £ ()" a.

So, if v is a smooth cutoff and fi € H +, we can use Lemma 1.6 to obtain

Hat(wugsf:l:)u)zsri . S ”wu‘ﬁfin(lbi + ku¢fiu)2;il .
S I =lg + 1<l g

STAPS

Next for F', we have

10 (VU F' (@)l < N0 (05) U B (@) gt A+ |[905Us () F (u(0, 7)) || g

T ' s [0 Uelo)F(at - 5.2))) ds

>t
Xsfl,b

The first term can be handled as in Lemma 1.10 to get

10: (VU F (@) 375 S C(Sb’_b+1HF(ﬂ)H)~(r,§.

S

Notice also that the second term will disappear inside the norm when doing the contrac-

tion argument, so it suffices to prove this is bounded. We have

95 @(0, ) o = I & (€ Fal) / Ba(t)e T dt)
2 Fa(€) / a(t)e ]

= ||fi”f[:_2||¢5”f[g'
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Now write

s / Oh (U () F((t — 5,-)))ds

w(g/o Uy (s)F(Owu(t —s,-))ds

X:ftl,b ‘ )?:ftl,b

= [Wsldpe F(Out1) || r=: |

SO F(w)|| s
S

—1,b/

SO (Joruslgrs 0] g )
s—1,b s—1,b
as above. Thus, we have all the estimates we need for J. Next we examine
106wty N ()| g

which as above reduces to three estimates, the first of which is handled exactly as in the

case for F'. For the second,

||¢6u¢(t)N(ﬂ(0,f))”;z:_il’b < ||¢6N(fi)||jz:—il,b
< ||¢6B2(fiafi)||)};;ﬂ:2,b

< s Ba(fas fo)ll g -

Finally, as for F', we also have for IV,

s / Uy (s)N (@t — 5,-)))ds

s / Up(5)O(N (a(t — 5,)))ds

vt I vr,t
Xsfl,b Xsfl,b

= ||[YsUps, O Ba(, @) ||)Z;';i2 ,

S (5b’_b+1 Hath(ﬂ, 'ﬁ) H)Z'Tiz o

All in all, for N it suffices to show

2
10eBa(u, u)|| grt S (HU+||'Z“T»+ + HU—HZn—>
s—2,b/ s,b s,b
and

2
[ Ba(u, )| gre S (llutllzre + [Ju—lz-
!
s—1,b s,b s,b
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which both follow from

2
1Botw,w)liges S (el ey +llucliz, ) (1.5.14)

For the contraction, we will then need to bound | Bz(u,u) — Ba(v,v)||z~+ by a
s—1,b/

constant times

(Nt u g zre + M@0z zr ) (e = vl s+ lue = ol )
But observe that

HBQ(ua U) - BQ(va U)HFZVST’j:l o = ||(8’U,)2 - (80)2‘|Z;Li1 o
= [|0(u +v)0(u — v)| zr+ (1.5.15)
s—1,b/
and the last term could be bounded by

~ _ ~ < ~ - _ ~
ol u=ollzre 5 (lullzrs + ol ) hu—vlgos
provided we had

1Batee )z S (llzzg zry + Wollzey s )

for general functions u and wv.
Reduction to Z{, estimates.
We now show that we can reduce these Zg;ﬁ estimates to Z{, estimates. Since (£

(€)) ~ (T £ |€]), the estimate (1.5.14) is equivalent to

16€)* (7 £ €)Y F(Ba(u, w)) |l + 1(6)° (7 £ €)' F (0, Ba(u,w)
S <||<§>5<T + €D F (i)l + ) (r — €D F (u) |

I+ 1D F @)l + 10 — €D F @ )l)

Next we use the inequality ||7| — [¢]| < |7 & [€]| to recover X[, norms. Since b’ <0,

1(€)*~ (r £ €)Y F(Ba(u, w)llr + [1(€)*2(r £ €)Y F (@ Ba(u, w) [l S || Ba(u, u)| zr_

1,67 "
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Similarly, since b > 0,
2
lalr, S (lsllzg, + lu-liz, )
< (1664 + €D F (i) v +1146)° ¢ — (€D F ()
HIGE ™+ €D F @) e + 1) = €D F (D) | )

2

So, (1.5.14) will follow if we can show

2
1Batwwllze,, < Nl (1.5.16)
for appropriate values of s,b,b" and 7.
Reduction to the main estimates.
We can reduce (1.5.16) to several estimates for Bo(u,u) = Oudu, depending on

whether 0 = 0; or @ = 0, where x = x; for i = 1 or 2. All of our estimates will be
on the Fourier side, and so the trivial inequality |ab| < %(a2 + b%) applied to the symbols
of the derivatives reduces any mixed derivative product to the cases F(u) = (0yu)? and

F(u) = (0,u)?. More generally, let us consider estimates of the type
[udvllzr ., S llullz;, llvliz;, (1.5.17)

from which the contraction will also follow, as described above.

Since b/ € (b—1,0], write ¥ =b — 1+ € where 0 < ¢ < 1. Then we want

||Oudv|| 7=

" pige S lullzz llvllze,- (1.5.18)

Explicitly, we need

||Oudv|| x+

s—1,b—1+€

+ 10:(0udv) || x+

—2,b—1+4€

S (lullxz, + 19wlix;_, ) (lollxz, + lowlx:_,,)

s—1,b s—1,b

= llullxz, llollxz, + 10kullx:_, , |0w]lx:

o lawlixs,, + lullxs 9l + lollx, 0vllx;

s—1,b s—1,b"

Thus, it will be enough to obtain the estimates

S 0eullxr 0] xr (1.5.19)

HathLatUHXT‘ s—1,b s—l,b’

s—1,b—1+4€
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10zudzvllxr . S llullxr, lollxr,, (1.5.20)
10:(Opudrv)lxr_,, . S Oullxr_ 1Owlxr_ (1.5.21)

and
106(0udev)|xr_,, . S llullxz, Ivllxz,- (1.5.22)

For (1.5.20), note that

Onctllx:_,, = [|(€ Il = gD Dmutr.©)| .
7€
= @201 - 1ehigticr 0|
7€

< @il - kg9,

T,

= |lullx;,
and so it suffices to show

[0zudevllxr_ . S [Oaullxr_ | 02vlxr_ .

Furthermore, since we assume b —1+¢€ <0, i.e. b <1, then X{, C X, ;. and

||a;cu8x1)”){;“71’b71+6 S Hazuaw’unxg_l’o.
So (1.5.20) will follow if
10zudzv]|xr_| o S 0aullxr_ 10zvllxr_ - (1.5.23)
Replacing now f = d,u and g = d,v, this becomes
IFgllxs o S If0xs, lgllxr - (1.5.24)

For (1.5.21) and (1.5.22) write

0 (0udn) x;,, . = €2l = €)' " F@ouon) (7, 9)||
7€

= @2 r = 1eh e F@uon ),
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Now using that |7| — [£] < ||7] — |£]], we have

101 (0u00) x;,, .. < (€20l = l€h* (1] = lell + [€NF (@udv) (. )|

L7
< e 2arl - gprerEuan e, + @il - e e FEwn
= ||E9u8v|]XSr72’bJre + Hauavnx;lym{
If & = 8y, (1.5.21) will follow if
[Oudvl|xr_,, S lOwulxr,  lowlx: (1.5.25)
and
[Oudvl|xr_, . S NOwullxr  lOwlxr - (1.5.26)

The latter is exactly (1.5.19) and follows as above from

||| xr | S ||Osul| xr

s—1,0 5,1’5“8751)”)(7?

s—1,b

since b — 1+ ¢ < 0. Then, as with (1.5.23), this reduces to (1.5.24). Also in this case, the

first estimate reads

[0udlxr_,, S Owllxr_, NOwllxr_
and so setting f = dyu and g = Oyv, it is implied by
Ifollxr,,.. S Wflxr, llgllxr - (1.5.27)

If 0 = 0,, (1.5.22) follows from

[02udav]|xr_, . S llullxr, llvllxr,
and
10zudevlxr S llullxr, lJvllxr, -

This second estimate is already (1.5.20), which reduces to (1.5.24). For the first estimate,

we argue as above to replace it with the estimate

S 10zullx:

o lasolx

|0z udzv]| xr s—1,b

s—2,b+e
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which is implied also by (1.5.27).

All in all, we expect local well-posedness for (1.0.1) with initial data in HT x ﬁ;_l,

provided we have the following estimates

luvllx;_, o S lullxr, llvllx:
and
uvllxr,,. S lullxr_llollxr

(1.5.28)

(1.5.29)

for some r, s, and % < b < 1. In Chapter 3, we show that these hold for s > % + 1 and

3
§<’r’§2
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CHAPTER 2

BILINEAR FOURIER RESTRICTION ESTIMATES IN L?

SPACES

In this chapter, we develop the tools we will use to prove bilinear estimates of the

type

< Cllullx;

- 51,071

|l xr (2.0.1)

-

" so—bo
needed for Theorem 1.9. We begin by reducing to trilinear L” integral estimates over
domains with restricted spatial frequency interactions. Next we decompose dyadically,
based on spatial frequency and distance from the light cone, and prove two dyadic sum-
mation lemmas. Finally, in Section 2.3, we reduce to proving bilinear estimates restricted
in Fourier space to thickened subsets of the light cone. The constants obtained in these
estimates allow us to sum the results of our dyadic decompositions.

In the following, we keep our notation consistent with that in [6]. We will use the

notation || - ||, for the LP norm on R'*2 ie. for f = f(¢,z), we write

= ([ seeraen)

Occasionally, when we want to emphasize the variables of integration, we will also write
this norm as || f||, = HfHsz For p > 1, we denote the conjugate exponent by p/, i.e.
% + 1% =1. For 1 <r <2 we write || - HXZ,b for the norm in the wave-Fourier Lebesgue
space, X§7b. That is,

lullxr, = 14€)* (7l — I, €) s,

where (-) = (1+]-[%)¥/2 and a(1,¢) = //e_i(t7+x'5)u(t,x)dtd:r:.
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2.1 Reformulation as a trilinear integral estimate

First we show that (2.0.1) is equivalent to
] S (1 Eo 1 E | (| F2 ] (2.1.1)

where

- /// FO XO Xl)Fg(Xg)(S(XO + X1+ XQ)dXOXmdXQ
(§o)0 (1) (€2)*> (o] — [€ol) P (Ima] — [€2 )0 (72| — |€2])P

X; = (15,&) € R1*2 for j = 0,1,2 and ¢ is point mass at the origin in R!™™. To see this,

(2.1.2)

let w;(7,€) = (&)%(|m:| — |&[)%. Then
, , 1/r’
—(/mv@rwmvad@@)

— (/ wo(r, &) [a*o(r, &)|” d(T,f)>1/T/
— (/ wo(r, &)~ '/ﬂ(t, 2)o(r — t, & — 2)d(t, z)

:M%J/ﬂ@xﬁ(—h-—@ﬂtﬂ

Now let a =7 —t and 8 =& — z. Then

hwvlle

ol 1/r
d(ﬂ&))

/

L:§

1%%ﬂ9//mamm%5wm+t—@ﬁ+x—@ﬂmﬁm@@

vl :\
0

. P
= s WWMOT&/] at,2)5 w+t—nﬁ+m—awmﬁmwxmv@ﬂ

Fo(Xo)F1(X1)Fa(X2)
= su 0(Xo + X1+ X)dXodX1dX
FOEIL)T /// | Fol|rwo(Xo)w: (X1)wa(X2) (X2 ! 0)dX2dX1d Xy

where Fy = f, [} = uw;, Fo = vwq, Xo = (—7,—¢), X1 = (t,z), and X2 = (a, ).

