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ABSTRACT

NEW BILINEAR ESTIMATES FOR QUADRATIC-DERIVATIVE NONLINEAR

WAVE EQUATIONS IN 2+1 DIMENSIONS

SEPTEMBER 2012

ALLISON TANGUAY, B.A., CENTRAL CONNECTICUT STATE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrea Nahmod

This thesis is concerned with the Cauchy problem for the quadratic derivative nonlin-

ear wave equation in two spatial dimensions. Using standard techniques, we reduce local

well-posedness in Fourier Lebesgue spaces to bilinear estimates in associated wave Fourier

Lebesgue spaces, for which we prove new product estimates. These estimates then allow

us to establish local well-posedness in a parameter range that gives improvement over

previously known results on the Sobolev scale.
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C H A P T E R 1

INTRODUCTION

In this dissertation, we prove bilinear space-time estimates related to local existence

and uniqueness for the quadratic derivative nonlinear wave equation (DDNLW) in di-

mension n = 2. The problem we study is
�u = ∂u∂u

u(0, x) = u0(x)

ut(0, x) = u1(x)

(1.0.1)

where u = u(t, x) for (t, x) ∈ R× Rn, � = ∂tt −∆ is the d’Alembertian, ∆ =
∑n

i=1 ∂
2
x is

the Laplacian, and ∂ = ∂t or ∂ = ∂xi for i = 1, . . . , n. We are interested in finding suitable

Banach spaces for the initial data u0, u1 for which the problem is locally well-posed in

dimension n = 2. In particular, we want best results for local well-posedness in terms of

regularity of the initial data.

These equations have a natural scaling and for initial data (u0, u1) ∈ Ḣs × Ḣs−1 in

Sobolev space there is a unique exponent s = sc for which (1.0.1) is invariant under

this scaling. For initial data with regularity s > sc, one expects to have local in time

well-posedness. The exponent sc is called the critical scaling exponent, and for (1.0.1)

one can easily show that sc = n
2 (c.f. Section 1.2).

We therefore expect local well-posedness in Hs for s > 1 in two dimensions. Using

energy estimates alone (c.f. Klainerman and Selberg [12]), one achieves this result only

for s > 2. The best known results are for initial data (u0, u1) ∈ Hs×Hs−1 with s > 7/4,
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a gap of 3/4 above the critical scaling sc, and they follow from Strichartz estimates (c.f.

Section 1.2). We are not aware of any well-posedness results for initial data in Hs with

s ≤ 7/4. In this dissertation, we are able to improve upon the previously known well-

posedness results by instead considering initial data in the Fourier Lebesgue spaces Ĥr
s

defined in Section 1.3.

In [6], D’Ancona, Foschi, and Selberg prove bilinear estimates in the Fourier L2-based

Xs,b spaces, from which one can also obtain the s > 7/4 result by standard arguments.

In this dissertation, we thus prove analogous estimates in Fourier Lr
′
-based spaces, Xr

s,b,

where r′ is the conjugate exponent of r for 3
2 < r ≤ 2. As a consequence, we obtain local

solutions in the associated wave-Fourier restriction spaces Xr
s,b (see also Section 1.3),

which embed into the continuation of the initial data space for b > 1/r. When r = 2, we

of course recover the 7/4+ result as a particular case of our local well-posedness theorem.

Our main result is the following.

Theorem 1.1 (Main Theorem). The Cauchy problem (1.0.1) is locally well-posed in

Ĥr
s (R2) for 3

2 < r ≤ 2 and s > 3
2r + 1.

Remark 1. For a definition of well-posedness see Section 1.1 and for a more precise

statement of our theorem see Section 1.4. There is a scaling correspondence between

the homogeneous Sobolev and Fourier Lebesgue spaces that allows us to compare results.

Specifically, the space Ĥr
s scales like Hσ for σ = s+ n

(
1
2 −

1
r

)
; see Section 1.3 for more

details. In this sense, our results correspond to σ > 5/3 on the Sobolev scale and can

therefore be thought of as an improvement of 1/12 derivative over the previously known

results.

This work is motivated by Grünrock, who in [8] was able to use an Xr
s,b approach to

circumvent counterexamples of Lindblad [14], in dimension n = 3.

If one assumes that the derivative nonlinearity has some additional structure, then
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better results are generally possible. For instance, suppose we have
�uI = Q(uJ , uK)

u(0, x) = u0(x)

ut(0, x) = u1(x)

(1.0.2)

where Q is a real linear combination of the basic null forms Q0(u, v) =
∑n

i=1 ∂iu∂iv −

∂tu∂tv, Qij(u, v) = ∂iu∂jv − ∂ju∂iv and Q0j(u, v) = ∂tu∂jv − ∂ju∂tv. The algebraic

structure of the null forms, in particular the cancellation properties they exhibit, allow

for better ranges of s. For Q0, naturally arising in the wave map problem, Klainerman and

Selberg [13] were already able to prove optimal local well-posedness for the full subcritical

range, s > n/2. For the null forms Qij and Q0j , the best known local well-posedness

results in two dimensions with initial data in Hs×Hs−1 are with s > 5/4, found in Zhou

[25]. Moreover, Zhou proves this is sharp for fixed point methods. Note that this is still

1/4 above the critical scaling regularity sc = 1. Ultimately, we would like to improve

upon these results for the null forms Qij and Q0j , but first we focus on the more general

problem (1.0.1).

The null forms Qij and Q0j appear naturally in the study of the Monopole equation

FA = ∗DAφ

where A denotes a one-form connection on R1+2, FA is its curvature, φ is the Higgs

field, DAφ is a covariant derivative, and ∗ is the Hodge star operator with respect to the

Minkowski metric on R1+2. The space-time Monopole Equation is an integrable wave

system and an example of a non-abelian gauge theory arising from the anti-self-dual

Yang-Mills equation. It has a natural scaling and the critical exponent in the Sobolev

scale is sc = 0. Thus, the scaling predicts well-posedness in L2(R2). The system is gauge

invariant and takes different forms depending on which gauge one chooses to fix; however,

how results in one gauge might translate into results in another is unknown. In [3] and

[4], Czubak fixed the Coulomb gauge and derived a system of nonlinear wave equations
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coupled with a nonlinear elliptic equation for the gauge transformation. The resulting

nonlinearity in the wave part of the system is a combination of terms with different

null-form structures and roughly has the form

Q(ϕ,ψ) = ∂tRiϕ(∂t + iD)ψ − (∂t + iD)ϕ∂tRiψ

where D = (−∆)1/2 and Ri = (−∆)−1/2 ∂i. Within this equation one has the basic null

forms Qij and Q0j . Using a fixed point argument in suitably adapted variants of the wave

Sobolev spaces Hs,θ, Czubak was able to prove local in time existence for the monopole

equation with data in Hs(R2) for s > 1/4. Furthermore, the needed bilinear estimates in

the Hs,θ spaces are known to be false without this extra 1/4-regularity in two dimensions

(c.f. Foschi and Klainerman [7]).

In Chapter 1, we review some general theory of local well-posedness and classical

results for the system (1.0.1). We then introduce the solution spaces Xr
s,b and, following

Grünrock’s approach in dimension three [8] give an argument that reduces local well-

posedness to proving bilinear estimates. In Chapter 2 we prove some technical results

that will be used to establish the needed estimates. Using the approach of D’Ancona,

Foschi, and Selberg in [6], we reduce our bilinear Xr
s,b estimates to trilinear Lp estimates.

By suitable dyadic and Whitney type decompositions, we then further reduce the problem

to bilinear restriction estimates on thickened subsets of the null cone, as in Selberg [17].

Finally, in Chapter 3 we prove the estimates that allow us to conclude our main local

well-posedness theorem.

Our results for the product nonlinearity (1.0.1) give a strong indication that a similar

Xr
s,b approach would bring corresponding improvements for the null form (1.0.2) as well.

This is still unknown, as our methods do not readily exploit the null structure of equations

of this form. We suspect that gain may be achieved, as for Grünrock in dimension three,

by utilizing results of Foschi and Klainerman in [7]. It seems possible that combining

our methods with those described in [7] and employing instead an angular decomposition

closer to that in Barcelo et. al. [1] could give further improvements for the null form.
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We include a discussion of these techniques in the appendix for future reference.

1.1 Local well-posedness

Classical solutions of (1.0.1) require data with enough regularity so that the equations

make sense pointwise. Since we wish to study local existence and uniqueness for systems

with lower regularity on the initial data, we must instead look for solutions in a weaker

sense. To define this notion, we will reformulate the problem as an integral equation.

Suppose that we have the general inhomogeneous equation

�u = F (u) (1.1.1)

subject to the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x). (1.1.2)

We consider first the corresponding linear homogeneous problem

∂ttu−∆u = 0 (1.1.3)

with the same initial conditions (1.1.2). Now if u is sufficiently smooth, for example if

u ∈ C2
t,locSx, then taking the Fourier transform in space, we obtain the system

∂ttû(t, ξ) + |ξ|2û(t, ξ) = 0

û(0, ξ) = û0(ξ)

ût(0, ξ) = û1(ξ)

where f̂ denotes the spatial Fourier transform on Rn, i.e. f̂(ξ) =
∫
Rn e

−ix·ξf(x)dx. This

produces an ODE with solution

û(t, ξ) =
1

2

(
ei|ξ|t + e−i|ξ|t

)
û0(ξ) +

1

2i|ξ|

(
ei|ξ|t + e−i|ξ|t

)
û1(ξ) (1.1.4)

or equivalently,

û(t, ξ) = cos(|ξ|t)û0(ξ) +
sin(|ξ|t)
|ξ|

û1(ξ).
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By Duhamel’s principle, the solution of the inhomogeneous problem (1.1.1) is then

û(t, ξ) = cos(|ξ|t)û0(ξ) +
sin(|ξ|t)
|ξ|

û1(ξ) +

∫ t

0

sin(|ξ|(t− s))
|ξ|

F̂ (u(s, ξ))ds.

Now define |D| =
√
−∆ to be the Fourier multiplier operator with symbol |ξ|. That

is,

(|D|f)∧(ξ) = |ξ|f̂(ξ)

Taking inverse Fourier transforms, we have

u(t, x) = cos(t
√
−∆)u0(x) +

sin(t
√
−∆)√
−∆

u1(x) +

∫ t

0

sin
(
(t− s)

√
−∆

)
√
−∆

F (u(s, x))ds.

(1.1.5)

This integral equation makes sense also for tempered distributions that are locally Lp in

time and space, and so we will say that solutions of (1.1.5) are distributional solutions or

weak solutions. Note that if u is a weak solution and also u ∈ C2(R×Rn) then u is also

a classical solution. We then define local well-posedness (LWP) as follows.

Definition 1.2. We say that the Cauchy problem (1.1.1), (1.1.2) is locally well-posed

(LWP) in a Banach space X if, given initial data (u0, u1) ∈ X, there exists a time T > 0

and a solution space XT ⊂ C([0, T ];X) such that the following are true.

1. There is a unique u ∈ XT that solves (1.1.1) on [0, T ]×Rn in the sense of distribu-

tions, satisfying the initial conditions (1.1.2).

2. The map (u0, u1) 7→ u is locally Lipschitz.

In general, one tries to establish local well-posedness for a system such as (1.1.1),

(1.1.2) by using a fixed point argument in an appropriate Banach space, XT . Following

[12], we briefly discuss how a contraction mapping argument leads to well-posedness

results. We can define a mapping Λ for the equation (1.1.1) using, for instance (1.1.5).

We set

Λ(u)(t, x) = cos(t
√
−∆)u0(x) +

sin(t
√
−∆)√
−∆

u1(x) +

∫ t

0

sin
(
(t− s)

√
−∆

)
√
−∆

F (u(s, x))ds.
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Then from distributional theory, finding weak solutions of (1.1.1) is equivalent to finding

fixed points for Λ. A common technique is to use a Picard iteration in the Banach space

XT , as follows. Define v−1 ≡ 0, and for j ≥ 0, vj = Λ(vj−1). Provided F (0) = 0,

such as when F (u) = ∂u∂u, it follows that v0 is a solution of the homogeneous equation

(1.1.3) with initial conditions (1.1.2). For subsequent iterates we have �vj = F (vj−1)

with (vj , ∂tvj)|t=0 = (u0, u1). Equivalently, we can write vj = v0 + �−1F (vj−1) where

�−1 is the Duhamel operator that assigns to F the solution v = �−1F of the problem

�v = F with zero initial conditions v(0, x) = vt(0, x) = 0.

Finding the correct Banach space in which to perform these iterations can be rather

difficult. Classically, the Cauchy problem has been studied with initial data in Sobolev

spaces, (u0, u1) ∈ Hs(Rn) ×Hs(Rn). If we denote 〈ξ〉 = (1 + |ξ|2)1/2, then the inhomo-

geneous Sobolev space Hs and the corresponding scale-invariant homogeneous Sobolev

space Ḣs are defined to be the completion of the Schwarz class under the norms

‖f‖Hs =

(∫
|f̂(ξ)|2〈ξ〉2sdξ

)1/2

and ‖f‖Ḣs =

(∫
|f̂(ξ)|2|ξ|2sdξ

)1/2

,

respectively. Observe that∥∥∥e±it√−∆u0

∥∥∥
Ḣs

=
∥∥∥|ξ|se±it|ξ|ũ0

∥∥∥
2

= ‖u0‖Ḣs

and similarly ∥∥∥∥∥e±it
√
−∆

√
−∆

u1

∥∥∥∥∥
Ḣs

=

∥∥∥∥∥|ξ|s e±it|ξ||ξ|
ũ1

∥∥∥∥∥
2

= ‖u1‖Ḣs−1 .

From (1.1.4) we have the representation for the homogeneous solution

u(t, x) =
1

2

(
eit
√
−∆ + e−it

√
−∆
)
u0(x) +

1

2i
√
−∆

(
eit
√
−∆ + e−it

√
−∆
)
u1(x)

and it is therefore natural to look for solutions u in subspaces of the continuation space

C0
t (Hs) ∩ C1

t (Hs−1). However, if we want initial data (u0, u1) ∈ Hs × Hs−1, then to

remain in the space, each iterate must also satisfy vj ∈ Hs and ∂tvj ∈ Hs−1. Thus, XT

will depend on the nonlinearity F and the Sobolev exponent s. Consequently, we replace

XT with X sT and note that in this case we must have the embedding X sT ↪→ C([0, T ], Hs)∩

7



C1([0, T ], Hs−1), where C([0, T ], X) denotes the space of continuous functions from the

interval [0, T ] into X.

We want to show that the sequence of iterates vj is Cauchy in the X sT topology, so

that there is a limit u. Provided we can show also that Λ(vj)→ Λ(u) or F (vj)→ F (u) in

the distributional sense, we will have proved local existence in X sT . For the uniqueness,

we also need to show that the iteration map is a contraction. Thus, in general we will

need to prove linear estimates, such as

‖v0‖X sT ≤ C(‖u0‖Hs + ‖u1‖Hs−1)

and nonlinear estimates such as

‖�−1F (u)‖X sT ≤ CTA(‖u‖X sT )

where A is a continuous function satisfying A(0) = 0, to show that the iteration is well

defined in X sT . Estimates of the type

‖�−1(F (u)− F (v))‖X sT ≤ CTA
′(‖u‖X sT , ‖v‖X sT )‖u− v‖X sT

for A′ continuous will show that we have a contraction for T sufficiently small, and also

imply the Cauchy property when combined with the estimates above. Later we will see

how using the product structure of the nonlinearity F (u) = ∂u∂u in these estimates gives

rise to the bilinear estimates that we prove in Chapter 3.

1.2 Classical results

We now review some classical results concerning existence and uniqueness for the

general system (1.1.1) and (1.1.2) where u : R1+n → RN and F is a smooth RN -valued

function satisfying F (0) = 0. For certain nonlinearities, such as F (u) = up or the

derivative nonlinearities considered in this dissertation, these equations have a natural

scaling. For the quadratic derivative problem (1.0.1), we see that if u = u(t, x) satisfies

8



(1.1.1) then so does uλ(t, x) = u(λt, λx). If we take initial data (u0, u1) ∈ Ḣs× Ḣs−1, we

find that the Ḣs× Ḣs−1 norm is invariant under this scaling if and only if s = n
2 . Indeed,

we have

‖uλ(0, ·)‖Ḣs = ‖|ξ|sûλ(0, ξ)‖L2

= λ−n ‖|ξ|sû (0, ξ/λ)‖L2

= λ−n/2 ‖|λξ|sû (0, ξ)‖L2

= λs−n/2‖u(0, ·)‖Ḣs .

Thus, for (1.0.1) the critical scaling exponent is sc = n/2.

With regard to local well-posedness, the scaling suggests a relationship between the

size and regularity of the initial data and the time of existence. In the subcritical case,

s > sc, we expect to be able to extend local well-posedness results for data with small

norm to large data by shrinking the interval of existence. This is the best possible case

for local well-posedness. On the other hand, in the supercritical case, s < sc, we are

likely to encounter finite time blow-up, even for small initial data. Finally, in the critical

case, s = sc, since the norm of the initial data is invariant under scaling, we expect

global existence and regularity for sufficiently small data. This can be summarized by

the following conjecture, c.f. [12].

Conjecture 1.3 (General Well-posedness Conjecture). Consider the initial value problem

(1.1.1), (1.1.2). The following should hold.

1. Local well-posedness for initial data in Hs ×Hs−1, s > sc.

2. Global well-posedness 1 for initial data with small Ḣsc × Ḣsc−1-norm.

3. Ill-posedness for initial data in Hs ×Hs−1, s < sc.

One approach to proving local well-posedness is to use energy estimates to close

the fixed point argument. For u with initial data (u0, u1) ∈ Hs × Hs−1 the equation

1maybe in a weaker sense

9



�u = F (u) satisfies the following energy inequality.

‖u(t, ·)‖Hs + ‖∂tu(t, ·)‖Hs−1 ≤ C(1 + t)

(
‖u0‖Hs + ‖u1‖Hs−1 +

∫ t

0
‖F (t′, ·)‖Hs−1dt′

)
The same estimate holds with Ḣs and Ḣs−1 replacing Hs and Hs−1, respectively, with

constant C instead of C(1 + t). In particular,

‖Du‖L∞t L2
x
. ‖u0‖Ḣ1 + ‖u1‖L2 + ‖F‖L1

tL
2
x

where we use the notation &,., and ' to denote the relations ≥,≤, and = up to multi-

plicative constants depending on fixed quantities. We write X ∼ Y to mean X . Y . X.

Using the energy estimates, one can obtain the following theorem, see [12].

Theorem 1.4 (Classical Local Existence Theorem). The equation (1.1.1) is locally well-

posed for initial data in Hs ×Hs−1(Rn) for all s > n
2 + 1.

In dimension n = 2, this is still well above the scaling prediction for (1.0.1). However,

one can improve upon this result using Strichartz estimates, which can be found in Sogge

[19] or Tao [23]. We state these estimates below and then use them to show (1.0.1) is

locally well-posed in Hs × Hs−1 for s > 7/4. This is a gain of 1/4 over the energy

estimates, but still a gap of 3/4 above critical scaling.

Theorem 1.5 (Strichartz estimates for the wave equation). Let n ≥ 2 and consider the

wave equation (1.1.2) with initial data (u0, u1) ∈ Ḣs×Ḣs−1. Define the admissible family

of pairs to be

A =

{
(q, r) : 2 ≤ q, r ≤ ∞, 2

q
+
n− 1

r
≤ n− 1

2
, (q, r, n) 6= (2,∞, 3)

}
.

Suppose (q, r), (q̃, r̃) ∈ A and s ≥ 0 is such that the following gap condition holds:

1

q
+
n

r
=
n

2
− s =

1

q̃′
+
n

r̃′
− 2

for (r, r̃) <∞. Then

‖u‖LqtLrx + ‖u‖C0[0,T ]Ḣs + ‖∂tu‖C0[0,T ]Ḣs−1 . ‖u0‖Ḣs + ‖u1‖Ḣs−1 + ‖F‖
Lq̃
′
t L

r̃′
x
.

10



Furthermore, for derivatives Dγu, we have

‖Dγu‖LqtLrx . ‖u0‖Ḣs + ‖u1‖Ḣs−1 + ‖Dγ̃F‖
Lq̃
′
t L

r̃′
x

provided the gap condition with derivatives

1

q
+
n

r
− γ =

n

2
− s =

1

q̃′
+
n

r̃′
− 2− γ̃ (1.2.1)

holds.

With n = 2, take (q, r) = (4,∞) and (q̃, r̃) = (∞, 2) in A. For s = 1, γ = 1/4, and

γ̃ = 0, (1.2.1) holds, and hence we have

‖D
1
4u‖L4

tL
∞
x
. ‖u0‖Ḣ1 + ‖u1‖L2 + ‖F‖L1

tL
2
x
.

Applying this to D
3
4u,

‖Du‖L4
tL
∞
x
. ‖u0‖

Ḣ
7
4

+ ‖u1‖
Ḣ

3
4

+ ‖F‖
L1
t Ḣ

3
4
x

. (1.2.2)

From the energy estimate with s = 7/4, for fixed 0 < t < T we have

‖u(t, ·)‖
Ḣ

7
4

+ ‖∂tu(t, ·)‖
Ḣ

3
4
.

(
‖u0‖

Ḣ
7
4

+ ‖u1‖
Ḣ

3
4

+

∫ t

0
‖F (t′, ·)‖

Ḣ
3
4
dt′
)
. (1.2.3)

On the other hand, for F (u) = ∂u∂u,∫ t

0
‖∂u(t′, ·)∂u(t′, ·)‖

Ḣ
3
4
dt′ ≤

(∫ t

0
dt′
)3/4(∫ t

0
‖∂u(t′, ·)∂u(t′, ·)‖4

Ḣ
3
4
dt′
)1/4

≤ T 3/4

(∫ t

0
‖∂u(t′, ·)‖4L∞x ‖∂u(t′, ·)‖4

Ḣ
3
4
dt′
)1/4

≤ T 3/4‖∂u‖L4
tL
∞
x
‖∂u‖

L∞t Ḣ
3
4

whence by (1.2.2) and (1.2.3) we can obtain a contraction on XT = C0
tH

7/4
x ∩ C1

tH
3/4
x ∩

L4
tW

1,∞
x provided T is sufficiently small.

The Strichartz estimates arise from the dispersive qualities of the wave equation. Here

the term dispersive means that different frequencies will propagate at different velocities,

and hence disperse. Thus, energy cannot concentrate in small spatial regions for a large
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period of time. In contrast, frequencies in diffusive equations, such as the heat equation,

do not propagate, but rather dissipate over time. For the heat equation, singularities in

the initial data weaken as time evolves, giving rise to smooth solutions. However, for

the wave equation solutions do not get smoother, but tend to spread and decay in time,

which is reflected in the dispersive estimates.