Now if (2.1.1) holds, then

F F F:
luvllxr ., < su [ o]l | E | | 2|,
O Reer? [ Foll

S Il ([l
S lJwws [l [[owe]|

S llullx;

e, ol

s2,b2
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which is (2.0.1). And if (2.0.1) holds, then

sup ||
FoeLr ||F0H7”

5 ”UHX;“L;,I |’U‘|X§2,b2
SN FL ([ Fl

which implies (2.1.1). Without loss of generality, we may assume F; > 0 for j = 0,1,2
and so I > 0.
Notice that Xg+ X1 + Xo = 0 in [ implies &y + &1 + & = 0. From this it follows that
(&) S (&) + (&) for any j, k,1 € {0,1,2}. Indeed, we have
(&) = (L+1&HY2 = 1L+ I + &)
Without loss of generality, assume || = max(|€x|, |€]). Then
(&) = (L+ g +&a?
= (L+ &I + 216 - &l +1a)?
< (1|6l + 2lékllal + &)

< (1+31&2 + g2

< (6 +4|&)* + 4|€z|2)1/2
<2((1+ 162 + (1+ &)
< 2((&k) + (&)

for any j, k,l. Now suppose that () = min(§;). Then

(&) S (€k) + (&)
(€x)
(&) + (&)
(&)

N N

A

So, (§5) ~ (&). That is, the two largest of the three frequencies are comparable. Then

we can split the integral in three pieces

I=Irgg+ Iury + InarL
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where 14 is the integral I, restricted over the set A,

/// FO Xo Fl(Xl)FQ(X2)5(X0 + X1+ XQ)dXQXmdXQ
(Goy*o(&a)s1(&2)%2 (|0l — ool Ta] — [&1 )P (| 72| — [€2])P

and LHH, HLH, HH L represent the corresponding set of frequency interactions. More

explicitly, we have the following frequency regimes.

1. LHH: (o) < (€1) ~ (§2)
2. HLH: (&1) < (&) ~ (&2)

3. HHL: (&) < (&) ~ (&)

From the symmetry in the indices 1 and 2, we point out that it is enough to prove results
in the LHH and HLH cases.
We will also need the following result from [6, 2.3] for the case, by < 0 < by,be, in

Section 3.4.

Hyperbolic Leibniz rule. If g+ 7 +7 =0, g+ & +& =0, and +1, +5 are the signs

of 71 and 79, respectively, then

7ol — 1€l S |=71 £1 &1l + [=72 2 [&2]] + b4, 44 (0, &1, €2) (2.1.3)

where
1] + |€a] — |€ol if 1 = F2

|0 — [[&1] — [&2]] if £1 # .

b, 40) (051, &2) =

We also have the estimate

i if 1 ==+
b(:l:l,:l:Q)(£07 fla 52) ,SJ mln(|£1|? |£2|) 1 ! ? (214)

| min(ol, |61, 6al) if 1 # 5.
Proof. For (2.1.3), first suppose +1 = +3. Then

70l = [€ol| = [IT1 + 72| = |€ol|
= [|m1] = [&1] + 72| — [&2 + [&1] + [§2] — [ol|
< Alm| = &l + 72| = [&2l] + [[&1] + [€2] = o]

S = E Gl + =2 £2 (&l + by 40) (05 &1, €2) (2.1.5)
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since the two largest frequencies are comparable, which implies |&1]+ €2 —|&o| > 0. Next

if 49 # 49, without loss of generality, we can assume 71 > 0 and 75 < 0. Then

170l = ol < | = [7ol + [|€1] = [&2[l] + [I€o] — [I€1] — [&2]l]
S| =70+ 6] = [&l] + 1ol — [I€1] — 1&2]|
S|=m+ &) =712 — &l + &l — & — (€]

Sl =&l + {72l = &l + b, 4) (€0, €15 €2)- (2.1.6)

To establish (2.1.4), first suppose 1 = +9. Then

bty ,40) = [&1] + [E2] — (o
= [&1] 4+ — & — &ol — o
< |&] + [&1] + |€ol — [€ol

< 2|&|.
Similarly, we obtain by, +,) < 2|€2|. Now if 41 # +,

bty 40) = 1€0] — [161] — [&2]]
=& + & = |[&] — &
< max [§;| + min [§;| — (max |§;| — min |§;])

< 2min |&].
We also define the associated bilinear operators %?il +o) for a > 0 by

{ (F1,42) fg (€0) // (1,42)) " [ (€1)9(62)0 (€0 + &1 + &2)d&1dEo (2.1.7)

for f,g € S(R™), where Ff = f is the Fourier transform and b 40) = b, ,+2) (60, €15 E2)-
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2.2 Dyadic decompositions

Throughout, L, M, N, or their indexed counterparts, will denote dyadic numbers of
the form 27 for j € {0,1,2,...}. We will also use L, M, N to denote dyadic pairs or
triples, i.e., we write N = (Ny, N1, N3) where the N; are dyadic as above. In this case,
we will write Nr?llifl = min(Ny, N1, N2) and similarly for L and other indices.

For a function F, we define the frequency cutoff functions FV(X) = X(e)~NF(X) and

FN’L(X) = X<|T‘,‘5|>NLFN(X). Clearly we have

P = /’ FPde > |FII2
%: P %: ()N P

and there are positive integers « and (3 such that

PV |E = (/ |FPde
%: P %: ()~N

-y FPPdg
N 2 N<(g)<28N

< (a+B+1)[F|P.
Thus, we have )y HFNHg ~ HFHg, and similarly ||FN’L||§ ~ ||FN||§.
Next define the trilinear convolution form
J(Fy, F1, F>) = /// Fo(X0)F1(X1)F2(X2)0(Xo + X1 + X2)dXodX1dXo. (2.2.1)

Then for N = (Ny, N1, N2) and L = (Lo, L1, L2), we have

No,Lo 1N1,L1 N2, L2
Floto pNuli pl )

152J< ‘

50 ATS1 ATS2 7 bo 7b1 T b2
Nz No"Ny'Ny'Lg'Ly' Ly

(2.2.2)

and for the estimates (2.0.1) have reduced to proving

No,Lo N1,L1 Na,La
J(Fhe, b )

80 A7S1 ATS2 T bo 7 b1 T b2
NO N]. N2 LO L]. L2

S ”FOHTHFIH’I‘/HF2HT"' (223)
N,L

We will need the following dyadic summation rule for 1 < A < B and a € R,
B*ifa>0
Yo L~ log (L) ifa=0 (2.2.4)

A<L<B
A% if a < 0.
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To see this, write

. L= ), @)

A<L<B A<2i<B

log(B)
~ / (2%)%dx
1

og(A)
log (8) ifa=0
1(B*— A% if a # 0.

From this we derive the following lemma.

Lemma 2.1. Let A, B € R. Then

Y. N SN
No<SN1
provided
i. B> A
1. B>0
i1i. we exclude A = B = 0.
Proof. From (2.2.4) we have
N if A >0

> NG~ log(N) if A=0
NoSNy
1if A < 0.

Now the result follows from (i)-(iii)

1. If A>0: N{' < NP since A< Band N; > 1

2. If A = 0: From ii and iii, B > 0 and hence log(N;) < N

3. I A<O: 1§NlBsinceBZOandN121.
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Now we prove two lemmas that will be used repeatedly in establishing the estimates
(2.2.3). The first lemma is an extension of [6, Lemma 2.1] to r > 1. The main difference
in the proof is that instead of using Cauchy-Schwartz in ¢2, we use Holder’s inequality in
the dual spaces " and ¢, Since ¢" is not self-dual for r # 2, this approach only works
in the HLH and HHL cases, due to the structure of the estimates. For the LHH case, we
will need the second lemma. The proof is similar, but requires strict inequalities in the

hypotheses to use Holder.

Lemma 2.2. Letr > 1 and A, B € R. The estimate

%:XN1<N0~N2]]\\%;IIFéVOHrHFfVl||r'||F2NQHw S NFoll [ E ]l 1 F2 |
holds provided that

(i) B> A

(ii) B >0

(11i) we exclude A = B = 0.

NA
Proof. Let S =3y XN1§N0~N2N71)BIIF5V0HTHF1NIIIr'IIFQNQHW- Then

Nt N N N
S 3 v D IE N o R
No,N2 Ny 0

¥ a(No)
SR PRV S R
No,N2 0
where
La(No) = Z)(J\flgj\foNf1 < NP (2.2.6)
N1

by Lemma 2.1. Thus, we have S < || Fy |, Z X No~oNa | o || 2 -
No,Na
Now since Ny ~ No, there are positive integers «, 8 such that for any Ny and No,

27Ny < Ny < 2°N,.
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Hence, for each fixed Ny there are ~ a+ 5+ 1 terms in the sum over Ny. Then by Holder,

28 No
N N- N N-
D XM IE A2 e = > I el F5 ]
N07N2 No No=2—"%*Ny
B .
N ALY
= > NS
i=—a Ny
N N
S(at B4+ NF el Foolw
No
1/r 1/r
N No 1’
S IE"r S IE
NO NO
S [1Eollr [ F2 -

Lemma 2.3. Let A, B € R. The estimate

%:XNo<N1~N2]]\\;(j;||FéVOHT’HF1N1||r’||F2NQHr’ S AFoll [ Elle 1 F2 |
holds provided that

(i) B> A

(ii) B > 0.

Proof. Let

I\ — N N.
S = ZXNOSNWNQJ\T%HFO O 1L e [ 2 |
i

N
< N764 FNO FNl FN2
<) XN1~NQZXN0§N1NBH 0 e [[E e (1S 1
N1,N2 No 1
Ya(N1) N N.
<N Follr D xm~ns NP [EL | [1F 2
1

N1,N2

where ¥4 is defined as in (2.2.6). Now from (i) and (ii) and Lemma 2.1, there is € > 0
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such that X 4(Np) < NP7°. Then

— N- N-
S <NFolle > X NTF o || Fy 2| (2.2.7)
N1,N2
28 Ny

— N N
=l > NUE I

N1 No=2—%N;

B8
— N 2LN
= 1Foll: Y ST NTNEN o | EE N

i=—a Nip
—€ N
SNl Fello (o4 B+ 1) > Ny FM
N1
1/r 1/r

— N !

SIFollel Faller [ D (N7 > EN )"
N1 Nl

S [ Eollr [l [ E2 [l

2.3 The [? bilinear estimates

2.3.1 Introduction and preliminaries

For the estimates (2.2.3), we require bounds of the form
No,Lo 1Ni,Li 1Na,L No,L Ny, L Na,L
D N o e T M M

where the constant C' = C'(L, N) is optimized so that the resulting summation over N
and L is finite. To this end, we proceed as in [17], to obtain corresponding bilinear Fourier

restriction estimates of the form
| Pag (Payut - Payus)|m < CllPayua|l | Payuzll (2.3.1)

where L7 = I/'{Tg, Ag, A1, Ay C R'2 are measurable sets, and Py is the Fourier multiplier

operator defined by P—Z’Zl, = xau. The A; will be thickened subsets of the light cone
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K = {(1,¢) € R'"2 : |7| = [¢]}, truncated in the spatial frequency ¢ by balls, annuli,

and angular sectors. Let
Kyp={(r,§) eR™? : | SN,7=[¢]+O(L)}
Ky, ={(r€§) R : ¢~ N,7 = [¢[ + O(L)}

Ky, W) = {(T, §) €K%, + O£ w) < 7}

where N, L,y > 0, w € S, and 0(z, y) is the angle between any two x,y € R?\ {0}.

By duality, (2.3.1) is equivalent to the trilinear estimate
J(Fg 0, B ) < Ol Fy 2 e[ F{ [l | 52 o (232)
where FA(X) = yA(X)F(X), X € R"*2, and J is defined as in (2.2.1). To see this, write

HPAO(PAlul ) PA2U2)”E7 = H]:(‘PAO (PAlul ’ PA2u2))HT’
= HXAO’F((Pfhul ’ PA2u2))HT’

= [Ixao (Ocarun) * (xau2)|l

_ < / g d(r, g)) " .

With the change of variables, X9 = — Xy — X; where Xy = (—7,-¢), X1 = (t,z), and

7€) [ O )62 ouas)(r — 1.6 -~ 2t )

using the dual formulation, the last line becomes

sup f(Xo)

———X—4,(X0) //(XAJH)(Xl)(XAz@)(Xzﬁ(Xo + X1 + X2)dXod X1d Xo.
feLr HfXAo”T

Setting F; = u; for j = 1,2 and Fy = f gives
1
SUp ——— / / / Fy (X)) FiM (X)) F'2(X2)8(Xo + X1 4 X2)dXo2d X 1d X
FoeL | F5 ||
or

1 “Ay AL A
| P, (Pa,uy - Payus)||7 = sup —————J(F;, 0, F'Y Fy'2).
0 ! 2 L FoeLr HFO AOHT 0 ! 2
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With this change of variables, for i =1, 2,
~ A,
1Pa;uill g = [Ixa;willy = 1E7 [l

and hence (2.3.1) and (2.3.2) are equivalent with the same constant C.