The Strichartz estimates give the best known results for (1.0.1) in dimension n = 2

with initial data in Sobolev space. For initial data with lower subcritical regularities,

we will instead look at the problem in different spaces. In the work of Klainerman and

Machedon [11] and Bourgain [2], the Fourier restriction spaces Xs,b have also been useful

in studying nonlinear dispersive equations, so we turn our attention now to these spaces.

1.3 The Fourier Lebesgue spaces Ĥr
s and associated Xr

s,b spaces

Using f̂ for the spatial Fourier transform on Rn, we define the Fourier Lebesgue spaces

Ĥr
s = Ĥr

s (Rn) by the norm

‖f‖
Ĥr
s

= ‖〈ξ〉sf̂‖Lr′

and their homogeneous counterparts

‖f‖ ˙̂
H
r

s

= ‖|ξ|sf̂‖Lr′ .

When s = 0, we shall write Ĥr
0 = L̂r, i.e.

‖f‖
L̂r

= ‖f̂‖r′ .

We will take initial data in suitable Ĥr
s spaces, and find solutions in the related Xr

s,b

spaces described below. To compare our results on the Sobolev scale, we again consider

the natural scaling of the equation. Define fλ(ξ) = f(λξ) for λ > 0 and recall that

12



‖fλ‖Ḣs = λs−n/2‖f‖Ḣs . Similarly, we obtain

‖fλ‖ ˙̂
H
r

s

=
∥∥∥|ξ|sf̂λ(ξ)

∥∥∥
Lr′

= λ−n
∥∥∥|ξ|sf̂ (ξ/λ)

∥∥∥
Lr′

= λn/r
′−n
∥∥∥|λξ|sf̂ (ξ)

∥∥∥
Lr′

= λs−n/r‖f‖ ˙̂
H
r

s

.

Thus, from a scaling viewpoint

˙̂
H
r

s ∼ Ḣσ if σ = s+ n

(
1

2
− 1

r

)
.

For n = 2, this gives σ = s+ 1− 2
r .

We now present some theory of the L2-based Fourier restriction spaces Xs,b following

Tao in [23, Chapter 2]. If φ : Rn → R is a continuous function, and s, b ∈ R, we define

the Fourier restriction space Xs,b
τ=φ(ξ)(R

1+n) to be the completion of the Schwartz class

S(R1+n) with respect to the norm

‖u‖
Xs,b
τ=φ(ξ)

= ‖〈ξ〉s〈τ − φ(ξ)〉bũ(τ, ξ)‖L2
τ,ξ

where 〈·〉 = (1+ |· |2)1/2 and ũ(τ, ξ) =

∫ ∫
e−i(tτ+x·ξ)u(t, x)dtdx is the space-time Fourier

transform on R1+n. Recall that for dispersive equations, such as the wave equation, the

phase velocity varies with frequency. Here, the function φ is the phase velocity associated

to the equation, while the group velocity, h, or the overall velocity of wave groups or

packets, is h = ∇φ.

Recall also that for the homogeneous wave equation (1.1.3), we can write the solution

in terms of its spatial Fourier transform (1.1.4). In the sense of distributions, the Fourier

transform of eiωt is the measure 2πδ(τ − ω) and so we can write the space-time Fourier

transform of the homogenous system as

ũ(τ, ξ) = π (δ(τ − |ξ|) + δ(τ + |ξ|)) û0(ξ) +
π

i|ξ|
(δ(τ − |ξ|) + δ(τ + |ξ|)) û1(ξ).
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In this way, the Fourier transform of the solution is a measure supported on the light

cone {(τ, ξ) : |τ | = |ξ|}. Assuming solutions to (1.1.3) are plane waves ei(tτ±x·ξ), we

derive the dispersion relation τ = ±|ξ|. Then the phase velocity is φ(ξ) = ±|ξ| and the

group velocity is h(ξ) = ∇φ(ξ) = ± ξ
|ξ| . So, the group velocity depends not on speed, but

only on direction. In fact, from the dispersion relation, we see that all waves propagate

in concentric circles with the same constant speed. For this reason, the wave equation is

sometimes referred to as weakly dispersive.

Since we are concerned with the wave equation (1.0.1), we will focus on the Xs,b
τ=φ(ξ)

spaces with φ(ξ) = ±|ξ|, which we will denote simply as Xs,b. However, since the

phase velocity φ is multi-valued, we adapt the definition slightly and for s, b ∈ R, define

the wave-Sobolev space Xs,b = Xs,b(R1+n) to be the completion of the Schwartz class

S(R1+n) with respect to the norm

‖u‖Xs,b = ‖〈ξ〉s〈|τ | − |ξ|〉bũ(τ, ξ)‖L2
τ,ξ
.

In much the same way that the elliptic weight 〈ξ〉 measures regularity in Sobolev space,

the wave-Sobolev index s measures elliptic regularity. On the other hand, the index b

corresponding to the hyperbolic weight 〈|τ | − |ξ|〉 measures the hyperbolic regularity of

the solution in L2.

From [23, Corollary 2.10], we have Xs,b ↪→ C(R, Hs) ∩ C1(R, Hs−1) for b > 1/2 and

hence one can look for solutions to (1.0.1) with (u0, u1) ∈ Hs × Hs−1 in these wave-

Sobolev spaces. An Xs,b space approach has been used to show improvement over the

Strichartz results for (1.0.1) in dimensions n ≥ 3, such as in Foschi and Klainerman [7],

Grünrock [8], and Tataru [24]. In dimension n = 2, these methods have produced the

s > 5/4 results for null forms [25]. For the product (1.0.1) in two dimensions, however,

there has been no improvement over the Strichartz results using Xs,b. Motivated by the

n = 3 results of Grünrock in [8], we instead turn to the more general Banach spaces Xr
s,b

for 1 < r ≤ 2 endowed with the norm

‖u‖Xr
s,b

= ‖〈ξ〉s〈|τ | − |ξ|〉bũ(τ, ξ)‖
Lr
′
τ,ξ
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where r′ ≥ 2 is the conjugate exponent of r, i.e. 1
r + 1

r′ = 1. The hope is that lowering

the value of r, and hence increasing r′ on the Fourier side, will also lower the bound on s.

At times we will also wish to restrict our attention to the forward and backward waves,

and thus define also the spaces

‖u‖Xr,±
s,b

= ‖〈ξ〉s〈τ ± |ξ|〉bũ(τ, ξ)‖
Lr
′
τ,ξ
.

These spaces are particular examples of the more general Xr,φ
s,b spaces associated to a

phase function φ = φ(ξ). As in the r = 2 case we define

‖u‖
Xr,φ
s,b

= ‖〈ξ〉s〈τ − φ(ξ)〉bũ(τ, ξ)‖
Lr
′
τ,ξ
.

When a fixed phase function φ is clear, we will simply write Xr,φ
s,b = Xr

s,b. We now give

some properties of Xr
s,b spaces, following Grünrock [9] and [23].

First note that we have the following containment Xr1
s1,b1

⊂ Xr0
s0,b0

if r1 ≤ r0, s1 −

n/r1 > s0−n/r0 and b1− 1/r1 > b0− 1/r0. Indeed, since r′1 ≥ r′0, we can apply Hölder’s

inequality to obtain

‖u‖Xr0
s0,b0

= ‖〈ξ〉s1〈|τ | − φ(ξ)〉b0 ũ(τ, ξ)‖r′0

=

∥∥∥∥〈ξ〉s1〈|τ | − φ(ξ)〉b1 ũ(τ, ξ)

〈ξ〉s1−s0〈|τ | − φ(ξ)〉b1−b0

∥∥∥∥
r′0

≤

(∫ (
〈ξ〉s0−s1〈|τ | − φ(ξ)〉b0−b1

) 1
1
r′0
− 1
r′1 d(τ, ξ)

) 1
r′0
− 1
r′1 ∥∥∥〈ξ〉s1〈|τ | − φ(ξ)〉b1 ũ(τ, ξ)

∥∥∥
r′1

. ‖u‖Xr1
s1,b1

where in the last step we have used the fact b1 − b0 > 1
r′1
− 1

r′0
and s1 − s0 > n

(
1
r′1
− 1

r′0

)
.

With D =
√
−∆ as above, we write Uφ(t) = eitφ(D). For the operators associated to

free wave solutions, eit
√
−∆ and e−it

√
−∆, we write U±(t) = e±it

√
−∆. First note that for

any smooth cutoff function ψ ∈ S(R), we have

F [ψ(t)Uφ(±t)f ] (τ, ξ) =

∫
ψ(t)e±itφ(ξ)f̂(ξ)e−itτdt

= ψ̂(τ ∓ φ(ξ))f̂(ξ). (1.3.1)
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Furthermore, this implies

‖ψ(t)Uφ(−t)f‖
Ĥr
s,b

=
∥∥∥〈ξ〉s〈τ〉bψ̂(τ + φ(ξ))f̂(ξ)

∥∥∥
r′

=
∥∥∥〈ξ〉s〈τ − φ(ξ)〉bψ̂(τ)f̂(ξ)

∥∥∥
r′

= ‖ψf‖Xr
s,b
. (1.3.2)

On the other hand, we have the following lemma.

Lemma 1.6. Let ψ ∈ S(R) be a smooth time cutoff. Then for any f ∈ Ĥr
s (Rn), we have

‖ψ(t)Uφ(t)f‖Xr
s,b
.ψ,b ‖f‖Ĥr

s
. (1.3.3)

Proof. By, (1.3.1),

‖ψ(t)Uφ(t)f‖Xr
s,b

=
∥∥∥〈ξ〉s〈τ − φ(ξ)〉bψ̂(τ − φ(ξ))f̂(ξ)

∥∥∥
r′

=
∥∥∥〈ξ〉s〈τ〉bψ̂(τ)f̂(ξ)

∥∥∥
r′

= ‖ψ‖
Ĥr
b
‖f‖

Ĥr
s
. (1.3.4)

To show Xr
s,b ↪→ C(R, Ĥr

s ), we use the following result from [9, Lemma 2.1].

Lemma 1.7. Let Y ⊂ S ′(R1+n) be a Banach space stable under multiplication with L∞t ,

i.e. for all ψ ∈ L∞t and u ∈ Y ,

‖ψu‖Y . ‖ψ‖L∞t ‖u‖Y . (1.3.5)

Suppose that Y also satisfies the inequality

‖eitτ0Uφ(t)f‖Y . ‖f‖Ĥr
s

(1.3.6)

for all f ∈ Ĥr
s and τ0 ∈ R. Then, for all b > 1

r , we have the estimate

‖u‖Y .b ‖u‖Xr
s,b

(1.3.7)

with a fixed constant that depends only on b.
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Proof. By Fourier inversion,

u(t, x) '
∫
ei(tτ+x·ξ)ũ(τ, ξ)d(τ, ξ). (1.3.8)

Define

fτ0(x) '
∫
ũ(τ0 + φ(ξ), ξ)eix·ξdξ

where τ0 = τ −φ(ξ). Note that if u ∈ Xr
0,b for any b > 0 this implies that fτ0 ∈ L̂r. Then

Uφ(t)fτ0 '
∫
eix·yeitφ(ξ)f̂τ0(ξ)dξ

'
∫
eix·yeitφ(ξ)ũ(τ0 + φ(ξ), ξ)dξ

and hence ∫
eitτ0Uφ(t)fτ0dτ0 '

∫ ∫
eix·yeitτ0+itφ(ξ)ũ(τ0 + φ(ξ), ξ)dξdτ0

'
∫ ∫

eix·yeitτ0 ũ(τ0, ξ)dτ0dξ.

By Minkowski’s inequality,

‖u‖Y .
∫ ∥∥eitτ0Uφ(t)fτ0

∥∥
Y
dτ0

.
∫
‖fτ0‖Ĥr

s
dτ0

by hypothesis. Then, by Hölder’s inequality,

‖u‖Y .
∫
〈τ0〉−b〈τ0〉b ‖fτ0‖Ĥr

s
dτ0

.

(∫
〈τ0〉−brdτ0

)1/r (∫
〈τ0〉br

′
∫
〈ξ〉sr′ |f̂τ0(ξ)|r′dξdτ0

)1/r′

.

Now since br > 1, the first term is finite and so

‖u‖Y .
(∫∫

〈τ0〉br
′〈ξ〉sr′ |ũ(τ0 + φ(ξ), ξ)|r′dξdτ0

)1/r′

. ‖u‖Xr
s,b
.

17



Letting Y = C(R, Ĥr
s ), we see that (1.3.5) clearly holds and∥∥∥‖eitτ0Uφ(t)f‖

Ĥr
s,x

∥∥∥
L∞t

=

∥∥∥∥∥eitτ0
(∫
〈ξ〉s

∣∣∣eitφ(ξ)f̂(ξ)
∣∣∣r′)1/r′

∥∥∥∥∥
L∞t

≤
(∫
〈ξ〉s

∣∣∣f̂(ξ)
∣∣∣r′)1/r′

is (1.3.6). Thus, Lemma 1.7 gives the following important result.

Corollary 1.8. Let u ∈ Xr
s,b for any b > 1

r . Then we have the inequality

‖u‖
C0
t Ĥ

r
s,x
.b ‖u‖Xr

s,b
. (1.3.9)

Now define the spaces Zrs,b = Zrs,b(R1+n) by the norm

‖u‖Zrs,b = ‖u‖Xr
s,b

+ ‖∂tu‖Xr
s−1,b

(1.3.10)

and for φ(ξ) = ±|ξ| define the associated spaces Zr,±s,b accordingly. Analagous to the case

when r = 2, we have from above that if b > 1/r, Zrs,b ↪→ C([0, T ], Ĥr
s ) ∩C1([0, T ], Ĥr

s−1).

As in Sobolev space, for the operators associated to the free solution we see that∥∥∥e±it√−∆u0

∥∥∥ ˙̂
H
r

s

= ‖u0‖ ˙̂
H
r

s

and

∥∥∥∥∥e±it
√
−∆

√
−∆

u1

∥∥∥∥∥ ˙̂
H
r

s

= ‖u1‖ ˙̂
H
r

s−1

.

Thus, we take initial data (u0, u1) ∈ Ĥr
s (Rn)×Ĥr

s−1(Rn), and look for solutions of (1.0.1)

in Xr
s,b for appropriate ranges of the exponents s, b, and r.

The main result of this dissertation gives local well-posedness in Ĥr
s with s > 3

2r + 1

for 3
2 < r ≤ 2. From the scaling, this corresponds to σ > 2− 1

2r . When r = 2, this delivers

σ > 7
4 , which is the best known result for local well-posedness in Hσ. However, when

r = 3/2, we obtain σ > 5
3 = 7

4 −
1
12 . In this way, this can be viewed as an improvement

over the Strichartz results, but still leaves a gap of 2/3 over the scaling prediction.

1.4 Statement of the main result

When studying local well-posedness, it can be useful to reformulate (1.1.1) as a first

order system. This may be done in various ways, some of which we include here. For
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example, letting w = (u, ut)
t and N(w) = (0, F (u))t, we can write

dw

dt
= Lw +N(w)

where L =

 0 I

∆ 0

 is a 2× 2 matrix. If U(t) = etL is well-defined, this generates the

solution to the linear equation dw
dt = Lw, and by the Duhamel principle or the method of

superposition,

w(·, t) = etLw(0) +

∫ t

0
e(t−s)LN(w(s))ds.

Another way is to use the operator D = (−∆)1/2 from above. Note that D−1 =

(−∆)−1/2 is the Fourier multiplier operator with symbol |ξ|−1. Defining u± = u±iD−1ut,

we have

(i∂t −D)u+ = (i∂t −D)(u+ iD−1ut)

= −D−1utt −Du

= −D−1(utt −∆u)

= −D−1(�u)

and similarly, (i∂t +D)u− = D−1(�u). So, we can reformulate (1.1.1) as

(i∂t ±D)u∓ = ±D−1(F (u)).

Similarly, using the Bessel potential operator J = (I − ∆)1/2 with inverse J−1 =

(I −∆)−1/2, we define u± = u± iJ−1ut. Observe that

‖J−1ut‖Ĥr
s

= ‖〈ξ〉s(1 + |ξ|2)−1/2ũt‖r′ = ‖ut‖Ĥr
s−1

(1.4.1)

and also ‖Ju‖
Ĥr
s−1

= ‖u‖
Ĥr
s
. Then

(i∂t + J)u− = (i∂t + J)(u− iJ−1ut)

= J−1utt + Ju

= J−1(utt + (I −∆)u)

= J−1(�u) + J−1u
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and in the same way, ±J−1(�u) = (i∂t±J)u∓∓J−1u. Using this, we can rewrite (1.1.1)

as

(i∂t ± J)u∓ = ±J−1F (u)± J−1u.

For the nonlinearity F (u) = ∂u∂u in (1.0.1), define the corresponding bilinear form

B2(u, v) = ∂u∂v. Then, since u+ + u− = 2u, we have

F (u) = F

(
1

2
u+ +

1

2
u−

)
=

1

4
B2(u+ + u−, u+ + u−).

From this, we write (1.0.1) as the first order system

(i∂t ± J)u∓ = ±1

4
J−1B2(u+ + u−, u+ + u−)± 1

2
J−1 (u+ + u−)

or dividing by i,

(∂t ± iJ)u± = ±i1
4
J−1B2(u+ + u−, u+ + u−)± i1

2
J−1 (u+ + u−) (1.4.2)

with initial conditions

f± = u±(0, ·) = u0 ± iJ−1u1 ∈ Ĥr
s . (1.4.3)

We then understand a solution (u+, u−) to be a solution of the corresponding pair of

integral equations

u±(t, ·) = e±itJf± +

∫ t

0
e±i(t−s)JF±(u(s, ·))ds. (1.4.4)

where

F±(u) = ±i1
4
J−1B2(u+ + u−, u+ + u−)± i1

2
J−1 (u+ + u−)

(see Section 1.5 for more details).

We are now ready to state our main result concerning local well-posedness for (1.0.1).

We give a theorem for the equivalent first order system (1.4.2) and (1.4.3). Our initial

data will be in Ĥr
s × Ĥr

s and solutions will lie in time localized Zrs,b product spaces,

denoted Zrs,b(T ), with the norm

‖u‖Zrs,b(T ) = inf{‖ū‖Zrs,b : ū|[−T,T ]×Rn = u}.
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In particular, the norm on Zr,±s,b (T ) is given by

‖u‖Zr,±s,b (T ) = inf{‖ū‖Xr,±
s,b

+ ‖∂tū‖Xr,±
s−1,b

: ū|[−T,T ]×Rn = u}

We define similarly any time restricted spaces Xr
s,b(T ). Note that if b > 1/r then

Zr,±s,b (T ) ↪→ C([0, T ], Ĥr
s ) ∩ C1([0, T ], Ĥr

s−1). Hence, if the initial data are in Ĥr
s × Ĥr

s ,

then the solution embeds into the continuation space C([0, T ], Ĥr
s )× C([0, T ], Ĥr

s ).

Theorem 1.9. Let 3
2 < r ≤ 2, s > 3

2r + 1, and 1
r < b < 1. Given initial data f± ∈ Ĥr

s ,

there exist T = T (‖f+‖Ĥr
s
, ‖f−‖Ĥr

s
) > 0 and a unique solution (u+, u−) ∈ Zr,+s,b (T ) ×

Zr,−s,b (T ) of the system

(∂t ± iJ)u± = ±i1
4
J−1B2(u+ + u−, u+ + u−)± i1

2
J−1 (u+ + u−) (1.4.5)

satisfying the initial conditions

f±(x) = u±(0, x) = u0(x)± iJ−1u1(x). (1.4.6)

The solution is persistent and the flow map

(f+, f−) 7→ (u+, u−), Ĥr
s × Ĥr

s → Zr,+s,b (T )× Zr,−s,b (T )

is locally Lipschitz continuous.

In the next section, we reduce the proof of this theorem to bilinear estimates in Xr
s,b.

This relies on a general local well-posedness scheme introduced by Bourgain and adapted

to Xr
s,b by Grünrock in [9]. We will prove general estimates of this form in Chapter 3

from which we will obtain our result.

1.5 Reduction to bilinear estimates

The general scheme in [9] reduces local well-posedness for the Cauchy problem

∂tu− iφ(D)u = N(u), u(0) = u0 ∈ Ĥr
s (1.5.1)
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to proving sufficient estimates for the fixed point argument. Here N(u) is a nonlinear

function of u and its derivatives. As we showed earlier for the wave equation, we can

reformulate (1.5.1) as an integral equation by taking Fourier transforms and finding the

solution of an ODE. Then Uφ(t) is the operator associated to the homogenous linear

equation and by Duhamel’s principle, we have the integral representation

u(t, ·) = Λu(t) = Uφ(t)u0 +

∫ t

0
Uφ(t− s)N(u(s, ·))ds. (1.5.2)

We begin with the following result [9, Lemma 2.2], which gives the estimate needed

for the Duhamel piece

Uφ∗RF (t) =

∫ t

0
U(t− s)F (u(s, ·))ds. (1.5.3)

In the following, ψ ∈ C∞0 will be a smooth function compactly supported in the interval

(−2, 2). For 0 < T ≤ 1 we will write ψδ(t) = ψ( tδ ). The space Xr,φ
s,b with the phase

function φ corresponding to (1.5.1) will be denoted simply by Xr
s,b.

Lemma 1.10. Assume −1/r′ < b′ ≤ 0 ≤ b ≤ b′ + 1. Then for the linear inhomogeneous

system

∂tv − iφ(D)v = F, v(0) = 0

we have the estimate

‖ψδUφ∗RF‖Xr
s,b
≤ cδb′−b+1‖F‖Xr

s,b′
. (1.5.4)

Proof. The proof is found in [8, Section 2.2], so we will just give a sketch. The idea

is to first prove the estimate for Kg(t) = ψδ(t)
∫ t

0 g(s)ds, a function of time only. The

corresponding estimate is then

‖Kg‖
Ĥr
b
≤ cδb′−b+1‖g‖

Ĥr
b′
. (1.5.5)

Once this is established, we can take a function g = g(t, x) of both time and space, and

for a fixed ξ apply (1.5.5) to ĝ(t, ξ). This gives(∫
〈τ〉r′b|K̃g(τ, ξ)|r′dτ

)1/r′

≤ cδb′−b+1

(∫
〈τ〉r′b′ |g̃(τ, ξ)|r′dτ

)1/r′

.

22



Multiplying by 〈ξ〉r′s and then integrating with respect to ξ gives

‖Kg‖
Ĥr
s,b
≤ cδb′−b+1‖g‖

Ĥr
s,b

where we use the notation Ĥr
s,b = Ĥr

s,b(R1+n) for s, b ∈ R to denote the Banach space

with norm

‖f‖
Ĥr
s,b

= ‖〈ξ〉s〈τ〉bf̃‖r′ .

To establish (1.5.4), we then let g(t, x) = Uφ(−t)F (t). This yields∥∥∥∥ψδ(t)∫ t

0
Uφ(−s)F (s)ds

∥∥∥∥
Ĥr
s,b

≤ cδb′−b+1 ‖Uφ(−t)F‖
Ĥr
s,b′

.