We will show that admissible values for this constant C' depend on sizes of appropriate
intersections of the truncated sets K defined above. To estimate the sizes of these sets,
we will utilize some of the results found in [17]. For 0 < § < r, let S}(r) = {¢€ € R? :
|€] = r + O(8)} denote a thickened circle centered at the origin in R?. Given another
thickened circle, & + S (R), centered at some point & € R?\ {0}, we use the following

lemma to bound the size of the intersection of these sets.

Lemma 2.4. Suppose 0 < § < 1,0 <A < R, & € R?\ {0}. Then

rROA
€0l

1/2
1S3(r) N (&0 + SA(R))| < ( min(J, A)) . (2.3.3)

Proof. This lemma and its proof are found in [17, Section 7]. The strategy is to first
rotate about the origin so that & lies on the positive z-axis. Then for £ = (z,y) €

S(r)n (& + SA(R)) it follows easily that  must lie in an interval

€2 + (r — 8)2 — (R +0)? €l + (r +0)2 — (R — 0)?
2/¢] =TS 2/¢o]

of length %. Noting also that

V(r=20)? —a? <y <+/(r+9)*—a?
integrating over this region leads to the result. O

When decomposing in angular frequencies, we will also use the following facts. For

0 < v < 7 dyadic, let () be a maximal v-separated subset of S and for w € S, let

Iy(w)={¢€ R? : 0(¢,w) < v}

By definition of €,

#lwe o)~ (2.3.4)
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and

#{' € Q(y) : 0w, ,w) <ky} <2k+1 (2.3.5)

for any k € N and w € Q(v). Then for any £ # 0,
1< Y wnw©<o 2:36)
weQ(y)
Note the following lemmas from [17, Lemmas 2.4, 2.5], which will allow us to use an

angular dyadic decomposition when necessary.

Lemma 2.5. We have

L~ Z Z XL (w1) (E1)XT (o) (2) (2.3.7)

0<y<1 wi1,w2E0Q(7Y)
¥ dyadic 3y<0(wy we ) <12y

for all &,& € R*\ {0} with 6(&1,&2) > 0.
Proof. Let &1, & € R?\{0}. Note that if wy,ws € Q(7) are such that 3y < 0(wy,w;) < 127,
& €T'y(wr) and & € T’y (w2), then we must have v < 0(&1,&2) < 14y. Then by (2.3.6),

>, Yo @) (@) S DD Xe<oee)<iar (2.3.8)

0<y<1 w1,w2EQ(Y) 0<y<1
v dyadic 3y <0(wy w2 ) <127y 7 dyadic

Now if 6(&1,&2) > 1 then we must have v > 1/14 and so the sum is at most 3. So, suppose
0(&1,&2) < 1. Then there is a unique positive integer j such that 277 < 0(&1, &) < 2774
Now if k > 0 is such that v = 27% then the requirement 2% < 0(&y, 1) < 14-27% implies
that j — 1 < k < j + 4. Hence, there are at most 5 such . Finally, choosing v such that

5y < 6(&1,&2) < 107 ensures the sum is at least 1. O

Lemma 2.6. For any 0 <y <1 and k € N,

X0(¢1.62)<ky S > XD (wn) (§1)XT (wn) (€2) (2.3.9)

w1,w2EQ(7)
0(wi,w2)<(k+2)y

for all £&1,& € R2\ {0}.
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Proof. If Xg(¢, &)<ky = 0, this is trivial, so suppose 0(&1,&2) < kv. By (2.3.6), there are
wi,wz € (v) such that & € I'y(w1) and & € T'y(wg2). It follows then that O(wi,ws) <

(k+2)y. O

2.3.2 Sizes of constants

The next lemma is a direct extension of [17, Lemma 1.1]. We use |E| to denote the

measure of the set £ ¢ R2.

Lemma 2.7. Suppose 1 <r <2 and 1 + L =1. The estimate (2.3.1) holds with

C ~ min{ sup A1 N (Xo— A2)[Y7, sup Ao N (X1 + Ag)|M™ |Ag|V/ 1",
Xo€Ao X1€A;

sup |Ao N (Xa + Ap)[M" \Alyl/”/r’}
Xo€Az

provided this quantity is finite.
Proof. We will use the dual formulation to establish the estimate (2.3.2). For the first
bound, write
J(Fy Ao p Ry = / / / Fy A0(Xo) F{M (X1) F32 (X2)0(Xo + X1 + X2)dXedX1d X

_ F*Ao X Aq Ao

= 0 UXo) i (X)) Fy R (—Xo — X1)dX1d X

= /FOAO(_XO)/XAlﬁ(Xo—Ag)(Xl)FlAl(XI)F2A2(X0 — X1)dX1dXo.
Now applying Holder’s inequality first in the X; variable and then in Xy,

T, BV, ) <

TJ

1/r'
< /FOAO(—XO)\Am(XO—AQ)\I/’“ </(F{‘1(X1)F;‘2(XO —Xy) Xm> dXo

» 1/r
< sup |41 (Xo - Ag) M F e, (// ‘FlAl (X1)F52(Xo — X1) XmdX())
0€Ao

1 —A A A
< sup Ay N (Xo — Ao) [ [ Fy A0 | F e || 2
Xo€Ao
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The proofs of the second and third bounds are similar, so we will do the second. The

proof relies again on successive applications of Holder’s inequality.
J(Fy A FM RS = / / / Fy (X)) F{" (X1) F32 (X2)0(Xo + X1 + X2)dX2dX1d X
— / / Fy (= Xo)F{* (X1) F32 (Xo — X1)dX1d X,

:/FlAl(Xl)/XAoﬁ(XHrAz)(XO)FO_AO(_XO)F2A2(XO_Xl)dXOXm

, r 1/r
< /FlAl(Xl)|Aom(X1+A2)|1/T (/‘FOAO(—XO)FZAQ(XO—XQ dX0> dX,

, r 1/r
< sup Ao N (X1 4 AV ||F|, (//’FO_AO(—XO)FQA?(XO—XQ dXOdX1> :

X1€A1

With a change of variables, we obtain the bound

, 1/r
SB[ Ao 0 (X Ao) [T 1By </ !FfQ(szdX?)
1€41

for J(FO_AO,FlAl,FfQ). Now we are after HFZAQHT/ in the last line, but since 1 < r < 2,
2 < r’ < oo, we may apply Holder’s inequality to the functions FQAQ and x4, using the

exponents 1’ /r and 1/ /(r' — r)when r # 2. This gives

fimosarans = ( o) ([ o)

< | Ao B

/

All in all, we have

J(Fy 0, F{M F%) < sup A0 0 (X0 + Ao [Ae /T B o | By L5 o
1 1

Theorem 2.8. Suppose that 1 <r <2 and % + % = 1. The estimate

”PKig,LO(PKi;Ll“l ' PKﬁg’LZW)Hﬁ < Cllua |l lluzll (2.3.10)
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holds with

C ~ (NO2)7 (N12 )77 (L12 )7 (2.3.11)

min

regardless of the choice of signs £;. If in addition we assume 3/2 < r < 2 then (2.3.10)

holds with

C ~ (NOR2Y7 (NJ2) 27 (L12)7 (L12, )% . (2.3.12)

min min min max

Proof of (2.3.11). We will separate into the HLH and LHH frequency regimes.
The HLH Case: N; < Ny ~ Ns.
For any Xo = (10,&) € K3, set E = Ky' ; N (Xo— Ky? ). By Lemma 2.7, the

estimate (2.3.10) holds with C' ~ |E|Y/". By definition,
EC{(r,&) ¢ 6] S Ni,m=+1[& |+ O(L1), 10 — 11 = £2|60 — &1| + O(L2)},

so integrating first in 7; and then in &1, we obtain

|1B] < /X|€1§N1/XT1i1§1|+O(L1)XT0—Tlizlfo—&l—&-O(Lz)dﬁd&

SN (L2

min) .

Then C' ~ N12/r (Li2 )I/T, which is (2.3.11) for the HLH case.

The LHH Case: Ny < Ny ~ Na.

First assume L; < Lg. For any Xy = (12,&2) € K]j\t,; I, Set B = K]jf,g Lo N (X2 +
1/r=1/r

K]j\E,iLl). By Lemma 2.7, the estimate (2.3.10) holds with C' ~ |E|Y/"’ K;\—L,ll,Ll

We have the containment

E C {(0,%) : [&o] S No, 10— 12 = £1[& — &| + O(L1)}.

As above, integrating first in 79 and then in &y, we obtain |E| < NZLj. Similarly,

2/r'

’Kﬁ; 1| S N2Ly. Together these yield (2.3.10) with C ~ N2/" N2/"=2/" 1/,

On the other hand, if Ly < L1, we use C' ~ SUPx, A, |Ap N (X1 + A2>‘1/r’ ’A2‘1/r71/7~/
to obtain C ~ N()Q/T,NQQ/T_Q/T,L;/T. Since N1 ~ Ny, these two bounds imply (2.3.11) for

the LHH case. O
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Proof of (2.3.12). First, note that it is enough to prove the estimate for the corresponding

annular frequency cutoff sets, K]j\z’ 1,- Indeed, suppose we have the estimate

1Piczo, (Pita, w1+ Prza | w)lgs < Clhunl el (2:3.13)

Koo EnyoL
with C' as in (2.3.12). We will show that this implies the same estimate for the sets
+;
KNi,Li'
Decompose the balls |£;| < N; into annuli [¢;| ~ M; for M; dyadic with 0 < M; < Nj.

Summing over these annuli, we have

| P ]iVOL(pK]ivlLul.PKi2 2z < ZP 0 > P s > p £ up
0 1,~1 1 2 2 ﬁ
<ZHP s (Peta Pty ug)
Ky, LO Ky, L1 Kns Ly i
< 012\77 (712 \ar—w (712 \¥ (712 \3r
~ Z (Mmln) (Mmm) " (Lmln) (Lmax) ”Xlel L ul”ﬁ”XKi:é LQUQHﬁ'
Mj<Nj ’ '

We will break into the cases M2 < N2 44 p012 ~ NO12

max — min max min*

e Suppose MO12 < NO12 Then we have

max — min*

31 1 _
> (R (Mt < Y (M) (Md) T
M;<N; M;<NO12

min

1
o7

We split this last sum into the LHH, HLH, and HHL frequencies in M;: My < My ~

My < NO2 My < My ~ My < N92 and My < My ~ M; < N%2 and apply Lemma 2.1.

min?’ min’ min

Noting that M2 < N12

min min?

the sum is bounded by

i > Ml’%/-i- > MO%’+ > MO%/

Mi~My<NO12 Mo~Mo< NOL2 Mo~M;<NO12

min —" ‘min min

(N12)7 ™

since r > 1 implies that % — % > 0. Using that the two highest frequencies, M; ~ M;,

in each double sum are comparable, another application of Lemma 2.1 gives

which gives the desired result.
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e Next suppose M2 > N2 For simplicity, we will assume that the balls |&1] < N;

max min*

are in the HLH frequency regime so that Nglllg Nj. The strategy for the LHH regime is

the same, and the proof is an obvious modification of the HLH case. Recall that (2.3.1)

is equivalent to the trilinear estimate (2.3.2). To simplify notation, write

and recall that for a set A C R'*2, we define FA(X) = x4(X)F(X) and for a dyadic

number N, we define FN(X) = x(gnF(X). Then (2.3.13) is equivalent to
—Ag pA1 pA —A A A
SO 0 Fy2) < ClLEG 0l [ e 172 ]
Hence, as above, we have

J(Fy A P Ry < ZJ Ao g gy
1 3 1
< Z M012 o M12 )ﬂ_ﬁ (L12

= —A A A
mm min )27 HFO 0H7“HF1 1HT'HF2 2HT"
M;<N;

) (L12

max

Again, we split the sum into frequencies LHH, HLH, and HHL in M. In the LHH term

we have

1 3 1 . . .
- o T —A A A
> Mg (M3 T L E | | F5 2 e
Mo<Mi~Ms

Since My > Ni, the sum over M; is now empty, and since My ~ M; < Njp, this term is

bounded by

1 l_i B . . .
S My (M) F A E | Fy
MoSM2<Ny
SO Mg (M2)E
Ma<N;

A A A
1B Ol LT o 1

1 3 _ 1 B
SN (NZ2) 2 (| By 0| o | ™ ||

min

A A A
S NETIEY N LE [ L2 [
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In the HLH case, we have the term

oo - A A A A A A
> ME | Fy 2 | 1 Fs 2 e S Y NEFG e | F e || F52
M1 <N1<Mo~Ma Ni<Mo~Mo

> M, M.
SN Fle > IE I
N1 <Mo~M>

3
P M, M,
S NENE Y I 15

Mo
1/r 1/r
> M, Mo v/
SN Fulle | Y IES > IE
Mo MO

3
S NI Aol F2 -
Finally, for the HHL case, we have the term
3 . . .
o || p—A A A
Yo MEIE N ANE e E
MaSMo~M

Again, since M7 > Nj in this case, the sum over M; is empty. We have

3 : . . 3 . . .
by —A A A by —A A A
> M Ey [ F 1 F 2 e S D M FG I I E | 5

~

Ma<Mo~M; Ma<Mo<N;

3 . . .
oA A A
S Y M Ey N F | Fy 2
Mo<Ny

3
oy p—A A A
S NN EG O [[ET N E5 2

Thus, we get the desired estimate

1
T

1 _ ER
T(Fy 40, FM F) < (Vo)™ (Nada) 7 (Lain) ™ (L) 2 IF 20 1 [ P52

min max

which implies (2.3.12).

»

2_2 1
) n (Lrlr?m) !

and Cy = (NU2)¥ (N12 )2 7% (L12 )7 (L12,)> are the constants from (2.3.11) and

2
Now we will establish (2.3.13). Notice that if C; = (N232)" (N2

min min

w
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(2.3.12), then since 5= — L < 0 for 3 <r <2,

1 1 _ 1 _1
Cr = (Npin) ™ (M) ™7 (Loax) > Oy (2.3.14)
1 _ 1
< (Main) ¥ (Lniax) > Co
1
N01~2>2T
le [ —min )" .

If NOI2 < L12

min max’

the estimate (2.3.11) is already better than (2.3.12) and therefore we

may assume that L}2 < NOI2

The HLH Case: N; < Ny ~ Na.

For any Xo = (10,%) € K§°p,, set E = Ky' ) N (Xo— K2 ;). Recall that we
roughly bounded the size of this set by NZL12 in the HLH case of (2.3.11). Since now
we have L}2 < NP2 we will proceed as in [17] and estimate the size more carefully to

lower the exponent on N;. First note that
E C{(m1,8) : [&1] ~ Ni,m1 = £1]&[+0(L1), [§o—&1| ~ Na, 1o—71 = $2|§0—&1|+O0(L2) }.

For 7 fixed, let E™ denote the slice {¢; € R? : (71,£1) € E}. Then
E™ < Sp,(In) N (&0 + SL, (I = 7al)) N {&r = €l ~ N1, [€o — &1l ~ Na}

for € T ={mn =x1|&|+ O(L1), 70 — 71 = £2/& — &i| + O(L2)}.

12

Now integrating first in 71, we have |E| < L3, sup,, ¢ |[E™|, so by Lemma 2.4,

Ly La|7||T0 — Tl’LH )1/2

’E‘ S L}nzln sup < min
€0

~Y
T €T

1/2
<o (L )

SNE/2L12 (le )1/2'

min max

Then

|E‘1/7‘ S Nf’/QT (L12 )1/7" (L12

min max

)1/27"
which is (2.3.12) for the HLH case. Applying Lemma 2.7 yields the estimate (2.3.10).
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The LHH Case: Ny < N1 ~ N.
By symmetry, we may assume that L; < L so that (2.3.12) becomes
103 1 1 1
C~Nj N "LiL3. (2.3.15)
Now with C} and C9 as above, from (2.3.14) we have

i 1 1 1
Cl — NOT/ N127‘ ! L2 2r C2

2r/r'—1
) , the estimate (2.3.11) is already better than (2.3.12) and

Thus, if Ly > No (%g

2r/r'—1
) . (Since the exponent 2r/r" —1 >0

therefore we may assume that Lo < Ny (%’
only when r > 3/2, this would not give any further restriction to the assumption Ly < Ny

for values of r below 3/2.) So, we want to establish (2.3.15) when

N, 2r/r'—1
Li < Ls < Np-min < 1, <]VO> <K Ny ~ No.
1

Again, we will use the dual formulation

Recall that we showed (2.3.1) is equivalent to (2.3.2). By a similar argument, this

trilinear estimate is also equivalent to
1P (Payur - Poaguo)|l 7z < Cllun ||z [luoll -
Hence, for the estimate (2.3.10) it is enough to establish

P
H KJZ::TQQ,LQ

. . P. < — .
(Pesr, w1 Pzo, 0l < Clual ol
Furthermore, by definition of the operators P4, we may assume that the supports of u;
are restricted to K]j\t,j L for j = 0,1, and without loss of generality, we may take u; > 0.
With these assumptions, we will simplify notation by omitting the Kf,j L and writing
PA2 (U1UQ) = PKiQ (P +, Uyl P[‘(io uo).
No, Lo Ny,Ly No,Lg

1/2
For ~y = (]%21) , we will split into the cases 6(£0&o, £1£1) < Y0 and 0(£0&o, £1&1) >

55



0. Define ©"* such that w7« = X6(¢w)<yU- By Lemma 2.5,

PA2 uy, UO Z Z XF.Y(OJ())(EO)XFW(wl)(gl)PAQ (ula UO)

0<y<l  wi,wo€RA(y)
3v<0(w1,wo) <12y

Z Z XFW(UJQ) (60)XF«,(W1)(£1)PA2 (ulv UO)

0<y<v0  wi,woeN(y)
3v<0(w1,wp)<12v

+ > > XTI (wo) (§0)XT (wr) (§1) Pay (w1, uo)-

Y<7<l  wi,woeQ(Y)
3y<6(w1,wo) <12y

Now

Z Z XL, (wo) (§0)XT (1) (§1) Pay (u1, uo)

0<v<v0  wi,wo€eQ()
3v<0(w1,wp)<12v

Z Xy <0(€0,€1) <147 XT (wo) (§0)XT, (wr) (§1) Pay (w1, uo)
0<v<v0

SO X w0 (&)X () (61) Pay (u1, uo)

w1,wo€Q(Y0)
0(w1,w0)<15v0

by Lemma 2.6. Therefore,

HPA2(U1’UO)HLT’ ~ Z Xe(m,wo N’YOH‘FPAQ( W07w1 ugo’wo)HLT
w1,woEQ(Y0)

+ 3 S Xyt <1y [ FPay (] ) o

Y0<Y<1 w1,woEN(7)

(2.3.16)

Call these last two summands ¥ and Y9, respectively.

For X1, we will estimate the volume of the set E = AgN (X3 + A;) for any Xy € Ay =

—_—

-+ = . JWj . .
KN, 1, where Aj C Ky (wj) is the support of u;o “J for j = 0,1. Since Xo— X2 € Ay,
we have

E C {(70,&) € R™?: |&| ~ No, [& — & ~ N1,

0 — T2 = £1]& — &a| + O(L1), o € Tyy(wo), £1(&o — &2) € Ty (wn) }-

Integrating first in 7y, we have

|E| < Ly |{& € R?: |€o] ~ No, 0(&0,wo) < Y0}

< LiNgvo
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and hence |E| § NQNl’Y()Ll.
Similarly, |A;| < L1 N7, and by Lemma 2.7, (2.3.2) holds with

C < (NoN1vyoLy)Y™ (N2 L17)Y/"=/"". Therefore,
[ FPay (uf® ug® )|z = || Pay(Payus - Paguo)ll

17" A-2/r—1/7" 1 1 =y o0
S NN T LA g

Inserting this into ¥;, we obtain

1/r' A2/r—1/7" 1 1/r)  ~ot N0
S1SY ooz No N T A LY o g
w1,w0€Q(’Y())

Using now (2.3.5) and (2.3.4), we have

ST Xotwrwozo ] g =

w1,wo€Q(Y0)

1/r! 1/r
—_— —
S Z X6(w1,w0) S0 ||uﬂly’w1 HvT"/ Z X0(w1,w0) S0 Hug’wo M
w1,wo€2(0) w1,wo€2(70)
1/r 1/r
N DD e O

w1€Q(70) wo€R(v0)
< @l
1/ Ar2/r=1/r" 1/r +1/r )|~ — . I /2
Then ¥y S Ny N; Yo Ly |Jutlly||uol|, and setting yvo = (ﬁ) , gives

S0 S NN L L o)

as desired.
For Y5, we will again estimate the volume of the set E = Ay N (X2 + Ap) for any
X9 € Ay = K;\—L,; Ly but this time using the additional fact that 3y < 0(wi,wp) < 127.

Note that
EC {(m0,&) €RM? 1 & ER, 19— =41|¢ — &| + O(L1)}
where
R={¢& eR? : ||~ No,|€ — & ~ N1, & € Ty(wo), +1(€0 — &) € Ty(wr), }-
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Now for a fixed 7y, define

f(éo) = £1léo — &o| = 70 — 72 + O(L1)

so that
§o— &2
Vi) =+1—F7=e
(&) €0 — &2
For wg,w1 € (7), choose coordinates (£!,£2) so that Izﬁ%gl = (1,0). Then for all
& € E, we have
o f(&) =V (&) (1,0)
w1 — Wo
f— e - —_—
|wi — wol
_e-wp—e-wp
|wi — wol
_ cos(f(e,w1)) — cos(f(e,wop))
w1 — wol
since |e| = |w;| = 1. Now since +1(§ — &2) € I'y(w1), it follows that O(e,wi) < 7.

Combining this with the assumption 3y < 6(wi,wp) < 127 for X9, we conclude that
1/2
O(e,wp) > 27y. Since o <y < 1 and vy = (%) > 0, the function cos(y) is decreasing.

Hence,

cos(y) — cos(2y)
jwi —wol

01f (&) =

Using the Taylor expansion for cos(v), we have cos(y) > 1 — g and cos(2y) < 1 —

(2g)2 + (271)4

- Then for 0 < v < 1, it follows that cos(y) — cos(2y) > 242, Also, from

3y < O(wy,wp) < 127 we have |wy — wg| ~ 7. Thus, 01 f(&) = 7.
Therefore,

IE|SH{moeT,éoc R: f(&) =70 — 72+ O(L1)}|

where

T = {’7’0 : 79 =Ty E£1 |£2| + O(N()) + O(Ll)}

so that |T'| < No+ L1 < Ny. Now if 79 and 72 are fixed, then f(&§) = 79 — 72 + O(L1) for
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all £ € R implies that supecp [f(§0) — f(€)| S L1. But since
sup | f(é0) — f()] > |01f (&)l sup &g — €
§ER EER
2 ysup & — €'
£ER

we must have sup el — ¢l < L for all & € R. Integrating first in the & direction,
EeR IS0 ¥ 0

we find

L
1E]'S 71 {10 €T,&5 : [0 — &of = +1(10 — 72) + O(L1)}
S L; {0 eT.& « |él = %170+ O(L2) + O(L1)}

L
< 2L L,No.
v

Using the estimates |E| < Ly LaNo/v and |A;| < N2Ly7y as before, by Lemma 2.7,
IF Pag (u]* " g™ )| £r S (LaLaNo /)™ (NFLam) =M g | g -

Inserting this into Xo, we obtain

1 12 r—2 /! _ AT -
Yy < Z Z X3’Y§9(w1,wo)SlQ'yL]_/r(LQNO)l/T Nl/T /T 71/7" 2/r ”UY’wl”r’Hug’onr-
Yo<v<1 wy,wo€Q(Y)

For the inner sum, we proceed as in Y; to obtain

—
7w1||

3
E X3'y§9(w1,w0)§127”u1
w1,woEN(Y)

e llug i S Nl ol
Then we have

Y9 S Li/T(LzNO)l/r’Nf/TfQ/T ||/dI"T/“/da|’T Z ,Yl/er/r’
Yo<y<1

1 P ar2/r=2/1" A r=2/r" |~ iy 1/r—2/r
< Ly (LaNo) T N g g
L\ 1/2
since 1/r — 2/r" < 0 for 3/2 < r < 2. Setting vy = <ﬁ) , gives

So S N/T NS LT LY | o

as desired.
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CHAPTER 3

PRODUCT ESTIMATES FOR WAVE FOURIER LEBESGUE

SPACES

3.1 Introduction

Our approach follows closely the work of D’Ancona, Foschi, and Selberg in [5] and

[6], where the authors prove bilinear estimates of the form

HUUHX*SO’*bO < CHUHXSNH HU||X52J72

(3.1.1)

for certain ranges of s; and b; in dimensions n = 1,2, and 3. We wish to generalize these

methods to X7, for 1 < r < 2, and find ranges of s;, b; such that when n = 2, the estimate

[ollxr

lwollxe, , <Clullx: , Il ,,

—s0,—bo T s1,b1

holds for all u,v € S(R*?2). If (3.1.2) holds, we will say the matrix

T

So S1 S2
bo b1 b2
is a product.