Now note that we can write U(−s) = U(−t)U(t − s). The result then follows from the

following fact. Analagous to Lemma 1.6, for a general h = h(t, x) we have

‖ψ(t)Uφ(−t)h(t, x)‖
Ĥr
s,b

=

∥∥∥∥〈ξ〉s〈τ〉b ∫ ψ̂(s)

∫
e−itφ(ξ)ĥ(t, ξ)e−it(τ−s)dt ds

∥∥∥∥
r′

=

∥∥∥∥〈ξ〉s〈τ − φ(ξ)〉b
∫
ψ̂(s)

∫
ĥ(t, ξ)e−it(τ−s)dt ds

∥∥∥∥
r′

= ‖ψh‖Xr
s,b

and similarly,

‖Uφ(−t)h(t, x)‖
Ĥr
s,b

= ‖h‖Xr
s,b
.

We also remark that if h = h(x) then

‖ψ(t)Uφ(−t)h(x)‖
Ĥr
s,b

= ‖ψh‖Xr
s,b

= ‖ψ‖
Ĥr
b
‖h‖

Ĥr
b

a fact we use in establishing the one dimensional estimate (1.5.5).

This generalization allows us to apply the estimate (1.5.4) to the nonlinearity N(u)

below. The remainder of the proof is devoted to proving the one dimensional estimate,

by first rewriting g using the Fourier inversion formula and then integrating in time and

multiplying by ψδ to get the expression

Kg(t) = cψδ(t)

∫
eitτ − 1

iτ
ĝ(τ)dτ

for Kg. The integral is split over the regions |τ | ≤ 1/δ and |τ | ≥ 1/δ and is then estimated

depending on the size of τ and the exponents b and b′.
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The following theorem [8, Theorem 2.3], which relies on Lemma 1.10, is the foundation

for our local well-posedness argument.

Theorem 1.11. Assume that for s ∈ R and r ∈ (1,∞) given, there exist b > 1/r and

b′ ∈ (b− 1, 0] such that the estimates

‖N(u)‖Xr
s,b′
≤ C‖u‖αXr

s,b
(1.5.6)

and

‖N(u)−N(v)‖Xr
s,b′
≤ C

(
‖u‖α−1

Xr
s,b

+ ‖v‖α−1
Xr
s,b

)
‖u− v‖Xr

s,b
(1.5.7)

are valid with α ≥ 1. Then there exist T = T (‖u0‖Ĥr
s
) > 0 and a unique solution

u ∈ Xr
s,b(T ) of (1.5.1). This solution is persistent and the mapping data upon solution

u0 7→ u, Ĥr
s → Xr

s,b(T0) is locally Lipschitz continuous for any T0 ∈ (0, T ).

Proof. The proof of this theorem is found in [8, Section 2.3], however we will include

some details that will be useful later. We begin by defining an extension of Λ to Xr
s,b(δ)

for any 0 < δ < 1. Let ψ be a smooth cutoff function compactly supported in (−2, 2)

with ψ ≡ 1 on (−1, 1). For any u ∈ Xr
s,b(δ) with an extension ū ∈ Xr

s,b let

Λ̄u(t) = ψ(t)Uφ(t)u0 + ψδ(t)

∫ t

0
Uφ(t− s)N(ū(s, ·))ds. (1.5.8)

and note that Λ̄u(t) = Λū(t) is well defined for t ∈ (−δ, δ). Furthermore, for any extension

ū,

‖Λ̄u‖Xr
s,b(δ)

≤ ‖ψUφ(t)u0‖Xr
s,b

+ ‖ψδUφ∗RN(ū)‖Xr
s,b

≤ C‖u0‖Ĥr
s

+ Cδb
′−b+1‖N(ū)‖Xr

s,b′

by Lemma 1.6 and Lemma 1.10. Then using the hypothesis (1.5.6), we have

‖Λ̄u‖Xr
s,b(δ)

≤ C‖u0‖Ĥr
s

+ Cδb
′−b+1‖ū‖αXr

s,b
.

Since this holds for any ū, taking the infimum over all such extensions, we obtain

‖Λ̄u‖Xr
s,b(δ)

≤ C‖u0‖Ĥr
s

+ Cδb
′−b+1‖u‖αXr

s,b(δ)
.
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Thus, Λ̄ : Xr
s,b(δ)→ Xr

s,b(δ). Now to show that Λ̄ is a contraction, for u, v ∈ Xr
s,b(δ), let

ū, v̄ ∈ Xr
s,b be any corresponding extension. Then by Lemma 1.10,

‖Λ̄u− Λ̄v‖Xr
s,b(δ)

≤ ‖ψδUφ∗R(N(ū)−N(v̄))‖Xr
s,b

≤ Cδb′−b+1‖N(ū)−N(v̄)‖Xr
s,b′

≤ Cδb′−b+1
(
‖ū‖α−1

Xr
s,b

+ ‖v̄‖α−1
Xr
s,b

)
‖ū− v̄‖Xr

s,b

by hypothesis (1.5.7). Since this holds for any extension, we must have

‖Λ̄u− Λ̄v‖Xr
s,b(δ)

≤ Cδb′−b+1
(
‖u‖α−1

Xr
s,b(δ)

+ ‖v‖α−1
Xr
s,b(δ)

)
‖u− v‖Xr

s,b(δ)

≤ Cδb′−b+1
(
2Rα−1

)
‖u− v‖Xr

s,b(δ)

for any u, v in a ball of radius R = ‖u0‖Ĥr
s

in Xr
s,b(δ). Since b′− b+ 1 > 0, we can choose

0 < δ < 1 sufficiently small so that

δb
′−b+1 <

1

2CRα−1

and hence for T = 1
2Cδ

b′−b+1Rα−1,

‖Λ̄u− Λ̄v‖Xr
s,b(T ) ≤

1

4
‖u− v‖Xr

s,b(T ). (1.5.9)

Thus, Λ̄ is a contraction, and by the contraction mapping principle there exists a solution

u of the equation Λ̄u(t) = u(t) = Λu(t) on for t ∈ (−T, T ). The uniqueness and Lipschitz

continuity statements then follow from the contraction (1.5.9) by standard arguments,

c.f. [18, Section 4.1]. The requirement b > 1/r ensures persistence of higher regularity,

since we then have Xr
s,b ↪→ C([−T, T ], Ĥr

s ) for any s.

Now we apply this scheme to (1.4.5) with initial conditions (1.4.6). Since the symbol

of J is (1 + |ξ|2)1/2, we have φ(ξ) = ∓〈ξ〉. Let us write the corresponding Xr
s,b and Zrs,b

spaces as X̃r,±
s,b and Z̃r,±s,b and call

N(u) =
1

4
J−1B2(u+ + u−, u+ + u−) = J−1B2(u, u),
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F (u) =
1

2
J−1 (u+ + u−) = J−1(u)

and

Λ̄u± = ψ(t)Uφ(t)f± ± iψδ Uφ∗RN(ū)± iψδ Uφ∗RF (ū) (1.5.10)

where u = 1
2(u+ +u−). For the fixed point argument, we need to show that Λ̃ = (Λ̄, Λ̄) is

a contraction on the space Z̃r,+s,b (T )× Z̃r,−s,b (T ) for some T , which is equivalent to having

a contraction for Λ̄ on each component.

Reduction to estimates for B2 in Z̃r,±s,b .

• Estimates for Λ̄. First we verify that Λ̃ : Z̃r,+s,b (δ)× Z̃r,−s,b (δ)→ Z̃r,+s,b (δ)× Z̃r,−s,b (δ)

for 0 < δ < 1. For any extension ū± of u± we use Lemma 1.6 and Lemma 1.10 to obtain

‖Λ̄u±‖X̃r,±
s,b (δ)

≤ ‖ψUφf±‖X̃r,±
s,b

+ ‖ψδUφ∗RF (ū)‖
X̃r,±
s,b

+ ‖ψδUφ∗RN(ū)‖
X̃r,±
s,b

≤ C‖f±‖Ĥr
s

+ Cδb
′−b+1

(
‖F (ū)‖

X̃r,±
s,b′

+ ‖N(ū)‖
X̃r,±
s,b′

)
.

We will use the following facts. First, by the triangle inequality, we have

|τ | ≤ |ξ|+ ||τ | − |ξ||. (1.5.11)

Next note that

||τ | − |ξ|| ≤ |τ ± |ξ|| (1.5.12)

which is easy to check by splitting into the cases τ ≥ 0 and τ ≤ 0. Finally,

〈τ ± 〈ξ〉〉 =

(
1 +

(
τ ± (1 + |ξ|2)1/2

)2
)1/2

∼
(

1 + (τ ± |ξ|)2
)1/2

= 〈τ ± |ξ|〉1/2 (1.5.13)

which can be verified by checking the cases |ξ| ≤ |τ | and |ξ| ≥ |τ | for |ξ| ≥ 1 and |ξ| ≤ 1.
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Since b′ < 0 < b,

‖F (u)‖
X̃r,±
s,b′

= ‖〈ξ〉s〈τ ± 〈ξ〉〉b′〈ξ〉−1ũ‖r′

∼ ‖〈ξ〉s−1〈τ ± |ξ|〉b′ ũ‖r′

. ‖〈ξ〉s−1〈|τ | − |ξ|〉b′ ũ‖r′

. ‖〈ξ〉s−1〈|τ | − |ξ|〉bũ‖r′

. ‖〈ξ〉s−1〈|τ | − |ξ|〉bũ+‖r′ + ‖〈ξ〉s−1〈|τ | − |ξ|〉bũ−‖r′

. ‖〈ξ〉s−1〈τ + |ξ|〉bũ+‖r′ + ‖〈ξ〉s−1〈τ − |ξ|〉bũ−‖r′

. ‖u+‖X̃r,+
s,b

+ ‖u−‖X̃r,−
s,b

and similarly

‖F (u)− F (v)‖
X̃r,±
s,b′
≤ ‖u+ − v+‖X̃r,+

s,b
+ ‖u− − v−‖X̃r,−

s,b
.

Thus, we already have the estimates needed for F in the non-derivative part of the norm.

It remains to establish the corresponding estimates for N , which are given by (1.5.6) and

(1.5.7). But note that

‖N(u)‖
X̃r,±
s,b′

= ‖J−1B2(u, u)‖
X̃r,±
s,b′

= ‖B2(u, u)‖
X̃r,±
s−1,b′

so it is enough to show

‖B2(u, u)‖
X̃r,±
s−1,b′

.
(
‖u+‖Z̃r,+s,b + ‖u−‖Z̃r,−s,b

)2

and similarly for the contraction.

• Estimates for ∂tΛ̄. Now for the derivative piece of the Z̃r,±s,b norm, we have

‖∂tΛ̄u±‖X̃r,±
s−1,b(δ)

≤ ‖∂t(ψUφf±)‖
X̃r,±
s−1,b

+ ‖∂t(ψδUφ∗RF (ū))‖
X̃r,±
s−1,b

+ ‖∂t(ψδUφ∗RN(ū))‖
X̃r,±
s,b
.
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Using the relations (1.5.11) - (1.5.13) from above, for a suitable function h, we see that

‖∂th‖X̃r,±
s−1,b

= ‖〈ξ〉s−1〈τ ± 〈ξ〉〉b|τ |h̃‖r′

≤ ‖〈ξ〉s−1〈τ ± 〈ξ〉〉b|ξ|h̃‖r′ + ‖〈ξ〉s−1〈τ ± 〈ξ〉〉b||τ | − |ξ||h̃‖r′

. ‖〈ξ〉s〈τ ± 〈ξ〉〉bh̃‖r′ + ‖〈ξ〉s−1〈τ ± 〈ξ〉〉b+1h̃‖r′ .

So, if ψ is a smooth cutoff and f± ∈ Ĥr
s , we can use Lemma 1.6 to obtain

‖∂t(ψUφf±)‖
X̃r,±
s−1,b

. ‖ψUφf±‖X̃r,±
s,b

+ ‖ψUφf±‖X̃r,±
s−1,b+1

. ‖f±‖Ĥr
s

+ ‖f±‖Ĥr
s−1

. ‖f±‖Ĥr
s
.

Next for F , we have

‖∂t(ψδUφ∗RF (ū))‖
X̃r,±
s−1,b

≤ ‖∂t(ψδ)Uφ∗RF (ū)‖
X̃r,±
s−1,b

+ ‖ψδUφ(t)F (ū(0, x))‖
X̃r,±
s−1,b

+

∥∥∥∥ψδ ∫ t

0
∂t (Uφ(s)F (ū(t− s, x))) ds

∥∥∥∥
X̃r,±
s−1,b

.

The first term can be handled as in Lemma 1.10 to get

‖∂t(ψδ)Uφ∗RF (ū)‖
X̃r,±
s−1,b

. Cδb
′−b+1‖F (ū)‖

X̃r,±
s,b′
.

Notice also that the second term will disappear inside the norm when doing the contrac-

tion argument, so it suffices to prove this is bounded. We have

‖ψδUφ(t)F (ū(0, x))‖
X̃r,±
s−1,b

= ‖〈ξ〉s−2〈τ ± 〈ξ〉〉bf̂±(ξ)

∫
ψδ(t)e

−itτ∓it〈ξ〉dt‖r′

= ‖〈ξ〉s−2〈τ〉bf̂±(ξ)

∫
ψδ(t)e

−itτdt‖r′

= ‖f̂±‖Ĥr
s−2
‖ψδ‖Ĥr

b
.
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Now write∥∥∥∥ψδ ∫ t

0
∂t(Uφ(s)F (ū(t− s, ·)))ds

∥∥∥∥
X̃r,±
s−1,b

=

∥∥∥∥ψδ ∫ t

0
Uφ(s)F (∂tū(t− s, ·))ds

∥∥∥∥
X̃r,±
s−1,b

= ‖ψδUφ∗RF (∂tū)‖
X̃r,±
s−1,b

. δb
′−b+1‖F (u)‖

X̃r,±
s−1,b′

. δb
′−b+1

(
‖∂tu+‖X̃r,+

s−1,b
+ ‖∂tu−‖X̃r,−

s−1,b

)
as above. Thus, we have all the estimates we need for J . Next we examine

‖∂t(ψδUφN(u))‖
X̃r,±
s−1,b

,

which as above reduces to three estimates, the first of which is handled exactly as in the

case for F . For the second,

‖ψδUφ(t)N(ū(0, x))‖
X̃r,±
s−1,b

≤ ‖ψδN(f±)‖
X̃r,±
s−1,b

≤ ‖ψδB2(f±, f±)‖
X̃r,±
s−2,b

≤ ‖ψδB2(f±, f±)‖
X̃r,±
s−1,b

.

Finally, as for F , we also have for N ,∥∥∥∥ψδ ∫ t

0
∂t(Uφ(s)N(ū(t− s, ·)))ds

∥∥∥∥
X̃r,±
s−1,b

=

∥∥∥∥ψδ ∫ t

0
Uφ(s)∂t(N(ū(t− s, ·)))ds

∥∥∥∥
X̃r,±
s−1,b

= ‖ψδUφ∗R∂tB2(ū, ū)‖
X̃r,±
s−2,b

. δb
′−b+1‖∂tB2(ū, ū)‖

X̃r,±
s−2,b′

.

All in all, for N it suffices to show

‖∂tB2(u, u)‖
X̃r,±
s−2,b′

.
(
‖u+‖Z̃r,+s,b + ‖u−‖Z̃r,−s,b

)2

and

‖B2(u, u)‖
X̃r,±
s−1,b′

.
(
‖u+‖Z̃r,+s,b + ‖u−‖Z̃r,−s,b

)2
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which both follow from

‖B2(u, u)‖
Z̃r,±
s−1,b′

.
(
‖u+‖Z̃r,+s,b + ‖u−‖Z̃r,−s,b

)2
. (1.5.14)

For the contraction, we will then need to bound ‖B2(u, u) − B2(v, v)‖
Z̃r,±
s−1,b′

by a

constant times

(
‖(u+, u−)‖

Z̃r,+s,b ×Z̃
r,−
s,b

+ ‖(v+, v−)‖
Z̃r,+s,b ×Z̃

r,−
s,b

)(
‖u+ − v+‖Z̃r,+s,b + ‖u− − v−‖Z̃r,−s,b

)
.

But observe that

‖B2(u, u)−B2(v, v)‖
Z̃r,±
s−1,b′

= ‖(∂u)2 − (∂v)2‖
Z̃r,±
s−1,b′

= ‖∂(u+ v)∂(u− v)‖
Z̃r,±
s−1,b′

(1.5.15)

and the last term could be bounded by

‖u+ v‖
Z̃r,±
s−1,b′

‖u− v‖
Z̃r,±
s−1,b′

.

(
‖u‖

Z̃r,±
s,b′

+ ‖v‖
Z̃r,±
s,b′

)
‖u− v‖

Z̃r,±
s,b′

provided we had

‖B2(u, v)‖
Z̃r,±
s−1,b′

.
(
‖u‖

Z̃r,+s,b ×Z̃
r,−
s,b

+ ‖v‖
Z̃r,+s,b ×Z̃

r,−
s,b

)2

for general functions u and v.

Reduction to Zrs,b estimates.

We now show that we can reduce these Z̃r,±s,b estimates to Zrs,b estimates. Since 〈τ ±

〈ξ〉〉 ∼ 〈τ ± |ξ|〉, the estimate (1.5.14) is equivalent to

‖〈ξ〉s−1〈τ ± |ξ|〉b′F(B2(u, u))‖r′ + ‖〈ξ〉s−2〈τ ± |ξ|〉b′F(∂tB2(u, u))‖r′

.
(
‖〈ξ〉s〈τ + |ξ|〉bF(u+)‖r′ + ‖〈ξ〉s〈τ − |ξ|〉bF(u−)‖r′

+ ‖〈ξ〉s−1〈τ + |ξ|〉bF(∂tu+)‖r′ + ‖〈ξ〉s−1〈τ − |ξ|〉bF(∂tu−)‖r′
)2
.

Next we use the inequality ||τ | − |ξ|| ≤ |τ ± |ξ|| to recover Xr
s,b norms. Since b′ < 0,

‖〈ξ〉s−1〈τ ± |ξ|〉b′F(B2(u, u))‖r′ + ‖〈ξ〉s−2〈τ ± |ξ|〉b′F(∂tB2(u, u))‖r′ . ‖B2(u, u)‖Zr
s−1,b′

.
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Similarly, since b > 0,

‖u‖2Zrs,b .
(
‖u+‖Zrs,b + ‖u−‖Zrs,b

)2

.
(
‖〈ξ〉s〈τ + |ξ|〉bF(u+)‖r′ + ‖〈ξ〉s〈τ − |ξ|〉bF(u−)‖r′

+‖〈ξ〉s−1〈τ + |ξ|〉bF(∂tu+)‖r′ + ‖〈ξ〉s−1〈τ − |ξ|〉bF(∂tu−)‖r′
)2
.

So, (1.5.14) will follow if we can show

‖B2(u, u)‖Zr
s−1,b′

. ‖u‖2Zrs,b (1.5.16)

for appropriate values of s, b, b′ and r.

Reduction to the main estimates.

We can reduce (1.5.16) to several estimates for B2(u, u) = ∂u∂u, depending on

whether ∂ = ∂t or ∂ = ∂x where x = xi for i = 1 or 2. All of our estimates will be

on the Fourier side, and so the trivial inequality |ab| ≤ 1
2(a2 + b2) applied to the symbols

of the derivatives reduces any mixed derivative product to the cases F (u) = (∂tu)2 and

F (u) = (∂xu)2. More generally, let us consider estimates of the type

‖∂u∂v‖Zr
s−1,b′

. ‖u‖Zrs,b‖v‖Zrs,b (1.5.17)

from which the contraction will also follow, as described above.

Since b′ ∈ (b− 1, 0], write b′ = b− 1 + ε where 0 < ε ≤ 1. Then we want

‖∂u∂v‖Zrs−1,b−1+ε
. ‖u‖Zrs,b‖v‖Zrs,b . (1.5.18)

Explicitly, we need

‖∂u∂v‖Xr
s−1,b−1+ε

+ ‖∂t(∂u∂v)‖Xr
s−2,b−1+ε

.
(
‖u‖Xr

s,b
+ ‖∂tu‖Xr

s−1,b

)(
‖v‖Xr

s,b
+ ‖∂tv‖Xr

s−1,b

)
= ‖u‖Xr

s,b
‖v‖Xr

s,b
+ ‖∂tu‖Xr

s−1,b
‖∂tv‖Xr

s−1,b
+ ‖u‖Xr

s,b
‖∂tv‖Xr

s−1,b
+ ‖v‖Xr

s,b
‖∂tu‖Xr

s−1,b
.

Thus, it will be enough to obtain the estimates

‖∂tu∂tv‖Xr
s−1,b−1+ε

. ‖∂tu‖Xr
s−1,b
‖∂tv‖Xr

s−1,b
, (1.5.19)
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‖∂xu∂xv‖Xr
s−1,b−1+ε

. ‖u‖Xr
s,b
‖v‖Xr

s,b
, (1.5.20)

‖∂t(∂tu∂tv)‖Xr
s−2,b−1+ε

. ‖∂tu‖Xr
s−1,b
‖∂tv‖Xr

s−1,b
, (1.5.21)

and

‖∂t(∂xu∂xv)‖Xr
s−2,b−1+ε

. ‖u‖Xr
s,b
‖v‖Xr

s,b
. (1.5.22)

For (1.5.20), note that

‖∂xiu‖Xr
s−1,b

=
∥∥∥〈ξ〉s−1〈|τ | − |ξ|〉b∂̃xiu(τ, ξ)

∥∥∥
Lr
′
τ,ξ

=
∥∥∥〈ξ〉s−1〈|τ | − |ξ|〉b|ξi|ũ(τ, ξ)

∥∥∥
Lr
′
τ,ξ

≤
∥∥∥〈ξ〉s〈|τ | − |ξ|〉bũ(τ, ξ)

∥∥∥
Lr
′
τ,ξ

= ‖u‖Xr
s,b

and so it suffices to show

‖∂xu∂xv‖Xr
s−1,b−1+ε

. ‖∂xu‖Xr
s−1,b
‖∂xv‖Xr

s−1,b
.

Furthermore, since we assume b− 1 + ε < 0, i.e. b < 1, then Xr
s,0 ⊂ Xr

s,b−1+ε and

‖∂xu∂xv‖Xr
s−1,b−1+ε

. ‖∂xu∂xv‖Xr
s−1,0

.