Letting b; = 0 and r = 2, we have the Sobolev space estimate
luv|l g-s0 < Cllull s [[v] e
for all u,v € S(R™). It is known, see [6], that this estimate holds if and only if
i) s+ 51452 > 7%
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ii) sg+ s1 + s2 > max(sg, s1, S2)
iii) we do not allow equality in both of the above simultaneously.

In [5], it is shown that for the X* estimates we must also assume b; + by > 0 for
all j # k in {0,1,2}. Since b; > —by, for all j,k this implies that at most one b; can
be negative. We can also exclude the case where all of the b; are zero, since these are
standard Sobolev estimates. The estimate (3.1.2) is symmetric in b; and b2, and we

cannot have b; < 0 if another b, = 0. Thus, there are seven cases:

i) bp =b; =0 < by

ii) bp =0 < by, b2

iii) 0 < b, b1, ba

iv) by < 0 < by, by

v) by =by=0<b

vi) by =0 < by, by

vii) by < 0 < bg, ba.

When 7 = 2 one can use the self-duality of L? in the trilinear estimate (2.1.1) to
obtain symmetry in by, b;, and by. Consequently, in X*°, the last three cases are not
needed. We do not have this symmetry in the X p estimates; however, from our local
well-posedness argument in Section 1.5, we are only interested in estimates with by < 0.

For this reason, we eliminate the other cases as well and focus only on cases i, ii, and iv.

3.2 The case by =b; =0 < by

Theorem 3.1. Supposen =2 and 1 <r < 2. Set bg = by =0 and assume that

1
- 2.1
b2 > , (3 )
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2
So + 81+ S > ; (3.2.2)

so+s1>0 (3.2.3)
so+s2>0 (3.2.4)
+ 59 > 2_2 (3.2.5)
s1+ s - — = 2.
18222
.
S0 S1 S2
Then s a product.
0 0 b

Proof. From (2.2.2) with by = by = 0 < by, we obtain

No,Lo 7aNi,L1 7pN2, Lo
Fpoto, pih, pete)

J(
1<
D

So, we do not need to separate in Ly and L; and can replace Fév oLo and FlN L with

Fév ° and FlN '. We reduce to proving

J (F({VO7F1]Vl’F2N2yL2>
S N Foll [l | 2l

I 5 S0 S1 S9 1 b2
Nz No"N'NyLy
or
SN
> wpng < IRl IR (3.2.6)
where Sy = ZLZ—bZJ(FOJ\b’Fl]Vl,FQJVQ,LQ).
Lo
By (2.3.11),
1/r=b % %_l/ N, N N
Sn < ZL2/T 2 (Nr?llii)T (ern21n) NEN N EN e (|2
Lo
= %*% N N- N-
S (V) (Nag) ™7 I | |

since 1/r — by < 0 by (3.2.1). Now we separate into the different frequency cases.

The HLH case: N; < Ny ~ Ns. In this case we have

2
* N N- N:
Sn S N IE Il lE e 12 -
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Applying Lemma 2.2 with A = 2/r — 51 and B = sg + s in the inequality

SN NQ/risl N, N- N-

1
> N3O NFTN;?2 SR NSON;IIFO [ FH o N F5 72
N N

gives the result, since the hypotheses are satisfied by the conditions above as follows.
(i) B> A by (3.2.2).
(ii) B >0 by (3.2.4).
(iii) The strict inequality in (i) excludes A = B = 0.
The LHH case: Ny < N; ~ Ns. In this case we have
S S NN NN o

This gives the inequality

N2/7"—so

SN N N N
D NN S 2 XNosinNe g 10 I 1B 1
N 0 V1AV N Ny

in which we apply Lemma 2.3 with A = 2/r' — sg and B = Nfl+82+2/r,_2/r. Checking

the hypotheses, we have
(i) B> A by (3.2.2) and
(ii) B > 0 by (3.2.5).

and hence (3.2.6) holds by Lemma 2.3. O

3.3 The case by =0 < by, by
Theorem 3.2. Suppose n =2 and 3/2 <r < 2. Set by =0 and assume
bl, bo >0 (3.3.1)
1
b1 + bg > - (3.3.2)
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3
Sg + 81+ S92 > ; — (bl + bQ) (3.3.3)

2
Sg+ 81+ 82> ——0b (3.3.4)
T
2
So + 81+ s2 > - — by (3.3.5)
3
— 3.3.6
So + 81+ 89 > o ( )
T DO (3.3.7)
—— s S S — .3.
or ) 70 ! 27
2 2
81+ 82 > ; - p (338)
so+s1>0 (3.3.9)
so+s220 (3.3.10)
T
So S1 S22
Then 18 a product.
0 b b

Proof. By symmetry we can assume L; < Lo and by the dyadic decomposition we reduce

to showing
SN
> i S 1Bl | Bl
N ‘Yo 4V 4V
where
J FN07FN1,L1’FN27L2
SN:ZXngLQ (Fo s Fy 2 )

b1 7 b2
L Ll L2

The HLH case: N; < Ny ~ Nao. The constants (2.3.11) and (2.3.12) now become

Cr = (N9 (N33) 77 (L3, = N2l (33.10)
Gy = (NOR2)™ (NI2)= 7 (LE2,)7 (E2,0™ = NPy (33.12)

Which estimate is better depends on the relative sizes of Lo and Ny, so we split into two
sub-cases Ly < N7 and Lo > Nj.

Sub-case 1: Ly < N;. We will use Theorem 2.8 with (3.3.12).

No -Ni,L No,L
J(Fy Fy T ET)
bk

SN = E XL1<Ly<N;
L

3/2r y1/r—by ;1/2r—b N Ni,L Na,L
S Xpr <L NPT LY LY EN | N | 2
L

3/2r
S 01 o (NN ENO || FNY | || D2 (3.3.13)
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where

oo(M) =" Xpi<raem Ly LY (3.3.14)
L

Using (2.2.4) repeatedly, we obtain

MUYrta=bi=bz if h < 1/r, by 4+ by < 1/r +¢
log(M) ifby <1/r, by +ba=1/r+gq
1 ifb1<1/7“, b1+b2>1/7“+q

M2 log(M) if by = 1/r, by < q

0q(M) ~ § log(M)? ifby=1/r, by=g¢q
1 if by = 1/r, by >q
Ma—b2 if by > 1/r, by < q
log(M) ifby > 1/r, bo =q
1 if by > 1/r, by > q.

Now using that log(M) < Cc M€ for any € > 0, we have

(

MUrta=bi=bz i b < 1/r by +by < 1/r+ ¢
Me if by < 1/r, by +by=1/r+gq
orby =1/r, bo=¢q
orby >1/r, bo =gq
oq(M) < q 1 if by <1/r, by +by > 1/r+q (3.3.15)
orby =1/r, by >q
or by >1/r, by >q

Ma=b2 ppe if by =1/r, by < q

Ma—b2 if by > 1/r, by < q.
Combining these estimates with (3.3.13), we have

;XNISNONNQW 5 %XN1SN0~N2]V&3HFO OHTHFI ! ||7“/||F2 2||1ﬂ’
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where B = sg + s9 andA:%—sl—kaandaisgivenby

2 —bi—by ifb<1/r,bi+by<1/r+gq
€ ifby <1/r, by +ba=1/r+¢q
orby=1/r, bo =¢q
orby >1/r, by =¢q
a={ 0 if by < 1/r, by +bo > 1/r +gq (3.3.16)
or by =1/r, by >¢q
or by > 1/r, ba > ¢q

1/2r —by+e ifby =1/r, ba <q

1/2T—b2 ifbl>1/7', b2<q.

We will bound the last sum using Lemma 2.2, so we need to check the hypotheses in each
of the five cases above. Note that since B = sg + s3 in all cases, B > 0 is satisfied by

(3.3.10).

o If a =2 —by —by, then A =3 —s; —by; —by. Then B > A by (3.3.3), which implies

r

the first and third hypotheses.

e Ifa=0o0r a=c¢, then A= 2% —sjor A= % — 81 + €, respectively. In both cases

B > A by (3.3.6), which implies the first and third hypotheses.

1

e Similarly, if & = %—bg or o = %—624-6, then A= - —s1—byor A= %—sl—bg—i—e,

respectively. In both cases B > A by (3.3.5).

Thus, by (2.2), we conclude that

SN
EN:XNISNONMW S Eollr I E o [ F2 -
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Sub-case 2: Ly > Nj. In this case we will use Theorem 2.8 with (3.3.11).

g — Z J(FONO,FlNl’Ll,FQNQ’LQ)
N — XL1<Ls LblLb2
L 1 2

2/r ;1 N Ni,L N, L
< S xpa<n N LY BN | B2
L

2 N N N-
S AN N EN N EN | | FLY2 )

where

V(M) = Z XngLQXngML}/T_blLQ_bQ. (3.3.17)
L

Again using (2.2.4) and log(NN) < N€, we obtain

MYr=bi=bzif py < 1/r

V(M) S Meb ifby =1/r (3.3.18)
Ml if by > 1/r.
We then obtain
SN Nfl N N N.
%:XMSNONMW S EN:XleNorszNégHFo O [ o [ 57

where B = sp + $9 andA:%—sl—&—Bandﬁisgivenby

1/T—b1 —by ifb < 1/7‘
B=4q e€—by if by =1/r (3.3.19)

—by if b1 > 1/7“.

So, we again verify the hypotheses of (2.2). Recall that the second hypothesis B > 0 is

satisfied by (3.3.10) in all cases.

o If 3= % — by — by, then A =2 —s; —b; —by. Then B > A by (3.3.3), which implies

r

the first and third hypotheses.

o If 3=—byor 8 =—by+e¢, then A= 2 _gy—byor A=2—g —by + €, respectively.

T 7

In both cases B > A by (3.3.5).
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As above, this implies the result in the HLH case.

The LHH case: Ny < N; ~ Ny. The constants (2.3.11) and (2.3.12) now become

Cr = (NOR)7 (N7 (E3)T = N3/ N2 (3.3.20)
Co = (NO2)7 (NI2) 7 (LI, (L2,0™ = Ny/" Ny L (3.3.1)

Combining these two estimates, we have

C ~ Né/r’Nl?)/Qrfl/T’L1/r min (Né/r’Nll/Zr‘fl/r’7 L;/w)

which is (3.3.20) if NJ/" N2 =" < LY and (3.3.21) it N7 N2V S LV g0

we will again split into sub-cases.
2'r/7‘/

Sub-case 1: Ly <

< ﬁ In this case we will use (3.3.21). Note that since Lo > 1,
1

27"/7“ 27“/7”’—1
1

we must assume NV or equivalently, Ny > N11 ~T/2 Then we have

1/r" ~+3/2r—1/71" 1/r—b 1/2r—b N1.L Ny, L
Sy S Ny/T NPT i = e [ R i M Tl ¥
L L1<L2< 27‘/7" 1
1

N2r/r

1/r 3/2r—1/r'
S NN g oy ( ) ED (LN | | N2

0
N12r/r’—1

where o4(NN) is given by (3.3.14). From (3.3.15), we get

Z N SN
XNII—T//QTSNOS 1~ No NsoNsl st
N 0 1 2

N N- -
S X NBHF AT M
N

where
1 2r
and
1 3 2r
B:r’_27”+81+82+(7’/_1>a (3.3.23)

for a given by (3.3.16). From the dyadic summation rule (2.2.4),
N if A>0

=D Xy oy N6 ] log(N) ifA=0 (3.3.24)
No ,
NAGTTR) A <
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and hence

SN pa(N1) |, N N
DRSNS L DR L LA
N N1,N2
SHEle D X NT BN EN o | (3.3.25)
N1,N2
where
A ifA>0
A= ¢ fA=0 (3.3.26)

A(l—1r"/2r) if A<O.

Now comparing (3.3.25) with (2.2.7) in the proof of Lemma 2.3, we see that the inequality

SN
ZXNll—r//erNOSleNQW 5 HF0||T||F1H7"/||F2||T’
N

follows from this proof, provided A — B < —¢ for some ¢ > 0. From (3.3.26), this is
equivalent to checking the following two conditions:

i. B>AifA>0

i B>A(1-4)ifA<o.

From (3.3.22) and (3.3.23), we see that the first condition is equivalent to

3
S0+ s1+ s2 > o +a (3.3.27)

while the second is equivalent to
r’ 1
1—— ) sog+s1+s9>—. (3.3.28)
2r r
This last requirement is (3.3.7), so it only remains to verify (3.3.27) for all possible .
o If a =2 — by — by, then (3.3.27) is equivalent to (3.3.3).
o If « =0 or a =g, then (3.3.27) follows from (3.3.6).

o If a =2 —byor =5 — by + ¢, then (3.3.27) follows from (3.3.5).

T
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N2r/'r/
Sub-case 2: Ly > %.
Nl

In this case we will use (3.3.20). We have

2/r" nr2/r=2/7" 1/r—by y —
S S NN xnasiax e T L RO [

L L2>N2r/r’—1

1
2r/r’
2/r" A:2/r=2/7' N N- N.
S%”NW’”VQ+N%wJH%”NEwM%ﬂM
1

for v as in (3.3.17).
N2T/’V‘l

e First suppose Ny < Nllfrl/% or W < 1. Then we have
1
2r /7!
N,
1<1+ o <2
Nl -
N2r/'rl
and so by (3.3.18), we see that v ( 1+ W < 1. Therefore
1
SN
2 XNoSN N X gyt N N
N =t 0 “V1 “V2
2/r" Ar2/r=2/1"
NO Nl N N N
S 2o Xt g 0 I I
1—r'/2r
< EA <N1 ) Ny No
SBolle D Xwimms—— 5 [ o [
N1,N2 1
where

M4 if A>0
SaAM) =Y xng<Ng' ~ { log(M) if A=0
No
1 it A<0
for A=2/r"—sgand B=2/r"—2/r 4+ s; + s2. Thus,
Sy NA
! )% T rem m e ~von < 71 Nl / N2 /
EN:XNO,SNwNzXNOgNl” PTNPNTING \\F0||rN§;V2 XNi~Ne B LEL | N ES72 ]

where

(I—=r"/2r)A ifA>0

o
Il

(1—+'/2r)E ifA=0 (3.3.29)

0 it A<O.
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As above, we obtain the desired result from the proof of Lemma 2.3, see (2.2.7), provided
that A — B < —e for some ¢ > 0. From (3.3.29), this is equivalent to checking the

following two conditions.
i. B>A<1—7) it A>0.
ii. B>0if A<O0.

However, these are (3.3.7) and (3.3.8), respectively.

1—r'/2r N2
O

e Next suppose Ng > N, > 1. Then we have

N2r/7" 1
2r /v’ 2r /v’ 2r /v’
%SMV ]\270/ — <2 ]\2[0/ -1
Nlr r Nlr T Nlr r

N27‘/7‘ N27‘/7"
and so by (3.3.18), we see that v [ 1+ W <~ W . Then
1

Z SN
XNll—r//2r<NOSN1NN2 NSONsl NSQ
N 0 1 2

N2r/r NZ/?" N2/r72/r’

N N- N:
5§3><N;r'/2r<NogN1~Nﬂ(NQS/T,,J) D bz LI 2
N 1

NA
5 %:XN;_T’/QT<N SNi~N» NOB ||FNO” HFN1||T‘ ||FN2H7‘
by (3.3.18), where
2 2r

A= 70 + 75 (3.3.30)

and
2 2 2r
B:W—+51+52+(—1>ﬁ (3:3.31)

for 5 as in (3.3.19). Proceeding as in Sub-case 1, we write

SN MA( ) N N
Dot v NG S Pl 3 e = g N
N1,No
A-B| pN N:
SHEolle D X NT 2N EN [ |
N1,N2

with 4 defined by (3.3.24), A defined by (3.3.26). Again, we use the proof of Lemma 2.3

to reduce to proving the two conditions
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i. B>AitA>0
i B>A(1-5)ifA<0
for A and B as in (3.3.30) and (3.3.31). The first condition is equivalent to
50 + 81+ 52 > % + 8 (3.3.32)

while the second reduces to (3.3.7). Therefore, we are left to verify (3.3.32) for the various

3, as follows.
o If 3= 2 — by — by, then (3.3.32) is equivalent to (3.3.3).

o If 3= —by or B =€ — by, then (3.3.32) follows from (3.3.5).

]
3.4 The case by < 0 < by, by
Theorem 3.3. Suppose n =2 and 3/2 < r < 2. Assume
b() <0< bl,bg (3.4.1)
1
b1+ by > ; (3.4.2)
3
S+ 81+ S9 > ; — (bo + b1 + bg) (3.4.3)
2
So+ 81+ 89 > o (bo + bl) (3.4.4)
2
Sg + 81 + S92 > ; — (bo + bg) (3.4.5)
3
Sp+ 81+ 82> — —bg (346)
2r
r’ 1
(1 — > S0+ 81+ 82> — — by (347)
2r T
2 2
81+ 82 > — — - = bo (3.4.8)
r T
so+ 81> —by (3.4.9)
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S0+ 82 > —by (3410)
Furthermore, we assume
1. If either bg 4+ b1 = 0 or bg + b2 = 0, we assume also that

1
bl,bg > ; (3.4.11)
2. If bog + b1 # 0 or by + ba # 0, we assume also that
1
bo + b1 > ; (3.4.12)
1
by + b2 > (3.4.13)

Then s a product.
bo b1 by

Proof. Using the Hyperbolic Leibniz Rule, (2.1.3), since —by > 0, we have

—b gy~
lwvllxr, )y, = Il = 1€l {€0) ™ uvll e

S 060+ &1+ €2) (1mal = leall + 172l — 1621l + by 2 (6o, €1,€2)) ™ (o)™t

R (R A Co

S H<|Tl\ — &)™ (&) SOUU‘ ey
70,50

+ H(S(ﬁo + &1+ &) (b(il,iz)(§0751>€2)) (&)~ 80“”‘
Note that in the last line we have used that for a,b,n > 0,
(a+0)" < (2max(a,b))” < a” +b"

since the frequency interactions guarantee that b4, +, > 0.

For the first term, write
{71 — [&1]) % (o)~ *0um]| v
70,80
= ey [im1 -l ¥t 00 - 1,60 - )t

T
L‘Fo )

:H@r%/mmaﬁw—ﬁ@wme@ly
70,80

= Jwolxr,
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where w (71, &) = (|| — &) ~%u(r1, &). Now

lwllx,, = (| (ml = e diml - e~
= lulxz,

so the estimate

_ —bo =50 < -
¢l = leah ooy ww]| L Sl Ilxe,
70,60
,
S0 S1 59
will follow if is a product. Similarly,
0 byi+by b
_ bo =50 < -
[¢172l = ooy ww]| L Sl Il ,
To o0
T
S0 S1 S92
will follow if is a product. If b9 = —b; for i+ = 1 or ¢ = 2, this
0 b ba+ by

follows from conditions (3.4.1) through (3.4.11) and Theorem 3.1. On the other hand, if
bp # —b; for either ¢, then we use Theorem 3.2 with the additional assumptions (3.4.12)
and (3.4.13) to reach the desired conclusion.

For the the third term,

H<5 o+ &+ &) (ba, 14)(60,61,82)) SOUUH By iz)(u’ X, 0

TO§

where B¢ (41.42) (f,g) is given by (2.1.7), we will use the estimate (2.1.4) to obtain

H%(il i2)(u U)HXTS 0~ H‘S §o+ &1+ &)|&| b0<§o —S0uv

To 50

Proceeding as above, we find

H%(i1 iQ)(u ,U)fos 0~ H '50

0’50
where w;(7;,&) = (&)7%u(r;,&). Then Hw1HX§ b = HUHX;“ . and ||u;2||XSr2 b =
||uHX§2 bo.bo . Hence,
1B Ly 0)llxr, o S llullxy, Ilollx, -

74



s T

_ s0 s1+by s2 so s1 s2+bo
follows if and are products. By Theo-

0 b1 bg 0 bl b2
rem 3.1, this is guaranteed by conditions (3.4.1) - (3.4.10). Note that for this estimate we

do not need conditions (3.4.11) through (3.4.13). In particular, the last two conditions,

(3.4.12) and (3.4.13), are not needed if by + by = by + b = 0. O

3.5 Proof of Theorem 1.9

From the local well-posedness argument in Section 1.5, all that remains is to verify
the exponents in the estimates satisfy the conditions of Theorem 3.2 and Theorem 3.3

for the ranges s > % +1, % <b<1,and % < r < 2. Explicitly, we need to show

—(s—1) s—1 s—1 —(s—=2) s—1 s—1
and (3.5.1)
0 b b —b b b

are products under these assumptions. We remark that from Section 1.5, we actually
only need to take sy = —b — € in the second exponent matrix above. However, due to the
nesting property of the X;,b spaces, this will follow from the slightly stronger result we
verify below.

First we check that the conditions of Theorem 3.2 hold for

Sog S1 SS9 —(s—1) s—1 s—1
= ( ) . (3.5.2)
0 b b 0 b b

Note that the first two conditions (3.3.1) and (3.3.2) are trivial since we assume b > 1.
Next note that sp + s; = sp + s2 = 0 which imply (3.3.9) and (3.3.10). Condition
(3.3.6) is our assumption that s > 2 + 1. Condition (3.3.3) is s > 2 —2b+ 1 and
conditions (3.3.4) and (3.3.5) both become s > 2 —b+ 1. But 2 —2b+1 < 2 +1 for
b > 4% and % -b+1< % +1 for b > 2—1T Hence, these conditions are also satisfied by our

hypotheses. Condition (3.3.8) reduces to s > %, which is again implied by our assumption
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on s provided r > % Finally (3.3.7) can be reduced to (1 + %) 5 > % + % + 1. Since

r! r\ 3 r!
1+ — 1+ — | — 1+ — 5.
(+2r>s><+2r)2r+(+2r) (3.5.3)

or (1 + %) > % which holds

3
§>5-+1,

3=

and hence the condition follows provided (1 + 27,) % >
trivially. Therefore, (3.5.2) is a product.

Next we verify the conditions of Theorem 3.3 for
T T
S0 S1 S2 —(s—2) s—1 s—1
= . (3.5.4)
bop b1 by —b b b
As above, (3.4.1) and (3.4.2) hold since b > 1. Noting that so+s1 = so+s2 = 1, conditions
(3.4.9) and (3.4.10) are satisfied by the requirement b < 1. Next since by+by = by+ba = 0,
we verify that (3.4.11) is just b > 1 and do not need (3.4.12) or (3.4.13). Noting also that
S0+ s1+ s2 = s, conditions (3.4.4) and (3.4.5) become s > 2, which we verified above.
This will also follow from (3.4.8), which in this case becomes s > Z + £. But since b < 1,
we have
2 + é g + 3 L < 3 +1
r 2 2 2r
for r > 1. Next, condition (3.4.3) is now s > 2—b, which is satisfied since f—b < <3 +1

for r > 3. Condition (3.4.6) becomes s > = + b, which is clear since b < 1. Finally,

/ 1 7,,/ 1 / ,r,/

From (3.5.3), it is enough to show

"\ 3 1 7
1 — -4+ —4+b-1).
( +2r>2 ><r+2r+ )

(3.4.7) is now

But since b < 1,

1 7 1 7 3 -1
-4+ —4+b-1 — = — 3.5.6
+ 2r + <7 + 27" 2o + 2r ( )
and this follows if 7’ —1 < 2 or equivalently, 1 — % < %, which is clear since %—i— % =1.