So (1.5.20) will follow if

‖∂xu∂xv‖Xr
s−1,0

. ‖∂xu‖Xr
s−1,b
‖∂xv‖Xr

s−1,b
. (1.5.23)

Replacing now f = ∂xu and g = ∂xv, this becomes

‖fg‖Xr
s−1,0

. ‖f‖Xr
s−1,b
‖g‖Xr

s−1,b
. (1.5.24)

For (1.5.21) and (1.5.22) write

‖∂t(∂u∂v)‖Xr
s−2,b−1+ε

=
∥∥∥〈ξ〉s−2〈|τ | − |ξ|〉b−1+εF(∂t(∂u∂v))(τ, ξ)

∥∥∥
Lr
′
τ,ξ

=
∥∥∥〈ξ〉s−2〈|τ | − |ξ|〉b−1+ετF(∂u∂v)(τ, ξ)

∥∥∥
Lr
′
τ,ξ

.
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Now using that |τ | − |ξ| ≤ ||τ | − |ξ||, we have

‖∂t(∂u∂v)‖Xr
s−2,b−1+ε

≤
∥∥∥〈ξ〉s−2〈|τ | − |ξ|〉b−1+ε(||τ | − |ξ||+ |ξ|)F(∂u∂v)(τ, ξ)

∥∥∥
Lr
′
τ,ξ

≤
∥∥∥〈ξ〉s−2〈|τ | − |ξ|〉b+εF(∂u∂v)(τ, ξ)

∥∥∥
Lr
′
τ,ξ

+
∥∥∥〈ξ〉s−1〈|τ | − |ξ|〉b−1+εF(∂u∂v)(τ, ξ)

∥∥∥
Lr
′
τ,ξ

= ‖∂u∂v‖Xr
s−2,b+ε

+ ‖∂u∂v‖Xr
s−1,b−1+ε

.

If ∂ = ∂t, (1.5.21) will follow if

‖∂u∂v‖Xr
s−2,b+ε

. ‖∂tu‖Xr
s−1,b
‖∂tv‖Xr

s−1,b
(1.5.25)

and

‖∂u∂v‖Xr
s−1,b−1+ε

. ‖∂tu‖Xr
s−1,b
‖∂tv‖Xr

s−1,b
. (1.5.26)

The latter is exactly (1.5.19) and follows as above from

‖∂tu∂tv‖Xr
s−1,0

. ‖∂tu‖Xr
s−1,b
‖∂tv‖Xr

s−1,b

since b− 1 + ε < 0. Then, as with (1.5.23), this reduces to (1.5.24). Also in this case, the

first estimate reads

‖∂tu∂tv‖Xr
s−2,b+ε

. ‖∂tu‖Xr
s−1,b
‖∂tv‖Xr

s−1,b

and so setting f = ∂tu and g = ∂tv, it is implied by

‖fg‖Xr
s−2,b+ε

. ‖f‖Xr
s−1,b
‖g‖Xr

s−1,b
. (1.5.27)

If ∂ = ∂x, (1.5.22) follows from

‖∂xu∂xv‖Xr
s−2,b+ε

. ‖u‖Xr
s,b
‖v‖Xr

s,b

and

‖∂xu∂xv‖Xr
s−1,b−1+ε

. ‖u‖Xr
s,b
‖v‖Xr

s,b
.

This second estimate is already (1.5.20), which reduces to (1.5.24). For the first estimate,

we argue as above to replace it with the estimate

‖∂xu∂xv‖Xr
s−2,b+ε

. ‖∂xu‖Xr
s−1,b
‖∂xv‖Xr

s−1,b
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which is implied also by (1.5.27).

All in all, we expect local well-posedness for (1.0.1) with initial data in Ĥr
s × Ĥr

s−1,

provided we have the following estimates

‖uv‖Xr
s−1,0

. ‖u‖Xr
s−1,b
‖v‖Xr

s−1,b
(1.5.28)

and

‖uv‖Xr
s−2,b+ε

. ‖u‖Xr
s−1,b
‖v‖Xr

s−1,b
(1.5.29)

for some r, s, and 1
r < b < 1. In Chapter 3, we show that these hold for s > 3

2r + 1 and

3
2 < r ≤ 2.
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C H A P T E R 2

BILINEAR FOURIER RESTRICTION ESTIMATES IN Lp

SPACES

In this chapter, we develop the tools we will use to prove bilinear estimates of the

type

‖uv‖Xr
−s0,−b0

≤ C‖u‖Xr
s1,b1
‖v‖Xr

s2,b2
(2.0.1)

needed for Theorem 1.9. We begin by reducing to trilinear Lp integral estimates over

domains with restricted spatial frequency interactions. Next we decompose dyadically,

based on spatial frequency and distance from the light cone, and prove two dyadic sum-

mation lemmas. Finally, in Section 2.3, we reduce to proving bilinear estimates restricted

in Fourier space to thickened subsets of the light cone. The constants obtained in these

estimates allow us to sum the results of our dyadic decompositions.

In the following, we keep our notation consistent with that in [6]. We will use the

notation ‖ · ‖p for the Lp norm on R1+2, i.e. for f = f(t, x), we write

‖f‖p =

(∫
R1+2

|f(t, x)|pd(t, x)

)1/p

.

Occasionally, when we want to emphasize the variables of integration, we will also write

this norm as ‖f‖p = ‖f‖Lpt,x . For p ≥ 1, we denote the conjugate exponent by p′, i.e.

1
p + 1

p′ = 1. For 1 < r ≤ 2 we write ‖ · ‖Xr
s,b

for the norm in the wave-Fourier Lebesgue

space, Xr
s,b. That is,

‖u‖Xr
s,b

= ‖〈ξ〉s〈|τ | − |ξ|〉bũ(τ, ξ)‖Lrτ,ξ

where 〈·〉 = (1 + | · |2)1/2 and ũ(τ, ξ) =

∫ ∫
e−i(tτ+x·ξ)u(t, x)dtdx.
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2.1 Reformulation as a trilinear integral estimate

First we show that (2.0.1) is equivalent to

|I| . ‖F0‖r‖F1‖r′‖F2‖r′ (2.1.1)

where

I =

∫∫∫
F0(X0)F1(X1)F2(X2)δ(X0 +X1 +X2)dX0dX1dX2

〈ξ0〉s0〈ξ1〉s1〈ξ2〉s2〈|τ0| − |ξ0|〉b0〈|τ1| − |ξ1|〉b1〈|τ2| − |ξ2|〉b2
, (2.1.2)

Xj = (τj , ξj) ∈ R1+2 for j = 0, 1, 2 and δ is point mass at the origin in R1+n. To see this,

let wi(τ, ξ) = 〈ξi〉si〈|τi| − |ξi|〉bi . Then

‖uv‖Xr
−s0,−b0

=

(∫
w0(τ, ξ)−r

′ |ũv(τ, ξ)|r
′
d(τ, ξ)

)1/r′

=

(∫
w0(τ, ξ)−r

′ |ũ ∗ ṽ(τ, ξ)|r
′
d(τ, ξ)

)1/r′

=

(∫
w0(τ, ξ)−r

′
∣∣∣∣∫ ũ(t, x)ṽ(τ − t, ξ − x)d(t, x)

∣∣∣∣r′ d(τ, ξ)

)1/r′

=

∥∥∥∥w−1
0

∫
ũ(t, x)ṽ(· − t, · − x)d(t, x)

∥∥∥∥
Lr
′
τξ

.

Now let α = τ − t and β = ξ − x. Then

‖uv‖Xr
−s0,−b0

=

∥∥∥∥w−1
0 (τ, ξ)

∫∫
ũ(t, x)ṽ(α, β)δ(α+ t− τ, β + x− ξ)d(α, β)d(t, x)

∥∥∥∥
Lr
′
τξ

= sup
f∈Lr

∣∣∣∣∫ f(−τ,−ξ)
‖f‖rw0(τ, ξ)

∫∫
ũ(t, x)ṽ(α, β)δ(α+ t− τ, β + x− ξ)d(α, β)d(t, x)d(τ, ξ)

∣∣∣∣
= sup

F0∈Lr

∫∫∫
F0(X0)F1(X1)F2(X2)

‖F0‖rw0(X0)w1(X1)w2(X2)
δ(X2 +X1 +X0)dX2dX1dX0

where F0 = f , F1 = ũw1, F2 = ṽw2, X0 = (−τ,−ξ), X1 = (t, x), and X2 = (α, β).

Now if (2.1.1) holds, then

‖uv‖Xr
−s0,−b0

. sup
F0∈L2

‖F0‖r‖F1‖r′‖F2‖r′
‖F0‖r

. ‖F1‖r′‖F2‖r′

. ‖ũw1‖r′‖ṽw2‖r′

. ‖u‖Xr
s1,b1
‖v‖Xr

s2,b2
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which is (2.0.1). And if (2.0.1) holds, then

sup
F0∈Lr

|I|
‖F0‖r

. ‖u‖Xr
s1,b1
‖v‖Xr

s2,b2

. ‖F1‖r′‖F2‖r′

which implies (2.1.1). Without loss of generality, we may assume Fj ≥ 0 for j = 0, 1, 2

and so I ≥ 0.

Notice that X0 +X1 +X2 = 0 in I implies ξ0 + ξ1 + ξ2 = 0. From this it follows that

〈ξj〉 . 〈ξk〉+ 〈ξl〉 for any j, k, l ∈ {0, 1, 2}. Indeed, we have

〈ξj〉 = (1 + |ξj |2)1/2 = (1 + |ξk + ξl|2)1/2.

Without loss of generality, assume |ξk| = max(|ξk|, |ξl|). Then

〈ξj〉 = (1 + |ξk + ξl|2)1/2

= (1 + |ξk|2 + 2|ξk · ξl|+ |ξl|2)1/2

≤ (1 + |ξk|2 + 2|ξk||ξl|+ |ξl|2)1/2

≤
(
1 + 3|ξk|2 + |ξl|2

)1/2
≤
(
6 + 4|ξk|2 + 4|ξl|2

)1/2
≤ 2

(
(1 + |ξk|2) + (1 + |ξl|2)

)1/2
≤ 2(〈ξk〉+ 〈ξl〉)

for any j, k, l. Now suppose that 〈ξl〉 = min
i
〈ξi〉. Then

〈ξj〉 . 〈ξk〉+ 〈ξl〉

. 〈ξk〉

. 〈ξj〉+ 〈ξl〉

. 〈ξj〉.

So, 〈ξj〉 ∼ 〈ξk〉. That is, the two largest of the three frequencies are comparable. Then

we can split the integral in three pieces

I = ILHH + IHLH + IHHL
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where IA is the integral I, restricted over the set A,

IA =

∫∫∫
χA

F0(X0)F1(X1)F2(X2)δ(X0 +X1 +X2)dX0dX1dX2

〈ξ0〉s0〈ξ1〉s1〈ξ2〉s2〈|τ0| − |ξ0|〉b0〈|τ1| − |ξ1|〉b1〈|τ2| − |ξ2|〉b2

and LHH,HLH,HHL represent the corresponding set of frequency interactions. More

explicitly, we have the following frequency regimes.

1. LHH: 〈ξ0〉 . 〈ξ1〉 ∼ 〈ξ2〉

2. HLH: 〈ξ1〉 . 〈ξ0〉 ∼ 〈ξ2〉

3. HHL: 〈ξ2〉 . 〈ξ0〉 ∼ 〈ξ1〉

From the symmetry in the indices 1 and 2, we point out that it is enough to prove results

in the LHH and HLH cases.

We will also need the following result from [6, 2.3] for the case, b0 < 0 < b1, b2, in

Section 3.4.

Hyperbolic Leibniz rule. If τ0 + τ1 + τ2 = 0, ξ0 + ξ1 + ξ2 = 0, and ±1,±2 are the signs

of τ1 and τ2, respectively, then

||τ0| − |ξ0|| . |−τ1 ±1 |ξ1||+ |−τ2 ±2 |ξ2||+ b(±1,±2)(ξ0, ξ1, ξ2) (2.1.3)

where

b(±1,±2)(ξ0, ξ1, ξ2) =

 |ξ1|+ |ξ2| − |ξ0| if ±1 = ±2

|ξ0| − ||ξ1| − |ξ2|| if ±1 6= ±2.

We also have the estimate

b(±1,±2)(ξ0, ξ1, ξ2) .

 min(|ξ1|, |ξ2|) if ±1 = ±2

min(|ξ0|, |ξ1|, |ξ2|) if ±1 6= ±2.
(2.1.4)

Proof. For (2.1.3), first suppose ±1 = ±2. Then

||τ0| − |ξ0|| = ||τ1 + τ2| − |ξ0||

= ||τ1| − |ξ1|+ |τ2| − |ξ2|+ |ξ1|+ |ξ2| − |ξ0||

≤ ||τ1| − |ξ1||+ ||τ2| − |ξ2||+ ||ξ1|+ |ξ2| − |ξ0||

. |−τ1 ±1 |ξ1||+ |−τ2 ±2 |ξ2||+ b(±1,±2)(ξ0, ξ1, ξ2) (2.1.5)
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since the two largest frequencies are comparable, which implies |ξ1|+ |ξ2|− |ξ0| ≥ 0. Next

if ±1 6= ±2, without loss of generality, we can assume τ1 ≥ 0 and τ2 ≤ 0. Then

||τ0| − |ξ0|| ≤ | − |τ0|+ ||ξ1| − |ξ2|||+ ||ξ0| − ||ξ1| − |ξ2|||

. | − τ0 + |ξ1| − |ξ2||+ |ξ0| − ||ξ1| − |ξ2||

. | − τ1 + |ξ1| − τ2 − |ξ2||+ |ξ0| − ||ξ1| − |ξ2||

. ||τ1| − |ξ1||+ ||τ2| − |ξ2||+ b(±1,±2)(ξ0, ξ1, ξ2). (2.1.6)

To establish (2.1.4), first suppose ±1 = ±2. Then

b(±1,±2) = |ξ1|+ |ξ2| − |ξ0|

= |ξ1|+ | − ξ1 − ξ0| − |ξ0|

≤ |ξ1|+ |ξ1|+ |ξ0| − |ξ0|

≤ 2|ξ1|.

Similarly, we obtain b(±1,±2) ≤ 2|ξ2|. Now if ±1 6= ±2,

b(±1,±2) = |ξ0| − ||ξ1| − |ξ2||

= |ξ1 + ξ2| − ||ξ1| − |ξ2||

. max |ξi|+ min |ξi| − (max |ξi| −min |ξi|)

. 2 min |ξi|.

We also define the associated bilinear operators Bα
(±1,±2) for α > 0 by

F
{
Bα

(±1,±2)(f, g)
}

(ξ0) =

∫∫
[b(±1,±2)]

αf̂(ξ1)ĝ(ξ2)δ(ξ0 + ξ1 + ξ2)dξ1dξ2 (2.1.7)

for f, g ∈ S(Rn), where Ff = f̂ is the Fourier transform and b(±1,±2) = b(±1,±2)(ξ0, ξ1, ξ2).
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2.2 Dyadic decompositions

Throughout, L,M,N , or their indexed counterparts, will denote dyadic numbers of

the form 2j for j ∈ {0, 1, 2, . . . }. We will also use L,M,N to denote dyadic pairs or

triples, i.e., we write N = (N0, N1, N2) where the Ni are dyadic as above. In this case,

we will write N012
min = min(N0, N1, N2) and similarly for L and other indices.

For a function F , we define the frequency cutoff functions FN (X) = χ〈ξ〉∼NF (X) and

FN,L(X) = χ〈|τ |−|ξ|〉∼LF
N (X). Clearly we have∑
N

‖FN‖pp =
∑
N

∫
〈ξ〉∼N

|F |pdξ ≥ ‖F‖pp

and there are positive integers α and β such that∑
N

‖FN‖pp =
∑
N

∫
〈ξ〉∼N

|F |pdξ

=
∑
N

∫
2−αN≤〈ξ〉≤2βN

|F |pdξ

≤ (α+ β + 1)‖F‖pp.

Thus, we have
∑

N ‖FN‖
p
p ∼ ‖F‖pp, and similarly

∑
L ‖FN,L‖

p
p ∼ ‖FN‖pp.

Next define the trilinear convolution form

J(F0, F1, F2) =

∫∫∫
F0(X0)F1(X1)F2(X2)δ(X0 +X1 +X2)dX0dX1dX2. (2.2.1)

Then for N = (N0, N1, N2) and L = (L0, L1, L2), we have

I .
∑
N,L

J
(
FN0,L0

0 , FN1,L1
1 , FN2,L2

2

)
N s0

0 N s1
1 N s2

2 Lb00 L
b1
1 L

b2
2

(2.2.2)

and for the estimates (2.0.1) have reduced to proving

∑
N,L

J
(
FN0,L0

0 , FN1,L1
1 , FN2,L2

2

)
N s0

0 N s1
1 N s2

2 Lb00 L
b1
1 L

b2
2

. ‖F0‖r‖F1‖r′‖F2‖r′ . (2.2.3)

We will need the following dyadic summation rule for 1 ≤ A < B and a ∈ R,

∑
A≤L≤B

La ∼


Ba if a > 0

log
(
B
A

)
if a = 0

Aa if a < 0.

(2.2.4)
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To see this, write

∑
A≤L≤B

La =
∑

A≤2j≤B

(2j)a

∼
∫ log(B)

log(A)
(2a)xdx

∼

 log
(
B
A

)
if a = 0

1
a(Ba −Aa) if a 6= 0.

From this we derive the following lemma.

Lemma 2.1. Let A,B ∈ R. Then

∑
N0.N1

NA
0 . N

B
1 (2.2.5)

provided

i. B ≥ A

ii. B ≥ 0

iii. we exclude A = B = 0.

Proof. From (2.2.4) we have

∑
N0.N1

NA
0 ∼


NA

1 if A > 0

log(N1) if A = 0

1 if A < 0.

Now the result follows from (i)-(iii)

1. If A > 0: NA
1 ≤ NB

1 since A ≤ B and N1 ≥ 1.

2. If A = 0: From ii and iii, B > 0 and hence log(N1) . NB
1 .

3. If A < 0: 1 ≤ NB
1 since B ≥ 0 and N1 ≥ 1.
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Now we prove two lemmas that will be used repeatedly in establishing the estimates

(2.2.3). The first lemma is an extension of [6, Lemma 2.1] to r > 1. The main difference

in the proof is that instead of using Cauchy-Schwartz in `2, we use Hölder’s inequality in

the dual spaces `r and `r
′
. Since `r is not self-dual for r 6= 2, this approach only works

in the HLH and HHL cases, due to the structure of the estimates. For the LHH case, we

will need the second lemma. The proof is similar, but requires strict inequalities in the

hypotheses to use Hölder.

Lemma 2.2. Let r > 1 and A,B ∈ R. The estimate

∑
N

χN1≤N0∼N2

NA
1

NB
0

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′ . ‖F0‖r‖F1‖r′‖F2‖r′

holds provided that

(i) B ≥ A

(ii) B ≥ 0

(iii) we exclude A = B = 0.

Proof. Let S =
∑

N χN1≤N0∼N2

NA
1

NB
0
‖FN0

0 ‖r‖F
N1
1 ‖r′‖F

N2
2 ‖r′ . Then

S ≤
∑
N0,N2

χN0∼N2

∑
N1

χN1≤N0

NA
1

NB
0

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

≤ ‖F1‖r′
∑
N0,N2

χN0∼N2

ΣA(N0)

NB
0

‖FN0
0 ‖r‖F

N2
2 ‖r′

where

ΣA(N0) =
∑
N1

χN1≤N0N
A
1 . N

B
0 (2.2.6)

by Lemma 2.1. Thus, we have S . ‖F1‖r′
∑
N0,N2

χN0∼N2‖F
N0
0 ‖r‖F

N2
2 ‖r′ .

Now since N0 ∼ N2, there are positive integers α, β such that for any N0 and N2,

2−αN0 ≤ N2 ≤ 2βN0.
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Hence, for each fixed N0 there are ∼ α+β+1 terms in the sum over N2. Then by Hölder,

∑
N0,N2

χN0∼N2‖F
N0
0 ‖r‖F

N2
2 ‖r′ =

∑
N0

2βN0∑
N2=2−αN0

‖FN0
0 ‖r‖F

N2
2 ‖r′

=

β∑
i=−α

∑
N0

‖FN0
0 ‖r‖F

2iN0
2 ‖r′

. (α+ β + 1)
∑
N0

‖FN0
0 ‖r‖F

N0
2 ‖r′

.

∑
N0

‖FN0
0 ‖

r
r

1/r∑
N0

‖FN0
2 ‖

r′
r′

1/r′

. ‖F0‖r‖F2‖r′ .

Lemma 2.3. Let A,B ∈ R. The estimate

∑
N

χN0≤N1∼N2

NA
0

NB
1

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′ . ‖F0‖r‖F1‖r′‖F2‖r′

holds provided that

(i) B > A

(ii) B > 0.

Proof. Let

S =
∑
N

χN0≤N1∼N2

NA
0

NB
1

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

≤
∑
N1,N2

χN1∼N2

∑
N0

χN0≤N1

NA
0

NB
1

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

≤ ‖F0‖r
∑
N1,N2

χN1∼N2

ΣA(N1)

NB
1

‖FN1
1 ‖r′‖F

N2
2 ‖r′

where ΣA is defined as in (2.2.6). Now from (i) and (ii) and Lemma 2.1, there is ε > 0
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such that ΣA(N0) . NB−ε
1 . Then

S ≤ ‖F0‖r
∑
N1,N2

χN1∼N2N
−ε
1 ‖F

N1
1 ‖r′‖F

N2
2 ‖r′ (2.2.7)

= ‖F0‖r
∑
N1

2βN1∑
N2=2−αN1

N−ε1 ‖F
N1
1 ‖r′‖F

N2
2 ‖r′

= ‖F0‖r
β∑

i=−α

∑
N1

N−ε1 ‖F
N1
1 ‖r′‖F

2iN1
2 ‖r′

. ‖F0‖r‖F2‖r′(α+ β + 1)
∑
N1

N−ε1 ‖F
N1
1 ‖r′

. ‖F0‖r‖F2‖r′

∑
N1

(N−ε1 )r

1/r∑
N1

(‖FN1
1 ‖r′)

r′

1/r′

. ‖F0‖r‖F1‖r′‖F2‖r′ .

2.3 The Lp bilinear estimates

2.3.1 Introduction and preliminaries

For the estimates (2.2.3), we require bounds of the form

J
(
FN0,L0

0 , FN1,L1
1 , FN2,L2

2

)
. C‖FN0,L0

0 ‖r‖FN1,L1
1 ‖r′‖FN2,L2

2 ‖r′

where the constant C = C(L,N) is optimized so that the resulting summation over N

and L is finite. To this end, we proceed as in [17], to obtain corresponding bilinear Fourier

restriction estimates of the form

‖PA0(PA1u1 · PA2u2)‖
L̂r
≤ C‖PA1u1‖L̂r‖PA2u2‖L̂r (2.3.1)

where L̂r = Ĥr
0 , A0, A1, A2 ⊂ R1+2 are measurable sets, and PA is the Fourier multiplier

operator defined by P̃Au = χAũ. The Ai will be thickened subsets of the light cone
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K = {(τ, ξ) ∈ R1+2 : |τ | = |ξ|}, truncated in the spatial frequency ξ by balls, annuli,

and angular sectors. Let

K±N,L =
{

(τ, ξ) ∈ R1+2 : |ξ| . N, τ = ±|ξ|+O(L)
}

K̇±N,L =
{

(τ, ξ) ∈ R1+2 : |ξ| ∼ N, τ = ±|ξ|+O(L)
}

K̇±N,L,γ(ω) =
{

(τ, ξ) ∈ K̇±N,L : θ(±ξ, ω) ≤ γ
}

where N,L, γ > 0, ω ∈ S1, and θ(x, y) is the angle between any two x, y ∈ R2 \ {0}.