Thus, (3.5.4) is also a product, which completes the proof of Theorem 1.9. [
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3.6 Conclusions

The estimates proved in this chapter are sufficient for establishing local well-posedness
of (1.0.1) in H7(R?) with s > 2 +1and 3 <r <2. Recalling the scaling correspondence
in dimension 2, H s ™~ Ho for o = s+1— %, on the Sobolev scale our best results
correspond to o > g when r = 3/2. This is a gap of 2/3 over the scaling conjecture of
o>1.

One limitation of our method is the requirement that 3 5 < r < 2, which restricts the
range for the parameter s. Recall that this arose in our Theorem 2.8, specifically for the
second estimate (2.3.12). This theorem is a generalization of the following from Selberg

[17, Theorem 2.1].

Theorem 3.4. The estimate

[Pyt (Pytr  wr-Prts  ug)llpz < Cllua| gz luz| L2
Ni,L1 Na, Lo

N Lo

holds with
O ~ N2 (L92)? (3.6.1)
O~ (NO2LI2 )2 (N12 12 ) (3.6.2)

regardless of the choice of signs £;.

Note that for » = 2, our estimates (2.3.11) and (2.3.12) agree with Selberg’s (3.6.1)
and (3.6.2), respectively. To prove our second estimate in the LHH case we utilize the
same angular Whitney decomposition found in [17], which requires us to sum over the

angle -,

Z ,yl/r 2/7“

Yo<vy<1

In order to sum this term, it is necessary that the exponent on + be negative. However,
1/r —2/r" < 0 only for » > 3/2. One possible way to circumvent this problem, and

potentially expand the range for r, is to refine the angular decomposition.
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However, even with an improved range for r, the requirement s > % + 1 is still

an obstacle to achieving the optimal Sobolev result ¢ > 1. Considering the scaling
relationship between o and s, with this requirement the best possible outcome (with
r > 1) would correspond to Sobolev results of o > 3. For the first product in (3.5.1) that

we desire, the most restrictive condition in our theorems is

3
> — 3.6.3
50 + 51+ 52 o’ ( )
which becomes s > % + 1. The condition (3.6.3) results from the exponent % — % on

N12

o, in our estimate (2.3.12), and using our dyadic summation techniques there appears
to be no way around this without altering the estimate (2.3.12).

In light of these limitations, we include some reference material in the appendices
that may be helpful in future work. An alternative angular Whitney decomposition from
[1] is outlined in Appendix A. Appendix B contains some geometric integration results
from [7] utilized by Griinrock in [8] for the Cauchy problem in three dimensions. We

hope that with these additional techniques, we could improve the results of this thesis,

and extend them further in the case of the null form.
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APPENDIX A

AN ANGULAR WHITNEY DECOMPOSITION

In the paper [1], the authors prove boundedness results for the bilinear Fourier mul-

¢ e\’
S n (S
7 = 1eppy + (1 (i) >

where &,n € R" with n > 2. Let £ = (£1,&) =

tiplier

% and 1 = (1j1,72) = %‘ Then in

dimension n = 2, the imaginary part
1/2
AN €Al
miten = (1-( -
( 1€1[n] 1€[n]

o1(é&,m) = & An| = |t — &uria)

becomes

which is the absolute value of the symbol of the null form @i2. Call the associated

0= [ [ e o m g Rasan

The derivatives of o7 have singularities on the set L = {(£,n) € R" x R" : { An = 0},

operator @y, i.e.

and in [1] the authors decompose R™ x R™ \ L into disjoint cones @Q; j » to write Q as the

sum
oo 2n2k(n—1)

=2 2 D T

= jer(i;k)

where T; ; 1. are operators supported on @; ;x. The decomposition is done so that the sum

in j is finite and the number of terms in that sum is universally bounded by a constant
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that depends only on the dimension n. Furthermore, for (§,1) € Q; ;, we have

o\ 1/2
1 < £-1 ) ok
iyl
In dimension n = 2, the decomposition is an angular, Whitney type decomposition
and using the multiplicative structure of oy, the authors prove the following theorem.

Theorem A.l. Let0<a<f<a+1landl <s< 0.

1. Assume that 1 < r < 2 and B < min{a+1+2(%—%),2(14—04)—1—2(%—2)}.

T

Then we have

ITsaF )l < C272 Fllwar gl

for anyw < 1/2+1/r'.

2. Ifmax{ ’,s%r—sl}<t<2§r<oo,ﬁ§a+2+2(%—%—%),then

ITeg (£ 0) e < O ([ f e + 11 £1122) (lgllwer + lglze)
foranyw <1/2+4+1/r.

We are interested in the angular decomposition as a possible alternative to the one utilized

in Section 2.3, which required us to take % <r<2

The Angular Whitney Decomposition

For k > 0, divide the circle S' into 4 - 2F intervals I; 1., where

L= {€ R je| = Larg(©) € (1 - 155 i5 ]}

The k-dyadic decomposition of S' is

ok
I, = {Lip}i

Definition A.2. Given an interval I € Ty, its father is the unique interval Ip € Ty

containing 1.
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Definition A.3. We say I;, 1 € I, are neighbors if I_zk ﬂl_jk #0 or I . N —ijk #
0.

Notice that for each k > 1, any interval I; ;, has six neighbors: itself, the two adjacent
intervals and the reflections of these three. For k = 0, there are only four intervals in Zg

and they are all neighbors.

Definition A.4. We say I; ., 1j; € I,k > 1, are related, and write j € r(i;k), if they

are not neighbors but their fathers are.

An important feature of this decomposition is that the size of the set of relations
r(i; k) is bounded, independent of k. For k = 1, there are 8 intervals in Z;. Each of these
intervals has 6 neighbors, which cannot be relations. Since all of the intervals in Zj are
neighbors, every interval in Z; has 2 relations. For k > 2, each interval in Z;_; has 6
neighbors and contains two intervals in Zy. Suppose I € Z; and Irp € Z;_; is its father.
Then the six neighbors of Ir contain 12 intervals of Zy, 6 of which are I’s neighbors.

Hence, I has 6 relations. Therefore,

‘ 2 ifk=1
r(i; k)| =
6 ifk>2

Now we will use this decomposition of the circle to partition R? x R?\ L. For each

interval I; ., we define a corresponding cone

Qi,k = {f S RQ \ {0} : Z € Ii,k}

and the set of all such cones .
42

Qr = U Qi k

=1

forms the k-dyadic decomposition of R?. We will extend the definitions of father, neighbor

and relation naturally to these cones. For j € r(i; k), let
Qijk = Qik X Qjk
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Claim A.5. The products of cones Q; ;i form a partition of R2 x R2\ L.

oo 4.2k

R? x R?\ L = U U U Qi jk

k=1i=1 jer(ik)

To see that this union is disjoint., suppose (§,1) € Q; j k() Qimk- Then £ € Q;  and

§ € Qi1 and hence ¢ = [. Similarly, we must have j = m. Now suppose that k& # n and
(&,m) € Qi i Qimn- For each s, let @, be the unique cone in Q, containing & and Qs
be the unique cone containing 7. First note that if Qs and Qs are neighbors, then their
fathers Q,_1 and Qs_; are also neighbors. By induction, Q; and Q; are neighbors for
0 <t < s. Without loss of generality, assume n < k. Then £ € Q; 1 = Qr C Q1 = Qn,
neEQjr= Qk C Qmn = @n Since the pair Q, Qk are related, their respective fathers,
Qr_1, Qk;—l must be neighbors. Since n < k — 1, it follows from above that @),, and Qn

are neighbors. This contradicts that @, and Q,, are related.
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APPENDIX B

GEOMETRIC INTEGRAL TECHNIQUES

In [7], the authors prove estimates of the type

HDﬁOD%_D[j_(¢¢)HL2(R1+")

S (ID* ol p2rmy + 1D o1l 2rm)) (1D %0l L2@ny + 1D 1] f2mny)  (B.0.1)
where a1, ag, Bo, B+, 8- € R, ¢, are solutions of the homogeneous wave equations
O¢ =0, Oy =0 (B.0.2)
with initial conditions

$(0,2) = ¢o(2), %s(0,7) = dn(x),  ¥(0,2) = o (x), B (0,2) = ¢a(x)  (B.0.3)
and
Def(€) = €| f ()
DYF(7,€) = (|| + [€))*F (7, €)
DIF(7,€) = ||| - |¢]|* F(r,€).
The main result is the following theorem.

Theorem B.1. Let n > 2. Let ¢, be solutions of (B.0.2), (B.0.3). Then the estimate

(B.0.1) holds if and only if o, aa, Bo, B+, B— satisfy the following conditions:

n—1
2 bl

Bo+ By + P =a1 +as — (B.0.4)
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Bz -2, (B.0.5)
Bo> - 3 (B.0.6)
a1§5_+”;1, i=1,2, (B.0.7)

1
a1+ ag > 5 (B.0.8)
(Oéi,ﬁf)?é <n1_17_n;3>7 i:1a27 (Bog)
(o + . B) # @,—”;3) | (B.0.10)

The key ingredients in the proof of this theorem are two geometric lemmas, which
we present here. In [8], Griinrock used the transfer principle and these techniques to
prove local well-posedness for (1.0.1) in ffg (R3) for a range of parameters that closed the
pre-existing gap on the Sobolev scale. Using this approach, it may be possible to get the
full result also in dimension 2.

Preliminaries
We can decompose a solution ¢ of (B.0.2), (B.0.3) into positive and negative parts

¢+ such that ¢ = ¢+ + ¢~ where

FE(r,€) ~ 6(r F €))oE (€)

and

61(8) T T v )
R UG (€) = Yo(&) F i

Then the product ¢t can be written as the sum of four pieces

ST (€) = do(€) T

oY = Yt + T + oY + oY,
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By exchanging ¢ and v, the (—+) case becomes the (+—) and by replacing ¢t with —¢,

the (——) becomes the (++). Thus, it is enough to prove the estimate (B.0.1) for the

(++) and (+—) cases. Furthermore, since ¢pt¢)+ = o YT,

Gyt (r, ) ~ / 5t — Inl)ég (n)3(r — t— € — n) g (€ — md(t, )

= [ 80~ 1nl = I¢ = g (05 (€ ~ i (B.0.11)
and similarly,
()= [ 8 lnl + I — )6 () (€ ~ (B.0.12)

The first integration (B.0.11) is over a compact manifold, the ellipsoid of revolution with
foci at 0 and &,

Eme ={neR":Inl+|¢—nl=r7} (B.0.13)

while the second integration (B.0.12) is over an unbounded manifold, the hyperboloid of

revolution with foci at 0 and &,

H(T, &) ={neR" : [n| =€ —nl = 7}. (B.0.14)

Also, in (B.0.11), we must have 7 > || since

T=n—1§-n>n+&-n)=[]

while in (B.0.12), we need |7| < [¢] since

[Tl = llnl = 1€ = nll < In— (n =&l = [&].

Let ¢ be a smooth function and let S be the hypersurface S = {x : ¢(x) = 0}. If ¢ is

such that V¢(x) # 0 for x € S Nsuppf, then

ds,
Vo (z)

[ t@bota)ds = /S f(x) (B.0.15)
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where dS; is the induced measure on S. Now let g > 0 be a smooth function that does

not vanish on S. Then

/ F ()9 (@)6(g(2)é(x))dz = / F(@)g(x) dSI),
/ f= \¢Vg+gV<z>|

/ fle |V<z>\

3(¢(x)) = g(x)d(g(x)p(x))- (B.0.16)

Thus,

Now by taking Fourier Transfroms and using Plancherel’s theorem, the estimate

(B.0.1) in the (++) and (4+—) cases follow from the estimates

Jierre1+ i el = kel o029,

S e dom]|

Bo(0)|

L2 '
(B.0.17)

These estimates are equivalent to showing that the operators B4y : L*(R") x L*(R") —

L*(R1*™) defined by

j€1P0rP+ (r — [€])°-
[n]1]€ —nl*2

Bean(£.9)(r ) = [ 8(r = lnl ~1€ =) Fg(€— iy (B015)

and

|€[PotP+ (J¢] = |r])P-
|| — o2

Bisy(£.9)(n.8) = [ 8(r = lul +1¢ ~ ) Fg( — iy (B.0.19)

are bounded. To see this, suppose we know B, is bounded. Since 7 > |€] on the

ellipsoid,

lleveairi+1en™iirl - P60+ e,
3

— (i1l + 1€+ 17| — L€11P- / 5(r = Inl — € = n))ég (M) (€ — n)dn

2
L7 ¢

/‘T’ aq /‘\F (e%)
B0l B el — 1ellB= [ 50z — 1l — 1e — ppy O I Yo (€ = m)I€ —nl*2 |
(€17 17 | = [ /(T Il = 1§ = D)= €= n[os U

AN

2
L7

N

o1 ot
URGHOL

sie-n)|
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which implies (B.0.17) in the (++) case. The (+—) case follows similarly, since then we
have |7] < [£].
Integration on ellipsoids and hyperboloids

The first lemma concerns integration over the ellipsoid £(7,&).