By duality, (2.3.1) is equivalent to the trilinear estimate

J(F−A0
0 , FA1

1 , FA2
2 ) ≤ C‖F−A0

0 ‖r‖FA1
1 ‖r′‖F

A2
2 ‖r′ (2.3.2)

where FA(X) = χA(X)F (X), X ∈ R1+2, and J is defined as in (2.2.1). To see this, write

‖PA0(PA1u1 · PA2u2)‖
L̂r

= ‖F(PA0(PA1u1 · PA2u2))‖r′

= ‖χA0F((PA1u1 · PA2u2))‖r′

= ‖χA0(χA1 ũ1) ∗ (χA2 ũ2)‖r′

=

(∫ ∣∣∣∣χA0(τ, ξ)

∫
(χA1 ũ1)(t, x)(χA2 ũ2)(τ − t, ξ − x)d(t, x)

∣∣∣∣r′ d(τ, ξ)

)1/r′

.

With the change of variables, X2 = −X0 − X1 where X0 = (−τ,−ξ), X1 = (t, x), and

using the dual formulation, the last line becomes

sup
f∈Lr

∫
f(X0)

‖fχA0‖r
χ−A0(X0)

∫∫
(χA1 ũ1)(X1)(χA2 ũ2)(X2)δ(X0 +X1 +X2)dX2dX1dX0.

Setting Fj = ũj for j = 1, 2 and F0 = f gives

sup
F0∈Lr

1

‖FA0
0 ‖r

∫∫∫
F−A0

0 (X0)FA1
1 (X1)FA2

2 (X2)δ(X0 +X1 +X2)dX2dX1dX0

or

‖PA0(PA1u1 · PA2u2)‖
L̂r

= sup
F0∈Lr

1

‖F−A0
0 ‖r

J(F−A0
0 , FA1

1 , FA2
2 ).
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With this change of variables, for i = 1, 2,

‖PAiui‖L̂r = ‖χAi ũi‖r′ = ‖FAii ‖r′

and hence (2.3.1) and (2.3.2) are equivalent with the same constant C.

We will show that admissible values for this constant C depend on sizes of appropriate

intersections of the truncated sets K defined above. To estimate the sizes of these sets,

we will utilize some of the results found in [17]. For 0 < δ � r, let S1
δ (r) = {ξ ∈ R2 :

|ξ| = r + O(δ)} denote a thickened circle centered at the origin in R2. Given another

thickened circle, ξ0 + S1
∆(R), centered at some point ξ0 ∈ R2 \ {0}, we use the following

lemma to bound the size of the intersection of these sets.

Lemma 2.4. Suppose 0 < δ � r, 0 < ∆� R, ξ0 ∈ R2 \ {0}. Then

|S1
δ (r) ∩ (ξ0 + S1

∆(R))| .
(
rRδ∆

|ξ0|
min(δ,∆)

)1/2

. (2.3.3)

Proof. This lemma and its proof are found in [17, Section 7]. The strategy is to first

rotate about the origin so that ξ0 lies on the positive x-axis. Then for ξ = (x, y) ∈

S1
δ (r) ∩ (ξ0 + S1

∆(R)) it follows easily that x must lie in an interval

|ξ0|2 + (r − δ)2 − (R+ δ)2

2|ξ0|
< x <

|ξ0|2 + (r + δ)2 − (R− δ)2

2|ξ0|

of length 2(rδ+R∆)
|ξ0| . Noting also that

√
(r − δ)2 − x2 < y <

√
(r + δ)2 − x2,

integrating over this region leads to the result.

When decomposing in angular frequencies, we will also use the following facts. For

0 < γ ≤ π dyadic, let Ω(γ) be a maximal γ-separated subset of S1 and for ω ∈ S1, let

Γγ(ω) =
{
ξ ∈ R2 : θ(ξ, ω) ≤ γ

}
.

By definition of Ωγ ,

#{ω ∈ Ω(γ)} ∼ 1

γ
(2.3.4)
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and

#{ω′ ∈ Ω(γ) : θ(ω′, ω) ≤ kγ} ≤ 2k + 1 (2.3.5)

for any k ∈ N and ω ∈ Ω(γ). Then for any ξ 6= 0,

1 ≤
∑

ω∈Ω(γ)

χΓγ(ω)(ξ) ≤ 5. (2.3.6)

Note the following lemmas from [17, Lemmas 2.4, 2.5], which will allow us to use an

angular dyadic decomposition when necessary.

Lemma 2.5. We have

1 ∼
∑

0<γ<1
γ dyadic

∑
ω1,ω2∈Ω(γ)

3γ≤θ(ω1,ω2)≤12γ

χΓγ(ω1)(ξ1)χΓγ(ω2)(ξ2) (2.3.7)

for all ξ1, ξ2 ∈ R2 \ {0} with θ(ξ1, ξ2) > 0.

Proof. Let ξ1, ξ2 ∈ R2\{0}. Note that if ω1, ω2 ∈ Ω(γ) are such that 3γ ≤ θ(ω1, ω1) ≤ 12γ,

ξ1 ∈ Γγ(ω1) and ξ2 ∈ Γγ(ω2), then we must have γ ≤ θ(ξ1, ξ2) ≤ 14γ. Then by (2.3.6),

∑
0<γ<1
γ dyadic

∑
ω1,ω2∈Ω(γ)

3γ≤θ(ω1,ω2)≤12γ

χΓγ(ω1)(ξ1)χΓγ(ω2)(ξ2) .
∑

0<γ<1
γ dyadic

χγ≤θ(ξ1,ξ2)≤14γ . (2.3.8)

Now if θ(ξ1, ξ2) ≥ 1 then we must have γ ≥ 1/14 and so the sum is at most 3. So, suppose

θ(ξ1, ξ2) < 1. Then there is a unique positive integer j such that 2−j ≤ θ(ξ1, ξ2) < 2−j+1.

Now if k > 0 is such that γ = 2−k then the requirement 2−k ≤ θ(ξ1, ξ1) ≤ 14 ·2−k implies

that j − 1 ≤ k < j + 4. Hence, there are at most 5 such γ. Finally, choosing γ such that

5γ ≤ θ(ξ1, ξ2) ≤ 10γ ensures the sum is at least 1.

Lemma 2.6. For any 0 < γ < 1 and k ∈ N,

χθ(ξ1,ξ2)≤kγ .
∑

ω1,ω2∈Ω(γ)
θ(ω1,ω2)≤(k+2)γ

χΓγ(ω1)(ξ1)χΓγ(ω2)(ξ2) (2.3.9)

for all ξ1, ξ2 ∈ R2 \ {0}.
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Proof. If χθ(ξ1,ξ2)≤kγ = 0, this is trivial, so suppose θ(ξ1, ξ2) ≤ kγ. By (2.3.6), there are

ω1, ω2 ∈ Ω(γ) such that ξ1 ∈ Γγ(ω1) and ξ2 ∈ Γγ(ω2). It follows then that θ(ω1, ω2) ≤

(k + 2)γ.

2.3.2 Sizes of constants

The next lemma is a direct extension of [17, Lemma 1.1]. We use |E| to denote the

measure of the set E ⊂ R1+2.

Lemma 2.7. Suppose 1 < r ≤ 2 and 1
r + 1

r′ = 1. The estimate (2.3.1) holds with

C ∼ min

{
sup
X0∈A0

|A1 ∩ (X0 −A2)|1/r , sup
X1∈A1

|A0 ∩ (X1 +A2)|1/r
′
|A2|1/r−1/r′ ,

sup
X2∈A2

|A0 ∩ (X2 +A1)|1/r
′
|A1|1/r−1/r′

}
provided this quantity is finite.

Proof. We will use the dual formulation to establish the estimate (2.3.2). For the first

bound, write

J(F−A0
0 , FA1

1 , FA2
2 ) =

∫∫∫
F−A0

0 (X0)FA1
1 (X1)FA2

2 (X2)δ(X0 +X1 +X2)dX2dX1dX0

=

∫∫
F−A0

0 (X0)FA1
1 (X1)FA2

2 (−X0 −X1)dX1dX0

=

∫
F−A0

0 (−X0)

∫
χA1∩(X0−A2)(X1)FA1

1 (X1)FA2
2 (X0 −X1)dX1dX0.

Now applying Hölder’s inequality first in the X1 variable and then in X0,

J(F−A0
0 , FA1

1 , FA2
2 ) ≤

≤
∫
F−A0

0 (−X0) |A1 ∩ (X0 −A2)|1/r
(∫ ∣∣∣FA1

1 (X1)FA2
2 (X0 −X1)

∣∣∣r′ dX1

)1/r′

dX0

≤ sup
X0∈A0

|A1 ∩ (X0 −A2)|1/r ‖F−A0
0 ‖r

(∫∫ ∣∣∣FA1
1 (X1)FA2

2 (X0 −X1)
∣∣∣r′ dX1dX0

)1/r′

≤ sup
X0∈A0

|A1 ∩ (X0 −A2)|1/r ‖F−A0
0 ‖r‖FA1

1 ‖r′‖F
A2
2 ‖r′ .
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The proofs of the second and third bounds are similar, so we will do the second. The

proof relies again on successive applications of Hölder’s inequality.

J(F−A0
0 , FA1

1 , FA2
2 ) =

∫∫∫
F−A0

0 (X0)FA1
1 (X1)FA2

2 (X2)δ(X0 +X1 +X2)dX2dX1dX0

=

∫∫
F−A0

0 (−X0)FA1
1 (X1)FA2

2 (X0 −X1)dX1dX0

=

∫
FA1

1 (X1)

∫
χA0∩(X1+A2)(X0)F−A0

0 (−X0)FA2
2 (X0 −X1)dX0dX1

≤
∫
FA1

1 (X1) |A0 ∩ (X1 +A2)|1/r
′
(∫ ∣∣∣F−A0

0 (−X0)FA2
2 (X0 −X1)

∣∣∣r dX0

)1/r

dX1

≤ sup
X1∈A1

|A0 ∩ (X1 +A2)|1/r
′
‖FA1

1 ‖r′
(∫∫ ∣∣∣F−A0

0 (−X0)FA2
2 (X0 −X1)

∣∣∣r dX0dX1

)1/r

.

With a change of variables, we obtain the bound

sup
X1∈A1

|A0 ∩ (X1 +A2)|1/r
′
‖FA1

1 ‖r′‖F
−A0
0 ‖r

(∫
|FA2

2 (X2)|rdX2

)1/r

for J(F−A0
0 , FA1

1 , FA2
2 ). Now we are after ‖FA2

2 ‖r′ in the last line, but since 1 < r ≤ 2,

2 ≤ r′ < ∞, we may apply Hölder’s inequality to the functions FA2
2 and χA2 using the

exponents r′/r and r′/(r′ − r)when r 6= 2. This gives∫
|FA2

2 (X2)|rdX2 ≤
(∫

χA2(X2)dX2

)1−r/r′ (∫
|FA2

2 (X2)|r′dX2

)r/r′
≤ |A2|1−r/r

′‖FA2
2 ‖

r
r′ .

All in all, we have

J(F−A0
0 , FA1

1 , FA2
2 ) ≤ sup

X1∈A1

|A0 ∩ (X1 +A2)|1/r
′
|A2|1/r−1/r′‖FA1

1 ‖r′‖F
−A0
0 ‖r‖FA2

2 ‖r′ .

Theorem 2.8. Suppose that 1 < r ≤ 2 and 1
r + 1

r′ = 1. The estimate

‖P
K
±0
N0,L0

(P
K
±1
N1,L1

u1 · PK±2
N2,L2

u2)‖
L̂r
≤ C‖u1‖L̂r‖u2‖L̂r (2.3.10)
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holds with

C ∼
(
N012

min

) 2
r′
(
N12

min

) 2
r
− 2
r′
(
L12

min

) 1
r (2.3.11)

regardless of the choice of signs ±j. If in addition we assume 3/2 < r ≤ 2 then (2.3.10)

holds with

C ∼
(
N012

min

) 1
r′
(
N12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r . (2.3.12)

Proof of (2.3.11). We will separate into the HLH and LHH frequency regimes.

The HLH Case: N1 . N0 ∼ N2.

For any X0 = (τ0, ξ0) ∈ K±0
N0,L0

, set E = K±1
N1,L1

∩ (X0−K±2
N2,L2

). By Lemma 2.7, the

estimate (2.3.10) holds with C ∼ |E|1/r. By definition,

E ⊂ {(τ1, ξ1) : |ξ1| . N1, τ1 = ±1|ξ1|+O(L1), τ0 − τ1 = ±2|ξ0 − ξ1|+O(L2)},

so integrating first in τ1 and then in ξ1, we obtain

|E| ≤
∫
χ|ξ1|.N1

∫
χτ1=±1|ξ1|+O(L1)χτ0−τ1=±2|ξ0−ξ1|+O(L2)dτ1dξ1

. N2
1

(
L12

min

)
.

Then C ∼ N2/r
1

(
L12

min

)1/r
, which is (2.3.11) for the HLH case.

The LHH Case: N0 . N1 ∼ N2.

First assume L1 ≤ L2. For any X2 = (τ2, ξ2) ∈ K±2
N2,L2

, set E = K±0
N0,L0

∩ (X2 +

K±1
N1,L1

). By Lemma 2.7, the estimate (2.3.10) holds with C ∼ |E|1/r′
∣∣∣K±1

N1,L1

∣∣∣1/r−1/r′

.

We have the containment

E ⊂ {(τ0, ξ0) : |ξ0| . N0, τ0 − τ2 = ±1|ξ0 − ξ2|+O(L1)}.

As above, integrating first in τ0 and then in ξ0, we obtain |E| . N2
0L1. Similarly,∣∣∣K±1

N1,L1

∣∣∣ . N2
1L1. Together these yield (2.3.10) with C ∼ N2/r′

0 N
2/r−2/r′

1 L
1/r
1 .

On the other hand, if L2 ≤ L1, we use C ∼ supX1∈A1
|A0 ∩ (X1 +A2)|1/r

′
|A2|1/r−1/r′

to obtain C ∼ N
2/r′

0 N
2/r−2/r′

2 L
1/r
2 . Since N1 ∼ N2, these two bounds imply (2.3.11) for

the LHH case.
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Proof of (2.3.12). First, note that it is enough to prove the estimate for the corresponding

annular frequency cutoff sets, K̇±iNi,Li . Indeed, suppose we have the estimate

‖P
K̇
±0
N0,L0

(P
K̇
±1
N1,L1

u1 · PK̇±2
N2,L2

u2)‖
L̂r
≤ C‖u1‖L̂r‖u2‖L̂r (2.3.13)

with C as in (2.3.12). We will show that this implies the same estimate for the sets

K±iNi,Li .

Decompose the balls |ξj | . Nj into annuli |ξj | ∼Mj for Mj dyadic with 0 < Mj ≤ Nj .

Summing over these annuli, we have

‖P
K
±0
N0,L0

(P
K
±1
N1,L1

u1 · PK±2
N2,L2

u2)‖
L̂r
≤

∥∥∥∥∥∥
∑
M0

P
K̇
±0
N0,L0

∑
M1

P
K̇
±1
N1,L1

u1 ·
∑
M2

P
K̇
±2
N2,L2

u2

∥∥∥∥∥∥
L̂r

≤
∑
M

∥∥∥∥PK̇±0
N0,L0

(P
K̇
±1
N1,L1

u1 · PK̇±2
N2,L2

u2)

∥∥∥∥
L̂r

.
∑

Mj<Nj

(
M012

min

) 1
r′
(
M12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r ‖χ

K̇
±1
N1,L1

u1‖L̂r‖χK̇±1
N2,L2

u2‖L̂r .

We will break into the cases M012
max ≤ N012

min and M012
max > N012

min.

• Suppose M012
max ≤ N012

min. Then we have

∑
Mj≤Nj

(
M012

min

) 1
r′
(
M12

min

) 3
2r
− 1
r′ ≤

∑
Mj≤N012

min

(
M012

min

) 1
r′
(
M12

min

) 3
2r
− 1
r′ .

We split this last sum into the LHH, HLH, and HHL frequencies in Mi: M0 . M1 ∼

M2 ≤ N012
min, M1 .M0 ∼M2 ≤ N012

min, and M2 .M0 ∼M1 ≤ N012
min and apply Lemma 2.1.

Noting that M12
min ≤ N12

min, the sum is bounded by

(
N12

min

) 3
2r
− 1
r′

 ∑
M1∼M2≤N012

min

M
1
r′

1 +
∑

M0∼M2≤N012
min

M
1
r′

0 +
∑

M0∼M1≤N012
min

M
1
r′

0


since r > 1 implies that 3

2r −
1
r′ > 0. Using that the two highest frequencies, Mi ∼ Mj ,

in each double sum are comparable, another application of Lemma 2.1 gives

∑
Mj≤Nj

(
M012

min

) 1
r′
(
M12

min

) 3
2r
− 1
r′ .

(
N12

min

) 3
2r
− 1
r′
(
N012

min

) 1
r′

which gives the desired result.
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• Next suppose M012
max > N012

min. For simplicity, we will assume that the balls |ξ1| . Ni

are in the HLH frequency regime so that N012
min = N1. The strategy for the LHH regime is

the same, and the proof is an obvious modification of the HLH case. Recall that (2.3.1)

is equivalent to the trilinear estimate (2.3.2). To simplify notation, write

Aj = K
±j
Nj ,Lj

Ȧj = K̇
±j
Mj ,Lj

and recall that for a set A ⊂ R1+2, we define FA(X) = χA(X)F (X) and for a dyadic

number N , we define FN (X) = χ〈ξ〉∼NF (X). Then (2.3.13) is equivalent to

J(F−Ȧ0
0 , F Ȧ1

1 , F Ȧ2
2 ) ≤ C‖F−Ȧ0

0 ‖r‖F Ȧ1
1 ‖r′‖F

Ȧ2
2 ‖r′ .

Hence, as above, we have

J(F−A0
0 ,FA1

1 , FA2
2 ) ≤

∑
M

J(F−Ȧ0
0 , F Ȧ1

1 , F Ȧ2
2 )

.
∑

Mj<Nj

(
M012

min

) 1
r′
(
M12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r ‖F−Ȧ0

0 ‖r‖F Ȧ1
1 ‖r′‖F

Ȧ2
2 ‖r′ .

Again, we split the sum into frequencies LHH, HLH, and HHL in M . In the LHH term

we have

∑
M0.M1∼M2

M
1
r′

0

(
M12

min

) 3
2r
− 1
r′ ‖F−Ȧ0

0 ‖r‖F Ȧ1
1 ‖r′‖F

Ȧ2
2 ‖r′ .

Since M1 > N1, the sum over M1 is now empty, and since M2 ∼ M1 ≤ N1, this term is

bounded by

∑
M0.M2≤N1

M
1
r′

0

(
M12

min

) 3
2r
− 1
r′ ‖F−Ȧ0

0 ‖r‖F Ȧ1
1 ‖r′‖F

Ȧ2
2 ‖r′

.
∑

M2≤N1

M
1
r′

2

(
M12

min

) 3
2r
− 1
r′ ‖F−Ȧ0

0 ‖r‖F Ȧ1
1 ‖r′‖F

Ȧ2
2 ‖r′

. N
1
r′

1

(
N12

min

) 3
2r
− 1
r′ ‖F−A0

0 ‖r‖FA1
1 ‖r′‖F

A2
2 ‖r′

. N
3
2r

1 ‖F
−A0
0 ‖r‖FA1

1 ‖r′‖F
A2
2 ‖r′ .
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In the HLH case, we have the term

∑
M1≤N1<M0∼M2

M
3
2r

1 ‖F
−Ȧ0
0 ‖r‖F Ȧ1

1 ‖r′‖F
Ȧ2
2 ‖r′ .

∑
N1<M0∼M2

N
3
2r

1 ‖F
−Ȧ0
0 ‖r‖F Ȧ1

1 ‖r′‖F
Ȧ2
2 ‖r′

. N
3
2r

1 ‖F1‖r′
∑

N1<M0∼M2

‖FM0
0 ‖r‖FM2

2 ‖r′

. N
3
2r

1 ‖F1‖r′
∑
M0

‖FM0
0 ‖r‖FM0

2 ‖r′

. N
3
2r

1 ‖F1‖r′

∑
M0

‖FM0
0 ‖rr

1/r∑
M0

‖FM0
2 ‖r′r′

1/r′

. N
3
2r

1 ‖F1‖r′‖F0‖r‖F2‖r′ .

Finally, for the HHL case, we have the term

∑
M2.M0∼M1

M
3
2r

2 ‖F
−Ȧ0
0 ‖r‖F Ȧ1

1 ‖r′‖F
Ȧ2
2 ‖r′ .

Again, since M1 > N1 in this case, the sum over M1 is empty. We have

∑
M2.M0∼M1

M
3
2r

2 ‖F
−Ȧ0
0 ‖r‖F Ȧ1

1 ‖r′‖F
Ȧ2
2 ‖r′ .

∑
M2.M0≤N1

M
3
2r

2 ‖F
−Ȧ0
0 ‖r‖F Ȧ1

1 ‖r′‖F
Ȧ2
2 ‖r′

.
∑

M0≤N1

M
3
2r

0 ‖F
−Ȧ0
0 ‖r‖F Ȧ1

1 ‖r′‖F
Ȧ2
2 ‖r′

. N
3
2r

1 ‖F
−A0
0 ‖r‖FA1

1 ‖r′‖F
A2
2 ‖r′ .

Thus, we get the desired estimate

J(F−A0
0 , FA1

1 , FA2
2 ) .

(
N012

min

) 1
r′
(
N12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r ‖F−A0

0 ‖r‖FA1
1 ‖r′‖F

A2
2 ‖r′

which implies (2.3.12).

Now we will establish (2.3.13). Notice that if C1 =
(
N012

min

) 2
r′
(
N12

min

) 2
r
− 2
r′
(
L12

min

) 1
r

and C2 =
(
N012

min

) 1
r′
(
N12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r are the constants from (2.3.11) and
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(2.3.12), then since 1
2r −

1
r′ < 0 for 3

2 < r ≤ 2,

C1 =
(
N012

min

) 1
r′
(
N12

min

) 1
2r
− 1
r′
(
L12

max

)− 1
2r C2 (2.3.14)

≤
(
N012

min

) 1
2r
(
L12

max

)− 1
2r C2

le

(
N012

min

L12
max

) 1
2r

C2.

If N012
min < L12

max, the estimate (2.3.11) is already better than (2.3.12) and therefore we

may assume that L12
max � N012

min.

The HLH Case: N1 . N0 ∼ N2.

For any X0 = (τ0, ξ0) ∈ K̇±0
N0,L0

, set E = K̇±1
N1,L1

∩ (X0 − K̇±2
N2,L2

). Recall that we

roughly bounded the size of this set by N2
1L

12
min in the HLH case of (2.3.11). Since now

we have L12
max � N012

min we will proceed as in [17] and estimate the size more carefully to

lower the exponent on N1. First note that

E ⊂ {(τ1, ξ2) : |ξ1| ∼ N1, τ1 = ±1|ξ1|+O(L1), |ξ0−ξ1| ∼ N2, τ0−τ1 = ±2|ξ0−ξ1|+O(L2)}.

For τ1 fixed, let Eτ1 denote the slice {ξ1 ∈ R2 : (τ1, ξ1) ∈ E}. Then

Eτ1 ⊂ S1
L1

(|τ1|) ∩
(
ξ0 + S1

L2
(|τ0 − τ1|)

)
∩ {ξ1 : |ξ1| ∼ N1, |ξ0 − ξ1| ∼ N2}

for τ1 ∈ T = {τ1 = ±1|ξ1|+O(L1), τ0 − τ1 = ±2|ξ0 − ξ1|+O(L2)}.

Now integrating first in τ1, we have |E| . L12
min supτ1∈T |E

τ1 |, so by Lemma 2.4,

|E| . L12
min sup

τ1∈T

(
L1L2|τ1||τ0 − τ1|

|ξ0|
L12

min

)1/2

. N1

(
L1L2N1N2

N0
L12

min

)1/2

. N3/2
1 L12

min

(
L12

max

)1/2
.

Then

|E|1/r . N3/2r
1

(
L12

min

)1/r (
L12

max

)1/2r
which is (2.3.12) for the HLH case. Applying Lemma 2.7 yields the estimate (2.3.10).
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The LHH Case: N0 . N1 ∼ N2.

By symmetry, we may assume that L1 ≤ L2 so that (2.3.12) becomes

C ∼ N
1
r′

0 N
3
2r
− 1
r′

1 L
1
r
1 L

1
2r
2 . (2.3.15)

Now with C1 and C2 as above, from (2.3.14) we have

C1 = N
1
r′

0 N
1
2r
− 1
r′

1 L
− 1

2r
2 C2.

Thus, if L2 > N0

(
N0
N1

)2r/r′−1
, the estimate (2.3.11) is already better than (2.3.12) and

therefore we may assume that L2 � N0

(
N0
N1

)2r/r′−1
. (Since the exponent 2r/r′ − 1 > 0

only when r > 3/2, this would not give any further restriction to the assumption L2 < N0

for values of r below 3/2.) So, we want to establish (2.3.15) when

L1 ≤ L2 � N0 ·min

{
1,

(
N0

N1

)2r/r′−1
}
� N1 ∼ N2.

Again, we will use the dual formulation

Recall that we showed (2.3.1) is equivalent to (2.3.2). By a similar argument, this

trilinear estimate is also equivalent to

‖P−A2(PA1u1 · P−A0u0)‖
L̂r
≤ C‖u1‖L̂r‖u0‖

L̂r′
.

Hence, for the estimate (2.3.10) it is enough to establish

‖P
K̇
±2
N2,L2

(P
K̇
±1
N1,L1

u1 · PK̇±0
N0,L0

u0)‖
L̂r′
≤ C‖u1‖L̂r‖u0‖

L̂r′
.

Furthermore, by definition of the operators PA, we may assume that the supports of ũj

are restricted to K̇
±j
Nj ,Lj

for j = 0, 1, and without loss of generality, we may take ũj ≥ 0.

With these assumptions, we will simplify notation by omitting the K̇
±j
Nj ,Lj

and writing

PA2(u1u0) = P
K̇
±2
N2,L2

(P
K̇
±1
N1,L1

u1 · PK̇±0
N0,L0

u0).

For γ0 =
(
L2
N1

)1/2
, we will split into the cases θ(±0ξ0,±1ξ1) . γ0 and θ(±0ξ0,±1ξ1)�
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γ0. Define uγ,ω such that ũγ,ω = χθ(ξ,ω)≤γ ũ. By Lemma 2.5,

PA2(u1, u0) ∼
∑

0<γ<1

∑
ω1,ω0∈Ω(γ)

3γ≤θ(ω1,ω0)≤12γ

χΓγ(ω0)(ξ0)χΓγ(ω1)(ξ1)PA2(u1, u0)

∼
∑

0<γ<γ0

∑
ω1,ω0∈Ω(γ)

3γ≤θ(ω1,ω0)≤12γ

χΓγ(ω0)(ξ0)χΓγ(ω1)(ξ1)PA2(u1, u0)

+
∑

γ0<γ<1

∑
ω1,ω0∈Ω(γ)

3γ≤θ(ω1,ω0)≤12γ

χΓγ(ω0)(ξ0)χΓγ(ω1)(ξ1)PA2(u1, u0).

Now ∑
0<γ<γ0

∑
ω1,ω0∈Ω(γ)

3γ≤θ(ω1,ω0)≤12γ

χΓγ(ω0)(ξ0)χΓγ(ω1)(ξ1)PA2(u1, u0)

.
∑

0<γ<γ0

χγ≤θ(ξ0,ξ1)≤14γχΓγ(ω0)(ξ0)χΓγ(ω1)(ξ1)PA2(u1, u0)

.
∑

ω1,ω0∈Ω(γ0)
θ(ω1,ω0)≤15γ0

χΓγ(ω0)(ξ0)χΓγ(ω1)(ξ1)PA2(u1, u0)

by Lemma 2.6. Therefore,

‖PA2(u1, u0)‖
L̂r′
.

∑
ω1,ω0∈Ω(γ0)

χθ(ω1,ω0).γ0‖FPA2(uγ0,ω1
1 , uγ0,ω0

0 )‖Lr

+
∑

γ0<γ<1

∑
ω1,ω0∈Ω(γ)

χ3γ≤θ(ω1,ω0)≤12γ‖FPA2(uγ,ω1
1 uγ,ω0

0 )‖Lr .
(2.3.16)

Call these last two summands Σ1 and Σ2, respectively.

For Σ1, we will estimate the volume of the set E = A0∩ (X2 +A1) for any X2 ∈ A2 =

K̇±2
N2,L2

where Aj ⊂ K̇
±j
Nj ,Lj ,γ0

(ωj) is the support of ũ
γ0,ωj
j for j = 0, 1. Since X0−X2 ∈ A1,

we have

E ⊂ {(τ0, ξ0) ∈ R1+2 : |ξ0| ∼ N0, |ξ0 − ξ2| ∼ N1,

τ0 − τ2 = ±1|ξ0 − ξ2|+O(L1), ξ0 ∈ Γγ0(ω0),±1(ξ0 − ξ2) ∈ Γγ0(ω1)}.

Integrating first in τ0, we have

|E| . L1

∣∣{ξ0 ∈ R2 : |ξ0| ∼ N0, θ(ξ0, ω0) ≤ γ0}
∣∣

. L1N
2
0γ0
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and hence |E| . N0N1γ0L1.

Similarly, |A1| . L1N
2
1γ0, and by Lemma 2.7, (2.3.2) holds with

C . (N0N1γ0L1)1/r′(N2
1L1γ0)1/r−1/r′ . Therefore,

‖FPA2(uγ0,ω1
1 , uγ0,ω0

0 )‖Lr = ‖PA2(PA1u1 · PA0u0)‖
L̂r′

. N1/r′

0 N
2/r−1/r′

1 γ
1/r
0 L

1/r
1 ‖ũ

γ,ω1
1 ‖r′‖ũγ,ω0

0 ‖r′ .

Inserting this into Σ1, we obtain

Σ1 .
∑

ω1,ω0∈Ω(γ0)

χθ(ω1,ω0).γ0N
1/r′

0 N
2/r−1/r′

1 γ
1/r
0 L

1/r
1 ‖ũ

γ,ω1
1 ‖r′‖ũγ,ω0

0 ‖r′ .

Using now (2.3.5) and (2.3.4), we have

∑
ω1,ω0∈Ω(γ0)

χθ(ω1,ω0).γ0‖ũ
γ,ω1
1 ‖r′‖ũγ,ω0

0 ‖r′

.

 ∑
ω1,ω0∈Ω(γ0)

χθ(ω1,ω0).γ0‖ũ
γ,ω1
1 ‖r′r′

1/r′ ∑
ω1,ω0∈Ω(γ0)

χθ(ω1,ω0).γ0‖ũ
γ,ω0
0 ‖rr

1/r

.

 ∑
ω1∈Ω(γ0)

‖ũγ,ω1
1 ‖r′r′

1/r′ ∑
ω0∈Ω(γ0)

‖ũγ,ω0
0 ‖rr

1/r

. ‖ũ1‖r′‖ũ0‖r.

Then Σ1 . N
1/r′

0 N
2/r−1/r′

1 γ
1/r
0 L

1/r
1 ‖ũ1‖r′‖ũ0‖r and setting γ0 =

(
L2
N1

)1/2
, gives

Σ1 . N
1/r′

0 N
3/2r−1/r′

1 L
1/2r
2 L

1/r
1 ‖ũ1‖r′‖ũ0‖r

as desired.

For Σ2, we will again estimate the volume of the set E = A0 ∩ (X2 + A1) for any

X2 ∈ A2 = K̇±2
N2,L2

, but this time using the additional fact that 3γ ≤ θ(ω1, ω0) ≤ 12γ.

Note that

E ⊂
{

(τ0, ξ0) ∈ R1+2 : ξ0 ∈ R, τ0 − τ2 = ±1|ξ0 − ξ2|+O(L1)
}

where

R =
{
ξ0 ∈ R2 : |ξ0| ∼ N0, |ξ0 − ξ2| ∼ N1, ξ0 ∈ Γγ(ω0), ±1(ξ0 − ξ2) ∈ Γγ(ω1),

}
.
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Now for a fixed τ0, define

f(ξ0) = ±1|ξ0 − ξ2| = τ0 − τ2 +O(L1)

so that

∇f(ξ0) = ±1
ξ0 − ξ2

|ξ0 − ξ2|
= e.

For ω0, ω1 ∈ Ω(γ), choose coordinates (ξ1, ξ2) so that ω1−ω0
|ω1−ω0| = (1, 0). Then for all

ξ0 ∈ E, we have

∂1f(ξ0) = ∇f(ξ0) · (1, 0)

= e · ω1 − ω0

|ω1 − ω0|

=
e · ω1 − e · ω0

|ω1 − ω0|

=
cos(θ(e, ω1))− cos(θ(e, ω0))

|ω1 − ω0|

since |e| = |ωi| = 1. Now since ±1(ξ0 − ξ2) ∈ Γγ(ω1), it follows that θ(e, ω1) ≤ γ.

Combining this with the assumption 3γ ≤ θ(ω1, ω0) ≤ 12γ for Σ2, we conclude that

θ(e, ω0) ≥ 2γ. Since γ0 < γ < 1 and γ0 =
(
L2
N1

)1/2
> 0, the function cos(γ) is decreasing.

Hence,

∂1f(ξ0) ≥ cos(γ)− cos(2γ)

|ω1 − ω0|
.

Using the Taylor expansion for cos(γ), we have cos(γ) > 1 − γ2

2 and cos(2γ) < 1 −
(2γ)2

2 + (2γ)4

4! . Then for 0 < γ < 1, it follows that cos(γ) − cos(2γ) > 1
2γ

2. Also, from

3γ ≤ θ(ω1, ω0) ≤ 12γ we have |ω1 − ω0| ∼ γ. Thus, ∂1f(ξ0) & γ.

Therefore,

|E| . |{τ0 ∈ T, ξ0 ∈ R : f(ξ0) = τ0 − τ2 +O(L1)}|

where

T = {τ0 : τ0 = τ2 ±1 |ξ2|+O(N0) +O(L1)}

so that |T | . N0 + L1 . N0. Now if τ0 and τ2 are fixed, then f(ξ) = τ0 − τ2 +O(L1) for
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all ξ ∈ R implies that supξ∈R |f(ξ0)− f(ξ)| . L1. But since

sup
ξ∈R
|f(ξ0)− f(ξ)| ≥ |∂1f(ξ0)| sup

ξ∈R
|ξ1

0 − ξ1|

& γ sup
ξ∈R
|ξ1

0 − ξ1|

we must have supξ∈R |ξ1
0 − ξ1| . L1

γ for all ξ0 ∈ R. Integrating first in the ξ1
0 direction,

we find

|E| . L1

γ

{
τ0 ∈ T, ξ2

0 : |ξ0 − ξ2| = ±1(τ0 − τ2) +O(L1)
}

.
L1

γ

{
τ0 ∈ T, ξ2

0 : |ξ0| = ±1τ0 +O(L2) +O(L1)
}

.
L1

γ
L2N0.

Using the estimates |E| . L1L2N0/γ and |A1| . N2
1L1γ as before, by Lemma 2.7,

‖FPA2(uγ0,ω1
1 , uγ0,ω0

0 )‖Lr . (L1L2N0/γ)1/r′(N2
1L1γ)1/r−1/r′‖ũγ,ω1

1 ‖r′‖ũγ,ω0
0 ‖r.

Inserting this into Σ2, we obtain

Σ2 .
∑

γ0<γ<1

∑
ω1,ω0∈Ω(γ)

χ3γ≤θ(ω1,ω0)≤12γL
1/r
1 (L2N0)1/r′N

2/r−2/r′

1 γ1/r−2/r′‖ũγ,ω1
1 ‖r′‖ũγ,ω0

0 ‖r.

For the inner sum, we proceed as in Σ1 to obtain∑
ω1,ω0∈Ω(γ)

χ3γ≤θ(ω1,ω0)≤12γ‖ũ
γ,ω1
1 ‖r′‖ũγ,ω0

0 ‖r . ‖ũ1‖r′‖ũ0‖r.

Then we have

Σ2 . L
1/r
1 (L2N0)1/r′N

2/r−2/r′

1 ‖ũ1‖r′‖ũ0‖r
∑

γ0<γ<1

γ1/r−2/r′

. L1/r
1 (L2N0)1/r′N

2/r−2/r′

1 γ
1/r−2/r′

0 ‖ũ1‖r′‖ũ0‖rγ1/r−2/r′

0

since 1/r − 2/r′ < 0 for 3/2 < r ≤ 2. Setting γ0 =
(
L2
N1

)1/2
, gives

Σ2 . N
1/r′

0 N
3/2r−1/r′

1 L
1/2r
2 L

1/r
1 ‖ũ1‖r′‖ũ0‖r

as desired.
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C H A P T E R 3

PRODUCT ESTIMATES FOR WAVE FOURIER LEBESGUE

SPACES

3.1 Introduction

Our approach follows closely the work of D’Ancona, Foschi, and Selberg in [5] and

[6], where the authors prove bilinear estimates of the form

‖uv‖X−s0,−b0 ≤ C‖u‖Xs1,b1‖v‖Xs2,b2 (3.1.1)

for certain ranges of si and bi in dimensions n = 1, 2, and 3. We wish to generalize these

methods to Xr
s,b for 1 < r ≤ 2, and find ranges of si, bi such that when n = 2, the estimate

‖uv‖Xr
−s0,−b0

≤ C‖u‖Xr
s1,b1
‖v‖Xr

s2,b2
(3.1.2)

holds for all u, v ∈ S(R1+2). If (3.1.2) holds, we will say the matrix s0 s1 s2

b0 b1 b2


r

is a product.

Letting bi = 0 and r = 2, we have the Sobolev space estimate

‖uv‖H−s0 ≤ C‖u‖Hs1‖v‖Hs2

for all u, v ∈ S(Rn). It is known, see [6], that this estimate holds if and only if

i) s0 + s1 + s2 ≥ n
2
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ii) s0 + s1 + s2 ≥ max(s0, s1, s2)

iii) we do not allow equality in both of the above simultaneously.

In [5], it is shown that for the Xs,b estimates we must also assume bj + bk ≥ 0 for

all j 6= k in {0, 1, 2}. Since bj ≥ −bk for all j, k this implies that at most one bj can

be negative. We can also exclude the case where all of the bj are zero, since these are

standard Sobolev estimates. The estimate (3.1.2) is symmetric in b1 and b2, and we

cannot have bj < 0 if another bk = 0. Thus, there are seven cases:

i) b0 = b1 = 0 < b2

ii) b0 = 0 < b1, b2

iii) 0 < b0, b1, b2

iv) b0 < 0 < b1, b2

v) b1 = b2 = 0 < b0

vi) b1 = 0 < b0, b2

vii) b1 < 0 < b0, b2.

When r = 2 one can use the self-duality of L2 in the trilinear estimate (2.1.1) to

obtain symmetry in b0, b1, and b2. Consequently, in Xs,b, the last three cases are not

needed. We do not have this symmetry in the Xr
s,b estimates; however, from our local

well-posedness argument in Section 1.5, we are only interested in estimates with b0 ≤ 0.

For this reason, we eliminate the other cases as well and focus only on cases i, ii, and iv.

3.2 The case b0 = b1 = 0 < b2

Theorem 3.1. Suppose n = 2 and 1 < r ≤ 2. Set b0 = b1 = 0 and assume that

b2 >
1

r
(3.2.1)
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s0 + s1 + s2 >
2

r
(3.2.2)

s0 + s1 ≥ 0 (3.2.3)

s0 + s2 ≥ 0 (3.2.4)

s1 + s2 ≥
2

r
− 2

r′
(3.2.5)

Then

 s0 s1 s2

0 0 b2


r

is a product.

Proof. From (2.2.2) with b0 = b1 = 0 < b2, we obtain

I .
∑
N,L

J
(
FN0,L0

0 , FN1,L1
1 , FN2,L2

2

)
N s0

0 N s1
1 N s2

2 Lb22
.

So, we do not need to separate in L0 and L1 and can replace FN0,L0
0 and FN1,L1

1 with

FN0
0 and FN1

1 . We reduce to proving

I .
∑
N,L

J
(
FN0

0 , FN1
1 , FN2,L2

2

)
N s0

0 N s1
1 N s2

2 Lb22
. ‖F0‖r‖F1‖r′‖F2‖r′

or ∑
N

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r‖F1‖r′‖F2‖r′ (3.2.6)

where SN =
∑
L2

L−b22 J(FN0
0 , FN1

1 , FN2,L2
2 ).

By (2.3.11),

SN ≤
∑
L2

L
1/r−b2
2

(
N012

min

) 2
r′
(
N12

min

) 2
r
− 2
r′ ‖FN0

0 ‖r‖F
N1
1 ‖r′‖F

N2
2 ‖r′

.
(
N012

min

) 2
r′
(
N12

min

) 2
r
− 2
r′ ‖FN0

0 ‖r‖F
N1
1 ‖r′‖F

N2
2 ‖r′

since 1/r − b2 < 0 by (3.2.1). Now we separate into the different frequency cases.

The HLH case: N1 . N0 ∼ N2. In this case we have

SN . N
2
r

1 ‖F
N0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′ .
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Applying Lemma 2.2 with A = 2/r − s1 and B = s0 + s2 in the inequality

∑
N

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χN1.N0∼N2

N
2/r−s1
1

N s0
0 N s2

2

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

gives the result, since the hypotheses are satisfied by the conditions above as follows.

(i) B > A by (3.2.2).

(ii) B ≥ 0 by (3.2.4).

(iii) The strict inequality in (i) excludes A = B = 0.

The LHH case: N0 . N1 ∼ N2. In this case we have

SN . N
2/r′

0 N
2
r
− 2
r′

1 ‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′ .

This gives the inequality

∑
N

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χN0.N1∼N2

N
2/r′−s0
0

N
s1+s2+2/r′−2/r
1

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

in which we apply Lemma 2.3 with A = 2/r′ − s0 and B = N
s1+s2+2/r′−2/r
1 . Checking

the hypotheses, we have

(i) B > A by (3.2.2) and

(ii) B > 0 by (3.2.5).

and hence (3.2.6) holds by Lemma 2.3.

3.3 The case b0 = 0 < b1, b2

Theorem 3.2. Suppose n = 2 and 3/2 < r ≤ 2. Set b0 = 0 and assume

b1, b2 > 0 (3.3.1)

b1 + b2 >
1

r
(3.3.2)
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s0 + s1 + s2 >
3

r
− (b1 + b2) (3.3.3)

s0 + s1 + s2 >
2

r
− b1 (3.3.4)

s0 + s1 + s2 >
2

r
− b2 (3.3.5)

s0 + s1 + s2 >
3

2r
(3.3.6)(

1− r′

2r

)
s0 + s1 + s2 >

1

r
(3.3.7)

s1 + s2 >
2

r
− 2

r′
(3.3.8)

s0 + s1 ≥ 0 (3.3.9)

s0 + s2 ≥ 0 (3.3.10)

Then

 s0 s1 s2

0 b1 b2


r

is a product.

Proof. By symmetry we can assume L1 ≤ L2 and by the dyadic decomposition we reduce

to showing ∑
N

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r‖F1‖r′‖F2‖r′

where

SN =
∑
L

χL1≤L2

J(FN0
0 , FN1,L1

1 , FN2,L2
2 )

Lb11 L
b2
2

.

The HLH case: N1 . N0 ∼ N2. The constants (2.3.11) and (2.3.12) now become

C1 =
(
N012

min

) 2
r′
(
N12

min

) 2
r
− 2
r′
(
L12

min

) 1
r = N

2/r
1 L

1/r
1 (3.3.11)

C2 =
(
N012

min

) 1
r′
(
N12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r = N

3/2r
1 L

1/r
1 L

1/2r
2 . (3.3.12)

Which estimate is better depends on the relative sizes of L2 and N1, so we split into two

sub-cases L2 ≤ N1 and L2 > N1.

Sub-case 1: L2 ≤ N1. We will use Theorem 2.8 with (3.3.12).

SN =
∑
L

χL1≤L2≤N1

J(FN0
0 , FN1,L1

1 , FN2,L2
2 )

Lb11 L
b2
2

.
∑
L

χL1≤L2≤N1N
3/2r
1 L

1/r−b1
1 L

1/2r−b2
2 ‖FN0

0 ‖‖F
N1,L1
1 ‖‖FN2,L2

2 ‖

. σ1/2r(N1)N
3/2r
1 ‖FN0

0 ‖r‖F
N1
1 ‖r′‖F

N2
2 ‖r′ (3.3.13)
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where

σq(M) =
∑
L

χL1≤L2≤ML
1/r−b1
1 Lq−b22 . (3.3.14)

Using (2.2.4) repeatedly, we obtain

σq(M) ∼



M1/r+q−b1−b2 if b1 < 1/r, b1 + b2 < 1/r + q

log(M) if b1 < 1/r, b1 + b2 = 1/r + q

1 if b1 < 1/r, b1 + b2 > 1/r + q

M q−b2 log(M) if b1 = 1/r, b2 < q

log(M)2 if b1 = 1/r, b2 = q

1 if b1 = 1/r, b2 > q

M q−b2 if b1 > 1/r, b2 < q

log(M) if b1 > 1/r, b2 = q

1 if b1 > 1/r, b2 > q.