Lemma B.2. Consider the integral

I(F)(r,€) = / 5(r — nl — 1€ — n)F (], [€ — nl)dn

defined in the space-time region T > |£|. Then

(ol (S ol
’ 2

3 1
(e = -1ep= [ r (™

> (2 — |€]222)(1 — 22) "2 da.
(B.0.20)

Proof. Using (B.0.16), with g(n) = 7 — || + |£ — 1|, we have
S(r =1l = 1€ =nl) = (v = nl + 1€ = 0))d ((r = In)* = [¢ = n[?)

=2(1 — |n|)é <72 =27l + > =) (& — m)2>

i=1

= 2(r — |n|)$ <T2 =27+l =& +2>  &mi - Zm?)
1=1 =1 =1

= 2(7 — |n)é (7% — 27In| — [€]* +2¢ - n) -

Next introduce polar coordinates for 7,

p=lnl w= % = dy=p"dS.dp (B.0.21)
and set
R -
=Ww:- m - ’w|m COS(f,w) - COS(&J?): _1 S a S 1 (B022)

We have an isomorphism [—1,1] x S7"~2 = S"~! defined by

(a,') = (a, V1 — a?w’)
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for w’ € S"~2. Computing the volume forms, it then follows that
ds, = (1—a2)"z dS,da. (B.0.23)
Then the integral becomes
I(F)(r€) = [ 3(r = lnl = € = uD Pl I ~ nl)an
=2 [ (7 = [3(* = 2rln] = 6" + 26 - ) F (. | — nl)n
= [T [ 8~ 1€P ~ 2rp-4 2elpcost&))r  F (o~ )" Sy
=/ 11 |8 = 6 =2mp+ 2lpa) (- = P (o7 = )" 1= 0*) 5 dSdadp
=i [ f 11 5% — [€* — 27p + 21loa)(r — p)Flp, 7 — p)p" (1 — a2)"F" dadp.
Now using the delta, we have
7 —|¢? = 27p+2/¢|pa = 0
SO

_ P2
2(¢lp

and

Since —1 < a <1 and 7 > [{], from above we see that

7~ I¢]
2

T+ 1€l
5

<p<
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Using this and (B.0.15), we have

e’} 1 3
1P = [ [ 6 =6 =200+ 2Aelpa)(r = (.7 = o) (1 = )5 dadp

2 - T —|¢]F = 27p
~ — F(p,7—p)(T —p)p" 2 1—() dp
] Jea FT =)= 0) 2l€lp

n—3

s 2162 —9rp\2\ 2
! F(p,T—p)(T—p)p<p2—<M>> dp

2[¢]

»

2 _ 2 2 2 ang,
~ ‘5,711_2 /fa F(p,T—p)(T—p)pKP\SI—T‘%Zm) (M&HW)] dp

2
T+

¢l

= s [y Pl =0 oo | (st + 16 - T (p<|5r—7>+722'5'2)]n;3dp

€]
2

€2
T+|€|

T [ p oo (5 T) (o )] T 0

2

Changing variables, let

$:2p—7 or p:T+\§|x
€l 2
Then
@R Y (e T el 72— [P (1P — 1€Pa?) T
I(F)(T7£)_W/1F< 5 ' 9 ) 1 { 1 ] dp
-3 1 — n—3
= -1eps [ p (T T g (- )

O

To determine the asymptotic behavior of integrals over £(7,&), we use the following

lemma.

Lemma B.3. Let a € R and m > —1. For A\ > 0, define

1 /X
HY () = /0 A+ )%™ dt = A“+m+1/0 (1+s)%s™ ds.

Then
A\ as A — 0o
Hﬁ@ ~ )\min(a+m+1,0) as A — 0 ifa +m+1 7§ 0 (B.0.24)
| log(\)] asA—=0ifa+m+1=0.
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In particular, if a < b then H%()\) > H?

m

(A) as A — 0.

Proposition B.4. Let a,b € R and 7 > |£|. Define the integral

L8 — ol = J — )
“T’@‘/ mlale — g

We have the following estimate for I:

I(r,) ~ (1 — |¢)P

where

1
Azmax(a,b,n+ >—a—b B:n—l—max(a,b,n—zi_l)

except when max(a,b) = , in which case we have

2
n+1
2

1) ~ e ) g ().

Proof. First apply Lemma B.2 with F(s,t) = s7% 7. Then

n;?»lT-f—xfaT—a:*b n—3
no = -1e® [ (TH) T (FHE) @k -2 T 4

4 2—a—b 1 1—a 1-b n—3
~ (7-2 — |§\2)T |£2‘_a_b /1 (2| + a:) (’; — a;) (1 — 12) 2 dp.

Next we split the integral at x = 0.

For —1 <z <0, set t =1+ x and note that 0 < ¢ < 1. We will use the following.

T

|£|—x§l+1§2l.

o T N
T~ g since 7 > |€| implies < q |

3.1—a2?2~tsincel <1—x<2impliest=1+4+2<1-22=(1—x)t <2t
Then
0 l-a 1-b _ 1-b 1 l1-a
T T gy B=8 T T n—3
— + — - 1—2%) 2 dpw() /<<—1>+t> t 2 dt
LG (=) o= a) o e
P T
~ (= HL“(—1>.
<!€\> * \[¢]

Similarly, for 0 < z < 1, set t = 1 — z and note that 0 < ¢ < 1. The properties we

use now are as follows.
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7—_
& 1>+t.

—_
E
[
8
|
/N

o
]

+x~msmce7>|§\ 1mphesm§m+x§?|+1§2‘?.

3.1—a?~tsincel <1l4+ax<2impliesst=1—2<1-22=(1+z)t <2t

As above, we obtain

L) o) e () o (500
o \Idl €] P\ A

All in all,

17, ~ (= )5 ‘“Mb((m)l_bm (- 1)*(!&\)H 2 (- 1))

Now since |§| —1>0and %2 > —1 for n > 1, we can apply Lemma B.3. When 7> [¢],

we have

1r.6) ~ (2~ ) 5" o b((m)l_b () "+ ()" <m1>b>

2—a—b
o (2 eV e2—a-b [ T
(2 = [e2) % e) (rs\

~ Tn—37_2—a—b

~ Tnflfafb — TATB

T~ l€))P.

Now suppose 1 < |l

< 2 and without loss of generality, assume max(a,b) = a. Then

sincel —a <1-—0b,

2 "3 2—a—b R T 0.
(72— |2y et (m 1) I(r.€) (B.0.25)

and

I(r,6) < (72— |e)" T e o b H (m‘l)
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For the latter we have

Ir,€) S (72— e) 5" |§r“”(,ﬂ)l_bﬂgg(‘g'—1)
< (r— [g) Tt e bﬂ;(é,_l)

S (-1 s ey (T
2 T

2

by Lemma B.3 since 7 ~ [£].

If 1 —a+ 252+ 1+ 0 or, equivalently, a # "4 then

. min("TJrlfa,O)
19 5 (7 - 1) 3o (T2

+m1n( ntl_4.0) nTH —a—b—min( %H —a,0)

S(r—leh=
_ n—l—max(";1 ,a) —max(a, n—""l) a—b
(r—1¢D) T

N

~

< (- Jg)Pra

Ifl—a+2%2+1=0,ie a= " then

b llog (T—T\§’>

~ (r = |¢]) 5 7 i) g () |
S—Td

I(r&) S (r—leh) T 7

Using (B.0.25) we obtain the reverse inequality.

O
Next we turn our attention to integration over the hyperbola H(T,¢).
Lemma B.5. Consider the integral
IF)(r.€) = [ 8(r = lnl + 1€ = u) F (. I = nl)ay
defined in the space-time region T < |£|. Then
HF)re = (P -)% [T F (’5 o e s ) (1€ - ) — 1)"Fdn.
(B.0.26)
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Proof. Following the same steps as in the proof of Lemma B.2, write

S(r—Inl+ 1€ =n) = (= = Inl = € = nD)é((r —n)* — | —nl*)

= 2(7 — [n)o(7* — 27| — €* +2¢ - ).
Again using the polar coordinates (B.0.21), with a as in (B.0.22) and (B.0.23), we have
3(r = [nl + 1€ —nl) = 2(r — p)d(7* — &> — 27p + 2/¢| pa)

as before. However, since |7| < |£], now we have

TP =2 2mp T

a = > >
2[¢lp 2/¢lp — 1€l
so that % < a < 1. Furthermore,
) 2
T+ €] + 271p <1
2(¢lp

implies p > %Iﬁl So

00 1 3
I(F)(7,§) ~ /0 /T 5(m% — €12 — 27p + 2|€|pa) (T — p)F(p, 7 — p)p" L (1 — a?) "2 dadp
1€l

n—3

L1 ne2 2 |g? —2rp\*\
—m/ﬂggl F(p,m—p)(T—p)p <1— <2|§|p> ) dp

n

= W/T: F(p,m—p)(T—p)p [<p+ |£|2_T) <p— K';T)]nzgdp.

2

2p—T |€|lz+T
2

Setting © = g orp= then gives

1) = (e -7 [ r (L R et - o) 2 - 1)

Proposition B.6. Let a,b € R and 7 < [£]. Define the integral

o(r —Inl + 1€ —nl)
I -
9 /|77|+|£—77|<2|£| [nl*1& = nl®

dn.

We have the following estimate for I:
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e In the region where 0 < 7 < ||,

I(7,€) ~ g1 (¢] — )P

where
n+1 n+1
A =max | b, 5 —a—b B=n—-—1—max|(b, 5
except when b = "T‘H, in which case we have
_ n=3 €]
T§~§“§—T2log( >
(7,8) ~ gl (gl = 7) -
e In the region where —|&| < 1 <0,
I(r,&) ~ €[] + )"
where
n+1 n+1
Azmax(a,2>—a—b B:n—l—max(a, 5 )
except when a = ”TH, in which case we have

1(r.&) ~ 1640l - 7)°% g ().

Proof. Now we will apply Lemma B.5 with F(s,t) = s7%~°. Note that since

oo 2p—1 2l = (nl =€ —nl) _ |n[+]€—n]
€] €] €]

restricting to the ellipsoid |n| + |£ — 7| < 2|¢|, we have 1 < x < 2. Then
2 ovnzs (2T (e =T\ e oo n—3
IF)(r€) = (&P ~ 7" : N R [T
1

o~ |c|2—a—b(i g2 2\ =3 2 T 1-a T 1= 2 g\ns3
~ [¢] (1€ =77) = Btaar T (22 —1)"7 da.

Assuming 0 < 7 <[], set t = x — 1.

1. x+|g—‘wlsince1§x§x+ﬁ<2+1.

_ Tt _(1_ 1
2. x H-(l |£|>+t.
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3.2 —1~tsince2<x+1<3impliest=2—-1<2?—-1=(x+ 1)t <3t

Then

1w ~ el -7 [ ((1-F) +t)1_btn53dt

~lePe e - T (1- 7).
2
f1-o+ %‘3 + 1 # 0 or, equivalently, b # ’%rl then

mln("+1 —b,0)
2-a—b(|g2 _ ;2 T
I(F)(r,€) ~ [P (e — )5 (1 ,ﬂ)

~ (€270l — 7)"F Jg] 77 | minCE 00 ([ — pymin5 b0

~ g mash (g — ynotomax(50)
If1-b+2241=0,ie b="F then
a T
1)) ~ 617l = )" og (1= )]

a n=3 €]
~lele(el - 7% g ().

Assuming —|¢| < 7 <0, also set t =z — 1. Then we have the following.

l.x—%wlsincelgxgx <2+1.

3 \SI

T __
3. 22 —1~t.

With these observations, we proceed as above to obtain

I(F)(r,€) ~ €| *F =00 (€] + 7)"F H1 <1 + ﬂ)

and the result will follow exactly as before.
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