Now using that log(M) . CεM ε for any ε > 0, we have

σq(M) .



M1/r+q−b1−b2 if b1 < 1/r, b1 + b2 < 1/r + q

M ε if b1 < 1/r, b1 + b2 = 1/r + q

or b1 = 1/r, b2 = q

or b1 > 1/r, b2 = q

1 if b1 < 1/r, b1 + b2 > 1/r + q

or b1 = 1/r, b2 > q

or b1 > 1/r, b2 > q

M q−b2M ε if b1 = 1/r, b2 < q

M q−b2 if b1 > 1/r, b2 < q.

(3.3.15)

Combining these estimates with (3.3.13), we have

∑
N

χN1.N0∼N2

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χN1.N0∼N2

NA
1

NB
0

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′
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where B = s0 + s2 and A = 3
2r − s1 + α and α is given by

α =



3
2r − b1 − b2 if b1 < 1/r, b1 + b2 < 1/r + q

ε if b1 < 1/r, b1 + b2 = 1/r + q

or b1 = 1/r, b2 = q

or b1 > 1/r, b2 = q

0 if b1 < 1/r, b1 + b2 > 1/r + q

or b1 = 1/r, b2 > q

or b1 > 1/r, b2 > q

1/2r − b2 + ε if b1 = 1/r, b2 < q

1/2r − b2 if b1 > 1/r, b2 < q.

(3.3.16)

We will bound the last sum using Lemma 2.2, so we need to check the hypotheses in each

of the five cases above. Note that since B = s0 + s2 in all cases, B ≥ 0 is satisfied by

(3.3.10).

• If α = 3
2r − b1− b2, then A = 3

r −s1− b1− b2. Then B > A by (3.3.3), which implies

the first and third hypotheses.

• If α = 0 or α = ε, then A = 3
2r − s1 or A = 3

2r − s1 + ε, respectively. In both cases

B > A by (3.3.6), which implies the first and third hypotheses.

• Similarly, if α = 1
2r−b2 or α = 1

2r−b2 +ε, then A = 1
r−s1−b2 or A = 1

r−s1−b2 +ε,

respectively. In both cases B > A by (3.3.5).

Thus, by (2.2), we conclude that

∑
N

χN1.N0∼N2

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r‖F1‖r′‖F2‖r′ .
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Sub-case 2: L2 > N1. In this case we will use Theorem 2.8 with (3.3.11).

SN =
∑
L

χL1≤L2

J(FN0
0 , FN1,L1

1 , FN2,L2
2 )

Lb11 L
b2
2

.
∑
L

χL1≤L2N
2/r
1 L

1/r
1 ‖F

N0
0 ‖r‖F

N1,L1
1 ‖r′‖FN2,L2

2 ‖r′

. γ(N1)N
2/r
1 ‖F

N0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

where

γ(M) =
∑
L

χL1≤L2χL2≥ML
1/r−b1
1 L−b22 . (3.3.17)

Again using (2.2.4) and log(N) . N ε, we obtain

γ(M) .


M1/r−b1−b2 if b1 < 1/r

M ε−b2 if b1 = 1/r

M−b2 if b1 > 1/r.

(3.3.18)

We then obtain

∑
N

χN1.N0∼N2

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χN1.N0∼N2

NA
1

NB
0

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

where B = s0 + s2 and A = 2
r − s1 + β and β is given by

β =


1/r − b1 − b2 if b1 < 1/r

ε− b2 if b1 = 1/r

−b2 if b1 > 1/r.

(3.3.19)

So, we again verify the hypotheses of (2.2). Recall that the second hypothesis B ≥ 0 is

satisfied by (3.3.10) in all cases.

• If β = 1
r − b1− b2, then A = 3

r − s1− b1− b2. Then B > A by (3.3.3), which implies

the first and third hypotheses.

• If β = −b2 or β = −b2 + ε, then A = 2
r − s1− b2 or A = 2

r − s1− b2 + ε, respectively.

In both cases B > A by (3.3.5).
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As above, this implies the result in the HLH case.

The LHH case: N0 . N1 ∼ N2. The constants (2.3.11) and (2.3.12) now become

C1 =
(
N012

min

) 2
r′
(
N12

min

) 2
r
− 2
r′
(
L12

min

) 1
r = N

2/r′

0 N
2/r−2/r′

1 L
1/r
1 (3.3.20)

C2 =
(
N012

min

) 1
r′
(
N12

min

) 3
2r
− 1
r′
(
L12

min

) 1
r
(
L12

max

) 1
2r = N

1/r′

0 N
3/2r−1/r′

1 L
1/r
1 L

1/2r
2 . (3.3.21)

Combining these two estimates, we have

C ∼ N1/r′

0 N
3/2r−1/r′

1 L
1/r
1 min

(
N

1/r′

0 N
1/2r−1/r′

1 , L
1/2r
2

)
which is (3.3.20) if N

1/r′

0 N
1/2r−1/r′

1 < L
1/2r
2 and (3.3.21) if N

1/r′

0 N
1/2r−1/r′

1 ≥ L
1/2r
2 . So

we will again split into sub-cases.

Sub-case 1: L2 ≤
N

2r/r′
0

N
2r/r′−1
1

. In this case we will use (3.3.21). Note that since L2 ≥ 1,

we must assume N
2r/r′

0 ≥ N2r/r′−1
1 or equivalently, N0 ≥ N1−r′/2r

1 . Then we have

SN . N
1/r′

0 N
3/2r−1/r′

1

∑
L

χ
L1≤L2≤

N
2r/r′
0

N
2r/r′−1
1

L
1/r−b1
1 L

1/2r−b2
2 ‖FN0

0 ‖r‖F
N1,L1
1 ‖r′‖FN2,L2

2 ‖r′

. N1/r′

0 N
3/2r−1/r′

1 σ1/2r

(
N

2r/r′

0

N
2r/r′−1
1

)
‖FN0

0 ‖r‖F
N1
1 ‖r′‖F

N2
2 ‖r′

where σq(N) is given by (3.3.14). From (3.3.15), we get∑
N

χ
N

1−r′/2r
1 ≤N0.N1∼N2

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χ
N

1−r′/2r
1 ≤N0.N1∼N2

NA
0

NB
1

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

where

A =
1

r′
− s0 +

2r

r′
α (3.3.22)

and

B =
1

r′
− 3

2r
+ s1 + s2 +

(
2r

r′
− 1

)
α (3.3.23)

for α given by (3.3.16). From the dyadic summation rule (2.2.4),

µA(N1) =
∑
N0

χ
N

1−r′/2r
1 ≤N0.N1

NA
0 ∼


NA

1 if A > 0

log(N1) if A = 0

N
A(1−r′/2r)
1 if A < 0

(3.3.24)
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and hence

∑
N

χ
N

1−r′/2r
1 ≤N0.N1∼N2

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r
∑
N1,N2

χN1∼N2

µA(N1)

NB
1

‖FN1
1 ‖r′‖F

N2
2 ‖r′

. ‖F0‖r
∑
N1,N2

χN1∼N2N
Ã−B
1 ‖FN1

1 ‖r′‖F
N2
2 ‖r′ (3.3.25)

where

Ã =


A if A > 0

ε̃ if A = 0

A(1− r′/2r) if A < 0.

(3.3.26)

Now comparing (3.3.25) with (2.2.7) in the proof of Lemma 2.3, we see that the inequality

∑
N

χ
N

1−r′/2r
1 ≤N0.N1∼N2

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r‖F1‖r′‖F2‖r′

follows from this proof, provided Ã − B ≤ −ε for some ε > 0. From (3.3.26), this is

equivalent to checking the following two conditions:

i. B > A if A ≥ 0

ii. B > A
(

1− r′

2r

)
if A < 0.

From (3.3.22) and (3.3.23), we see that the first condition is equivalent to

s0 + s1 + s2 >
3

2r
+ α (3.3.27)

while the second is equivalent to(
1− r′

2r

)
s0 + s1 + s2 >

1

r
. (3.3.28)

This last requirement is (3.3.7), so it only remains to verify (3.3.27) for all possible α.

• If α = 3
2r − b1 − b2, then (3.3.27) is equivalent to (3.3.3).

• If α = 0 or α = ε, then (3.3.27) follows from (3.3.6).

• If α = 1
2r − b2 or α = 1

2r − b2 + ε, then (3.3.27) follows from (3.3.5).
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Sub-case 2: L2 >
N

2r/r′
0

N
2r/r′−1
1

. In this case we will use (3.3.20). We have

SN . N
2/r′

0 N
2/r−2/r′

1

∑
L

χL1≤L2χ
L2>

N
2r/r′
0

N
2r/r′−1
1

L
1/r−b1
1 L−b22 ‖FN0

0 ‖r‖F
N1,L1
1 ‖r′‖FN2,L2

2 ‖r′

. N2/r′

0 N
2/r−2/r′

1 γ

(
1 +

N
2r/r′

0

N
2r/r′−1
1

)
‖FN0

0 ‖r‖F
N1
1 ‖r′‖F

N2
2 ‖r′

for γ as in (3.3.17).

• First suppose N0 ≤ N1−r′/2r
1 or

N
2r/r′
0

N
2r/r′−1
1

≤ 1. Then we have

1 ≤ 1 +
N

2r/r′

0

N
2r/r′−1
1

≤ 2

and so by (3.3.18), we see that γ

(
1 +

N
2r/r′
0

N
2r/r′−1
1

)
. 1. Therefore

∑
N

χN0.N1∼N2
χ
N0≤N1−r′/2r

1

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χN0.N1∼N2
χ
N0≤N1−r′/2r

1

N
2/r′

0 N
2/r−2/r′

1

N s0
0 N s1

1 N s2
2

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

. ‖F0‖r
∑
N1,N2

χN1∼N2

ΣA

(
N

1−r′/2r
1

)
NB

1

‖FN1
1 ‖r′‖F

N2
2 ‖r′

where

ΣA(M) =
∑
N0

χN0≤MN
A
0 ∼


MA if A > 0

log(M) if A = 0

1 if A < 0

for A = 2/r′ − s0 and B = 2/r′ − 2/r + s1 + s2. Thus,

∑
N

χN0.N1∼N2
χ
N0≤N1−r′/2r

1

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r
∑
N1,N2

χN1∼N2

N Ã
1

NB
1

‖FN1
1 ‖r′‖F

N2
2 ‖r′

where

Ã =


(1− r′/2r)A if A > 0

(1− r′/2r)ε̃ if A = 0

0 if A < 0.

(3.3.29)
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As above, we obtain the desired result from the proof of Lemma 2.3, see (2.2.7), provided

that Ã − B ≤ −ε for some ε > 0. From (3.3.29), this is equivalent to checking the

following two conditions.

i. B > A
(

1− r′

2r

)
if A > 0.

ii. B > 0 if A ≤ 0.

However, these are (3.3.7) and (3.3.8), respectively.

• Next suppose N0 > N
1−r′/2r
1 or

N
2r/r′
0

N
2r/r′−1
1

> 1. Then we have

N
2r/r′

0

N
2r/r′−1
1

≤ 1 +
N

2r/r′

0

N
2r/r′−1
1

≤ 2
N

2r/r′

0

N
2r/r′−1
1

and so by (3.3.18), we see that γ

(
1 +

N
2r/r′
0

N
2r/r′−1
1

)
. γ

(
N

2r/r′
0

N
2r/r′−1
1

)
. Then

∑
N

χ
N

1−r′/2r
1 <N0.N1∼N2

SN
N s0

0 N s1
1 N s2

2

.
∑
N

χ
N

1−r′/2r
1 <N0.N1∼N2

γ

(
N

2r/r′

0

N
2r/r′−1
1

)
N

2/r′

0 N
2/r−2/r′

1

N s0
0 N s1

1 N s2
2

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

.
∑
N

χ
N

1−r′/2r
1 <N0.N1∼N2

NA
0

NB
1

‖FN0
0 ‖r‖F

N1
1 ‖r′‖F

N2
2 ‖r′

by (3.3.18), where

A =
2

r′
− s0 +

2r

r′
β (3.3.30)

and

B =
2

r′
− 2

r
+ s1 + s2 +

(
2r

r′
− 1

)
β (3.3.31)

for β as in (3.3.19). Proceeding as in Sub-case 1, we write

∑
N

χ
N

1−r′/2r
1 ≤N0.N1∼N2

SN
N s0

0 N s1
1 N s2

2

. ‖F0‖r
∑
N1,N2

χN1∼N2

µA(N1)

NB
1

‖FN1
1 ‖r′‖F

N2
2 ‖r′

. ‖F0‖r
∑
N1,N2

χN1∼N2N
Ã−B
1 ‖FN1

1 ‖r′‖F
N2
2 ‖r′

with µA defined by (3.3.24), Ã defined by (3.3.26). Again, we use the proof of Lemma 2.3

to reduce to proving the two conditions
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i. B > A if A ≥ 0

ii. B > A
(

1− r′

2r

)
if A < 0

for A and B as in (3.3.30) and (3.3.31). The first condition is equivalent to

s0 + s1 + s2 >
2

r
+ β (3.3.32)

while the second reduces to (3.3.7). Therefore, we are left to verify (3.3.32) for the various

β, as follows.

• If β = 3
2r − b1 − b2, then (3.3.32) is equivalent to (3.3.3).

• If β = −b2 or β = ε− b2, then (3.3.32) follows from (3.3.5).

3.4 The case b0 < 0 < b1, b2

Theorem 3.3. Suppose n = 2 and 3/2 < r ≤ 2. Assume

b0 < 0 < b1, b2 (3.4.1)

b1 + b2 >
1

r
(3.4.2)

s0 + s1 + s2 >
3

r
− (b0 + b1 + b2) (3.4.3)

s0 + s1 + s2 >
2

r
− (b0 + b1) (3.4.4)

s0 + s1 + s2 >
2

r
− (b0 + b2) (3.4.5)

s0 + s1 + s2 >
3

2r
− b0 (3.4.6)(

1− r′

2r

)
s0 + s1 + s2 >

1

r
− b0 (3.4.7)

s1 + s2 >
2

r
− 2

r′
− b0 (3.4.8)

s0 + s1 ≥ −b0 (3.4.9)
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s0 + s2 ≥ −b0 (3.4.10)

Furthermore, we assume

1. If either b0 + b1 = 0 or b0 + b2 = 0, we assume also that

b1, b2 >
1

r
(3.4.11)

2. If b0 + b1 6= 0 or b0 + b2 6= 0, we assume also that

b0 + b1 >
1

r
(3.4.12)

b0 + b2 >
1

r
(3.4.13)

Then

 s0 s1 s2

b0 b1 b2


r

is a product.

Proof. Using the Hyperbolic Leibniz Rule, (2.1.3), since −b0 > 0, we have

‖uv‖Xr
−s0,−b0

= ‖〈||τ0| − |ξ0||〉−b0〈ξ0〉−s0 ũv‖Lr′τ0,ξ0

.
∥∥∥δ(ξ0 + ξ1 + ξ2)

(
||τ1| − |ξ1||+ ||τ2| − |ξ2||+ b(±1,±2)(ξ0, ξ1, ξ2)

)−b0 〈ξ0〉−s0 ũv
∥∥∥
Lr
′
τ0,ξ0

.
∥∥∥〈|τ1| − |ξ1|〉−b0〈ξ0〉−s0 ũv

∥∥∥
Lr
′
τ0,ξ0

+
∥∥∥〈|τ2| − |ξ2|〉−b0〈ξ0〉−s0 ũv

∥∥∥
Lr
′
τ0,ξ0

+
∥∥∥δ(ξ0 + ξ1 + ξ2)

(
b(±1,±2)(ξ0, ξ1, ξ2)

)−b0 〈ξ0〉−s0 ũv
∥∥∥
Lr
′
τ0,ξ0

.

Note that in the last line we have used that for a, b, n ≥ 0,

(a+ b)n ≤ (2 max(a, b))n . an + bn

since the frequency interactions guarantee that b±1,±2 ≥ 0.

For the first term, write

‖〈|τ1| − |ξ1|〉−b0〈ξ0〉−s0 ũv‖Lr′τ0,ξ0

=

∥∥∥∥〈ξ0〉−s0
∫
〈|τ1| − |ξ1|〉−b0 ũ(τ1, ξ1)ṽ(τ0 − τ1, ξ0 − ξ1)dτ1dξ1

∥∥∥∥
Lr
′
τ0,ξ0

=

∥∥∥∥〈ξ0〉−s0
∫
w̃(τ1, ξ1)ṽ(τ0 − τ1, ξ0 − ξ1)dτ1dξ1

∥∥∥∥
Lr
′
τ0,ξ0

= ‖wv‖Xr
−s0,0
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where w̃(τ1, ξ1) = 〈|τ1| − |ξ1|〉−b0 ũ(τ1, ξ1). Now

‖w‖Xr
s1,b1

=
∥∥∥〈ξ1〉s1〈|τ1| − |ξ1|〉b1〈|τ1| − |ξ1|〉−b0 ũ

∥∥∥
r′

= ‖u‖Xr
s1,b1−b0

so the estimate ∥∥∥〈|τ1| − |ξ1|〉−b0〈ξ0〉−s0 ũv
∥∥∥
Lr
′
τ0,ξ0

. ‖u‖Xr
s1,b1
‖v‖Xr

s2,b2

will follow if

 s0 s1 s2

0 b1 + b0 b2


r

is a product. Similarly,

∥∥∥〈|τ2| − |ξ2|〉−b0〈ξ0〉−s0 ũv
∥∥∥
Lr
′
τ0,ξ0

. ‖u‖Xr
s1,b1
‖v‖Xr

s2,b2

will follow if

 s0 s1 s2

0 b1 b2 + b0


r

is a product. If b0 = −bi for i = 1 or i = 2, this

follows from conditions (3.4.1) through (3.4.11) and Theorem 3.1. On the other hand, if

b0 6= −bi for either i, then we use Theorem 3.2 with the additional assumptions (3.4.12)

and (3.4.13) to reach the desired conclusion.

For the the third term,∥∥∥δ(ξ0 + ξ1 + ξ2)
(
b(±1,±2)(ξ0, ξ1, ξ2)

)−b0 〈ξ0〉−s0 ũv
∥∥∥
Lr
′
τ0,ξ0

= ‖B−b0(±1,±2)(u, v)‖Xr
−s0,0

where Bα
(±1,±2)(f, g) is given by (2.1.7), we will use the estimate (2.1.4) to obtain

‖B−b0(±1,±2)(u, v)‖Xr
−s0,0

.
∥∥∥δ(ξ0 + ξ1 + ξ2)|ξ1|−b0〈ξ0〉−s0 ũv

∥∥∥
Lr
′
τ0,ξ0

.

Proceeding as above, we find

‖B−b0(±1,±2)(u, v)‖Xr
−s0,0

.
∥∥〈ξ0〉−s0w̃v

∥∥
Lr
′
τ0,ξ0

.

where w̃i(τi, ξi) = 〈ξi〉−b0 ũ(τi, ξi). Then ‖w1‖Xr
s1,b1

= ‖u‖Xr
s1−b0,b1

and ‖w2‖Xr
s2,b2

=

‖u‖Xr
s2−b0,b2

. Hence,

‖B−b0(±1,±2)(u, v)‖Xr
−s0,0

. ‖u‖Xr
s1,b1
‖v‖Xr

s2,b2
.
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follows if

 s0 s1 + b0 s2

0 b1 b2


r

and

 s0 s1 s2 + b0

0 b1 b2


r

are products. By Theo-

rem 3.1, this is guaranteed by conditions (3.4.1) - (3.4.10). Note that for this estimate we

do not need conditions (3.4.11) through (3.4.13). In particular, the last two conditions,

(3.4.12) and (3.4.13), are not needed if b0 + b1 = b0 + b2 = 0.

3.5 Proof of Theorem 1.9

From the local well-posedness argument in Section 1.5, all that remains is to verify

the exponents in the estimates satisfy the conditions of Theorem 3.2 and Theorem 3.3

for the ranges s > 3
2r + 1, 1

r < b < 1, and 3
2 < r ≤ 2. Explicitly, we need to show −(s− 1) s− 1 s− 1

0 b b


r

and

 −(s− 2) s− 1 s− 1

−b b b


r

(3.5.1)

are products under these assumptions. We remark that from Section 1.5, we actually

only need to take s0 = −b− ε in the second exponent matrix above. However, due to the

nesting property of the Xr
s,b spaces, this will follow from the slightly stronger result we

verify below.

First we check that the conditions of Theorem 3.2 hold for s0 s1 s2

0 b1 b2


r

=

 −(s− 1) s− 1 s− 1

0 b b


r

. (3.5.2)

Note that the first two conditions (3.3.1) and (3.3.2) are trivial since we assume b > 1
r .

Next note that s0 + s1 = s0 + s2 = 0 which imply (3.3.9) and (3.3.10). Condition

(3.3.6) is our assumption that s > 3
2r + 1. Condition (3.3.3) is s > 3

r − 2b + 1 and

conditions (3.3.4) and (3.3.5) both become s > 2
r − b + 1. But 3

r − 2b + 1 < 3
2r + 1 for

b > 3
4r and 2

r − b+ 1 < 3
2r + 1 for b > 1

2r . Hence, these conditions are also satisfied by our

hypotheses. Condition (3.3.8) reduces to s > 2
r , which is again implied by our assumption
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on s provided r > 1
2 . Finally (3.3.7) can be reduced to

(
1 + r′

2r

)
s > 1

r + r′

2r + 1. Since

s > 3
2r + 1, (

1 +
r′

2r

)
s >

(
1 +

r′

2r

)
3

2r
+

(
1 +

r′

2r

)
(3.5.3)

and hence the condition follows provided
(

1 + r′

2r

)
3
2r >

1
r or

(
1 + r′

2r

)
> 2

3 which holds

trivially. Therefore, (3.5.2) is a product.

Next we verify the conditions of Theorem 3.3 for s0 s1 s2

b0 b1 b2


r

=

 −(s− 2) s− 1 s− 1

−b b b


r

. (3.5.4)

As above, (3.4.1) and (3.4.2) hold since b > 1
r . Noting that s0+s1 = s0+s2 = 1, conditions

(3.4.9) and (3.4.10) are satisfied by the requirement b < 1. Next since b0+b1 = b0+b2 = 0,

we verify that (3.4.11) is just b > 1
r and do not need (3.4.12) or (3.4.13). Noting also that

s0 + s1 + s2 = s, conditions (3.4.4) and (3.4.5) become s > 2
r , which we verified above.

This will also follow from (3.4.8), which in this case becomes s > 2
r + b

2 . But since b < 1,

we have

2

r
+
b

2
<

2

r
+

1

2
<

3

2r
+ 1

for r > 1. Next, condition (3.4.3) is now s > 3
r−b, which is satisfied since 3

r−b <
3
r <

3
2r+1

for r > 3
2 . Condition (3.4.6) becomes s > 3

2r + b, which is clear since b < 1. Finally,

(3.4.7) is now(
1 +

r′

2r

)
s >

1

r
+
r′

r
+ b =

(
1

r
+
r′

2r
+ b− 1

)
+

(
r′

2r
+ 1

)
. (3.5.5)

From (3.5.3), it is enough to show(
1 +

r′

2r

)
3

2r
>

(
1

r
+
r′

2r
+ b− 1

)
.

But since b < 1,

1

r
+
r′

2r
+ b− 1 <

1

r
+
r′

2r
=

3

2r
+
r′ − 1

2r
(3.5.6)

and this follows if r′−1 < 3r′

2r , or equivalently, 1− 1
r′ <

3
2r , which is clear since 1

r + 1
r′ = 1.

Thus, (3.5.4) is also a product, which completes the proof of Theorem 1.9.
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3.6 Conclusions

The estimates proved in this chapter are sufficient for establishing local well-posedness

of (1.0.1) in Ĥr
s (R2) with s > 3

2r + 1 and 3
2 < r ≤ 2. Recalling the scaling correspondence

in dimension 2,
˙̂
H
r

s ∼ Ḣσ for σ = s + 1 − 2
r , on the Sobolev scale our best results

correspond to σ > 5
3 when r = 3/2. This is a gap of 2/3 over the scaling conjecture of

σ > 1.

One limitation of our method is the requirement that 3
2 < r ≤ 2, which restricts the

range for the parameter s. Recall that this arose in our Theorem 2.8, specifically for the

second estimate (2.3.12). This theorem is a generalization of the following from Selberg

[17, Theorem 2.1].

Theorem 3.4. The estimate

‖P
K
±0
N0,L0

(P
K
±1
N1,L1

u1 · PK±2
N2,L2

u2)‖L2 ≤ C‖u1‖L2‖u2‖L2

holds with

C ∼ N012
min

(
L012

min

) 1
2 (3.6.1)

C ∼
(
N012

minL
12
min

) 1
2
(
N12

minL
12
max

) 1
4 (3.6.2)

regardless of the choice of signs ±j.

Note that for r = 2, our estimates (2.3.11) and (2.3.12) agree with Selberg’s (3.6.1)

and (3.6.2), respectively. To prove our second estimate in the LHH case we utilize the

same angular Whitney decomposition found in [17], which requires us to sum over the

angle γ, ∑
γ0<γ<1

γ1/r−2/r′ .

In order to sum this term, it is necessary that the exponent on γ be negative. However,

1/r − 2/r′ < 0 only for r > 3/2. One possible way to circumvent this problem, and

potentially expand the range for r, is to refine the angular decomposition.
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However, even with an improved range for r, the requirement s > 3
2r + 1 is still

an obstacle to achieving the optimal Sobolev result σ > 1. Considering the scaling

relationship between σ and s, with this requirement the best possible outcome (with

r > 1) would correspond to Sobolev results of σ > 3
2 . For the first product in (3.5.1) that

we desire, the most restrictive condition in our theorems is

s0 + s1 + s2 >
3

2r
, (3.6.3)

which becomes s > 3
2r + 1. The condition (3.6.3) results from the exponent 3

2r −
1
r′ on

N12
min in our estimate (2.3.12), and using our dyadic summation techniques there appears

to be no way around this without altering the estimate (2.3.12).

In light of these limitations, we include some reference material in the appendices

that may be helpful in future work. An alternative angular Whitney decomposition from

[1] is outlined in Appendix A. Appendix B contains some geometric integration results

from [7] utilized by Grünrock in [8] for the Cauchy problem in three dimensions. We

hope that with these additional techniques, we could improve the results of this thesis,

and extend them further in the case of the null form.
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A P P E N D I X A

AN ANGULAR WHITNEY DECOMPOSITION

In the paper [1], the authors prove boundedness results for the bilinear Fourier mul-

tiplier

σ(ξ, η) =
ξ · η
|ξ||η|

+ i

(
1−

(
ξ · η
|ξ||η|

)2
)1/2

where ξ, η ∈ Rn with n ≥ 2. Let ξ̇ = (ξ̇1, ξ̇2) = ξ
|ξ| and η̇ = (η̇1, η̇2) = η

|η| . Then in

dimension n = 2, the imaginary part

σI(ξ, η) =

(
1−

(
ξ · η
|ξ||η|

)2
)1/2

=
|ξ ∧ η|
|ξ||η|

becomes

σI(ξ, η) = |ξ̇ ∧ η̇| = |ξ̇2η̇1 − ξ̇1η̇2|

which is the absolute value of the symbol of the null form Q12. Call the associated

operator QI , i.e.

QI(q, q)(x) =

∫ ∫
eiπx·(ξ+η)σI(ξ, η)

q̂(ξ)

|ξ|
q̂(η)

|η|
dξdη.

The derivatives of σI have singularities on the set L = {(ξ, η) ∈ Rn×Rn : ξ ∧ η = 0},

and in [1] the authors decompose Rn×Rn \L into disjoint cones Qi,j,k to write QI as the

sum

QI =
∞∑
k=1

2n2k(n−1)∑
i=1

∑
j∈r(i;k)

Ti,j,k

where Ti,j,k are operators supported on Qi,j,k. The decomposition is done so that the sum

in j is finite and the number of terms in that sum is universally bounded by a constant

79



that depends only on the dimension n. Furthermore, for (ξ, η) ∈ Qi,j,k, we have(
1−

(
ξ · η
|ξ||η|

)2
)1/2

∼ 2−k.

In dimension n = 2, the decomposition is an angular, Whitney type decomposition

and using the multiplicative structure of σI , the authors prove the following theorem.

Theorem A.1. Let 0 ≤ α < β < α+ 1 and 1 < s <∞.

1. Assume that 1 < r < 2 and β < min
{
α+ 1 + 2

(
1
s −

1
r

)
, 2(1 + α) + 2

(
1
s −

2
r

)}
.

Then we have

‖Ti,j,k(f, g)‖
Wβ,s
loc
≤ C2−kω̄‖f‖Wα,r‖g‖Wα,r

for any ω̄ < 1/2 + 1/r′.

2. If max
{
r′, 2s

s+1

}
< t < 2 ≤ r <∞, β ≤ α+ 2 + 2

(
1
s −

1
r −

1
t

)
, then

‖Ti,j,k(f, g)‖
Wβ,s
loc
≤ C2−kω̄ (‖f‖Wα,r + ‖f‖Lt) (‖g‖Wα,r + ‖g‖Lt)

for any ω̄ < 1/2 + 1/r.

We are interested in the angular decomposition as a possible alternative to the one utilized

in Section 2.3, which required us to take 3
2 < r ≤ 2.

The Angular Whitney Decomposition

For k ≥ 0, divide the circle S1 into 4 · 2k intervals Ii,k, where

Ii,k =
{
ξ ∈ R2 : |ξ| = 1, arg(ξ) ∈

(
(i− 1)

π

2 · 2k
, i

π

2 · 2k
]}

The k-dyadic decomposition of S1 is

Ik = {Ii,k}4·2
k

i=1

Definition A.2. Given an interval I ∈ Ik, its father is the unique interval IF ∈ Ik−1

containing I.
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Definition A.3. We say Ii,k, Ij,k ∈ Ik, are neighbors if Īi,k
⋂
Īj,k 6= ∅ or Īi,k

⋂
−Īj,k 6=

∅.

Notice that for each k ≥ 1, any interval Ii,k has six neighbors: itself, the two adjacent

intervals and the reflections of these three. For k = 0, there are only four intervals in I0

and they are all neighbors.

Definition A.4. We say Ii,k, Ij,k ∈ Ik, k ≥ 1, are related, and write j ∈ r(i; k), if they

are not neighbors but their fathers are.

An important feature of this decomposition is that the size of the set of relations

r(i; k) is bounded, independent of k. For k = 1, there are 8 intervals in I1. Each of these

intervals has 6 neighbors, which cannot be relations. Since all of the intervals in I0 are

neighbors, every interval in I1 has 2 relations. For k ≥ 2, each interval in Ik−1 has 6

neighbors and contains two intervals in Ik. Suppose I ∈ Ik and IF ∈ Ik−1 is its father.

Then the six neighbors of IF contain 12 intervals of Ik, 6 of which are I’s neighbors.

Hence, I has 6 relations. Therefore,

|r(i; k)| =

 2 if k = 1

6 if k ≥ 2

Now we will use this decomposition of the circle to partition R2 × R2 \ L. For each

interval Ii,k, we define a corresponding cone

Qi,k =

{
ξ ∈ R2 \ {0} :

ξ

|ξ|
∈ Ii,k

}
and the set of all such cones

Qk =

4·2k⋃
i=1

Qi,k

forms the k-dyadic decomposition of R2. We will extend the definitions of father, neighbor

and relation naturally to these cones. For j ∈ r(i; k), let

Qi,j,k = Qi,k ×Qj,k
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Claim A.5. The products of cones Qi,j,k form a partition of R2 × R2 \ L.

R2 × R2 \ L =

∞⋃
k=1

4·2k⋃
i=1

⋃
j∈r(i;k)

Qi,j,k

To see that this union is disjoint., suppose (ξ, η) ∈ Qi,j,k
⋂
Ql,m,k. Then ξ ∈ Qi,k and

ξ ∈ Ql,k and hence i = l. Similarly, we must have j = m. Now suppose that k 6= n and

(ξ, η) ∈ Qi,j,k
⋂
Ql,m,n. For each s, let Qs be the unique cone in Qs containing ξ and Q̃s

be the unique cone containing η. First note that if Qs and Q̃s are neighbors, then their

fathers Qs−1 and Q̃s−1 are also neighbors. By induction, Qt and Q̃t are neighbors for

0 ≤ t ≤ s. Without loss of generality, assume n < k. Then ξ ∈ Qi,k = Qk ⊂ Ql,n = Qn,

η ∈ Qj,k = Q̃k ⊂ Qm,n = Q̃n. Since the pair Qk, Q̃k are related, their respective fathers,

Qk−1, Q̃k−1 must be neighbors. Since n ≤ k − 1, it follows from above that Qn and Q̃n

are neighbors. This contradicts that Qn and Q̃n are related.
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A P P E N D I X B

GEOMETRIC INTEGRAL TECHNIQUES

In [7], the authors prove estimates of the type

‖Dβ0D
β+
+ D

β−
− (φψ)‖L2(R1+n)

.
(
‖Dα1φ0‖L2(Rn) + ‖Dα1−1φ1‖L2(Rn)

) (
‖Dα2ψ0‖L2(Rn) + ‖Dα2−1ψ1‖L2(Rn)

)
(B.0.1)

where α1, α2, β0, β+, β− ∈ R, φ, ψ are solutions of the homogeneous wave equations

�φ = 0, �ψ = 0 (B.0.2)

with initial conditions

φ(0, x) = φ0(x), ∂tφ(0, x) = φ1(x), ψ(0, x) = ψ0(x), ∂tψ(0, x) = ψ1(x) (B.0.3)

and

D̂αf(ξ) = |ξ|αf̂(ξ)

D̃α
+F (τ, ξ) = (|τ |+ |ξ|)αF̃ (τ, ξ)

D̃α
−F (τ, ξ) = ||τ | − |ξ||α F̃ (τ, ξ).

The main result is the following theorem.

Theorem B.1. Let n ≥ 2. Let φ, ψ be solutions of (B.0.2), (B.0.3). Then the estimate

(B.0.1) holds if and only if α1, α2, β0, β+, β− satisfy the following conditions:

β0 + β+ + β− = α1 + α2 −
n− 1

2
, (B.0.4)
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β− ≥ −
n− 3

4
, (B.0.5)

β0 > −
n− 1

2
, (B.0.6)

αi ≤ β− +
n− 1

2
, i = 1, 2, (B.0.7)

α1 + α2 ≥
1

2
, (B.0.8)

(αi, β−) 6=
(
n+ 1

4
,−n− 3

4

)
, i = 1, 2, (B.0.9)

(α1 + α2, β−) 6=
(

1

2
,−n− 3

4

)
. (B.0.10)

The key ingredients in the proof of this theorem are two geometric lemmas, which

we present here. In [8], Grünrock used the transfer principle and these techniques to

prove local well-posedness for (1.0.1) in Ĥr
s (R3) for a range of parameters that closed the

pre-existing gap on the Sobolev scale. Using this approach, it may be possible to get the

full result also in dimension 2.

Preliminaries

We can decompose a solution φ of (B.0.2), (B.0.3) into positive and negative parts

φ± such that φ = φ+ + φ− where

φ̃±(τ, ξ) ' δ(τ ∓ |ξ|)φ̂±0 (ξ)

and

φ̂±0 (ξ) = φ̂0(ξ)∓ i φ̂1(ξ)

|ξ|
, ψ̂±0 (ξ) = ψ̂0(ξ)∓ i ψ̂1(ξ)

|ξ|
.

Then the product φψ can be written as the sum of four pieces

φψ = φ+ψ+ + φ+ψ− + φ−ψ+ + φ−ψ−.
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By exchanging φ and ψ, the (−+) case becomes the (+−) and by replacing t with −t,

the (−−) becomes the (++). Thus, it is enough to prove the estimate (B.0.1) for the

(++) and (+−) cases. Furthermore, since φ̃+ψ+ = φ̃+ ∗ ψ̃+,

φ̃+ψ+(τ, ξ) '
∫
δ(t− |η|)φ̂+

0 (η)δ(τ − t− |ξ − η|)ψ̂+
0 (ξ − η)d(t, η)

'
∫
δ(τ − |η| − |ξ − η|)φ̂+

0 (η)ψ̂+
0 (ξ − η)dη (B.0.11)

and similarly,

φ̃+ψ−(τ, ξ) '
∫
δ(τ − |η|+ |ξ − η|)φ̂+

0 (η)ψ̂−0 (ξ − η)dη. (B.0.12)

The first integration (B.0.11) is over a compact manifold, the ellipsoid of revolution with

foci at 0 and ξ,

E(τ, ξ) = {η ∈ Rn : |η|+ |ξ − η| = τ} (B.0.13)

while the second integration (B.0.12) is over an unbounded manifold, the hyperboloid of

revolution with foci at 0 and ξ,

H(τ, ξ) = {η ∈ Rn : |η| − |ξ − η| = τ}. (B.0.14)

Also, in (B.0.11), we must have τ ≥ |ξ| since

τ = |η| − |ξ − η| ≥ |η + (ξ − η)| = |ξ|

while in (B.0.12), we need |τ | ≤ |ξ| since

|τ | = ||η| − |ξ − η|| ≤ |η − (η − ξ)| = |ξ|.

Let φ be a smooth function and let S be the hypersurface S = {x : φ(x) = 0}. If φ is

such that ∇φ(x) 6= 0 for x ∈ S ∩ suppf , then∫
f(x)δ(φ(x))dx =

∫
S
f(x)

dSx
∇φ(x)

(B.0.15)
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where dSx is the induced measure on S. Now let g ≥ 0 be a smooth function that does

not vanish on S. Then∫
f(x)g(x)δ(g(x)φ(x))dx =

∫
S
f(x)g(x)

dSx
|∇(gφ)|

=

∫
S
f(x)g(x)

dSx
|φ∇g + g∇φ|

=

∫
S
f(x)

dSx
|∇φ|

.

Thus,

δ(φ(x)) = g(x)δ(g(x)φ(x)). (B.0.16)

Now by taking Fourier Transfroms and using Plancherel’s theorem, the estimate

(B.0.1) in the (++) and (+−) cases follow from the estimates∥∥∥|ξ|β0(|τ |+ |ξ|)β+ ||τ | − |ξ||β− φ̃+ψ±(τ, ξ)
∥∥∥
L2
τ,ξ

.
∥∥∥|η|α1 φ̂0(η)

∥∥∥
L2
η

∥∥∥|ζ|α2ψ̂0(ζ)
∥∥∥
L2
ζ

.

(B.0.17)

These estimates are equivalent to showing that the operators B(+±) : L2(Rn)×L2(Rn)→

L2(R1+n) defined by

B̃(++)(f, g)(τ, ξ) =

∫
δ(τ − |η| − |ξ − η|) |ξ|

β0τβ+(τ − |ξ|)β−
|η|α1 |ξ − η|α2

f(η)g(ξ − η)dη (B.0.18)

and

B̃(+−)(f, g)(τ, ξ) =

∫
δ(τ − |η|+ |ξ − η|) |ξ|

β0+β+(|ξ| − |τ |)β−
|η|α1 |ξ − η|α2

f(η)g(ξ − η)dη (B.0.19)

are bounded. To see this, suppose we know B(++) is bounded. Since τ ≥ |ξ| on the

ellipsoid,∥∥∥|ξ|β0(|τ |+ |ξ|)β+ ||τ | − |ξ||β− φ̃+ψ+(τ, ξ)
∥∥∥
L2
τ,ξ

=

∥∥∥∥|ξ|β0(|τ |+ |ξ|)β+ ||τ | − |ξ||β−
∫
δ(τ − |η| − |ξ − η|)φ̂+

0 (η)ψ̂+
0 (ξ − η)dη

∥∥∥∥
L2
τ,ξ

.

∥∥∥∥∥|ξ|β0 |τ |β+ ||τ | − |ξ||β−
∫
δ(τ − |η| − |ξ − η|) φ̂

+
0 (η)|η|α1

|η|α1

ψ̂+
0 (ξ − η)|ξ − η|α2

|ξ − η|α2
dη

∥∥∥∥∥
L2
τ,ξ

.
∥∥∥|η|α1 φ̂+

0 (η)
∥∥∥
L2
η

∥∥∥|ξ − η|α2ψ̂+
0 (ξ − η)

∥∥∥
L2
ξ
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which implies (B.0.17) in the (++) case. The (+−) case follows similarly, since then we

have |τ | ≤ |ξ|.

Integration on ellipsoids and hyperboloids

The first lemma concerns integration over the ellipsoid E(τ, ξ).

Lemma B.2. Consider the integral

I(F )(τ, ξ) =

∫
δ(τ − |η| − |ξ − η|)F (|η|, |ξ − η|)dη

defined in the space-time region τ ≥ |ξ|. Then

I(F )(τ, ξ) ' (τ2 − |ξ|2)
n−3
2

∫ 1

−1
F

(
τ + |ξ|x

2
,
τ − |ξ|x

2

)
(τ2 − |ξ|2x2)(1− x2)

n−3
2 dx.

(B.0.20)

Proof. Using (B.0.16), with g(η) = τ − |η|+ |ξ − η|, we have

δ(τ − |η| − |ξ − η|) = (τ − |η|+ |ξ − η|)δ
(
(τ − |η|)2 − |ξ − η|2

)
= 2(τ − |η|)δ

(
τ2 − 2τ |η|+ |η|2 −

n∑
i=1

(ξi − ηi)2

)

= 2(τ − |η|)δ

(
τ2 − 2τ |η|+ |η|2 −

n∑
i=1

ξ2
i + 2

n∑
i=1

ξiηi −
n∑
i=1

η2
i

)

= 2(τ − |η|)δ
(
τ2 − 2τ |η| − |ξ|2 + 2ξ · η

)
.

Next introduce polar coordinates for η,

ρ = |η| ω =
η

|η|
⇒ dη = ρn−1dSωdρ (B.0.21)

and set

a = ω · ξ
|ξ|

= |ω| |ξ|
|ξ|

cos(ξ, ω) = cos(ξ, η), −1 ≤ a ≤ 1. (B.0.22)

We have an isomorphism [−1, 1]× Sn−2 ∼−→ Sn−1 defined by

(a, ω′) 7→ (a,
√

1− a2ω′)
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for ω′ ∈ Sn−2. Computing the volume forms, it then follows that

dSω = (1− a2)
n−3
2 dSω′da. (B.0.23)

Then the integral becomes

I(F )(τ, ξ) =

∫
δ(τ − |η| − |ξ − η|)F (|η|, |ξ − η|)dη

= 2

∫
(τ − |η|)δ(τ2 − 2τ |η| − |ξ|2 + 2ξ · η)F (|η|, |ξ − η|)dη

'
∫ ∞

0

∫
Sn−1

δ(τ2 − |ξ|2 − 2τρ+ 2|ξ|ρ cos(ξ, ω))(τ − ρ)F (ρ, τ − ρ)ρn−1dSωdρ

'
∫ ∞

0

∫ 1

−1

∫
Sn−2

δ(τ2 − |ξ|2 − 2τρ+ 2|ξ|ρa)(τ − ρ)F (ρ, τ − ρ)ρn−1(1− a2)
n−3
2 dSω′dadρ

'
∣∣Sn−2

∣∣ ∫ ∞
0

∫ 1

−1
δ(τ2 − |ξ|2 − 2τρ+ 2|ξ|ρa)(τ − ρ)F (ρ, τ − ρ)ρn−1(1− a2)

n−3
2 dadρ.

Now using the delta, we have

τ2 − |ξ|2 − 2τρ+ 2|ξ|ρa = 0

so

a = −τ
2 − |ξ|2 − 2τρ

2|ξ|ρ

and

ρ =
τ2 − |ξ|2

2τ − 2a|ξ|
.

Since −1 ≤ a ≤ 1 and τ ≥ |ξ|, from above we see that

τ − |ξ|
2

≤ ρ ≤ τ + |ξ|
2

.
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Using this and (B.0.15), we have

I(F )(τ, ξ) '
∫ ∞

0

∫ 1

−1
δ(τ2 − |ξ|2 − 2τρ+ 2|ξ|ρa)(τ − ρ)F (ρ, τ − ρ)ρn−1(1− a2)

n−3
2 dadρ

' 1

|ξ|

∫ τ+|ξ|
2

τ−|ξ|
2

F (ρ, τ − ρ)(τ − ρ)ρn−2

(
1−

(
τ2 − |ξ|2 − 2τρ

2|ξ|ρ

)2
)n−3

2

dρ

' 1

|ξ|

∫ τ+|ξ|
2

τ−|ξ|
2

F (ρ, τ − ρ)(τ − ρ)ρ

(
ρ2 −

(
τ2 − |ξ|2 − 2τρ

2|ξ|

)2
)n−3

2

dρ

' 1

|ξ|n−2

∫ τ+|ξ|
2

τ−|ξ|
2

F (ρ, τ − ρ)(τ − ρ)ρ

[(
ρ|ξ| − τ2 − |ξ|2 − 2τρ

2

)(
ρ|ξ|+ τ2 − |ξ|2 − 2τρ

2

)]n−3
2

dρ

' 1

|ξ|n−2

∫ τ+|ξ|
2

τ−|ξ|
2

F (ρ, τ − ρ)(τ − ρ)ρ

[(
ρ(τ + |ξ|)− τ2 − |ξ|2

2

)(
ρ(|ξ| − τ) +

τ2 − |ξ|2

2

)]n−3
2

dρ

' (τ2 − |ξ|2)
n−3
2

|ξ|n−2

∫ τ+|ξ|
2

τ−|ξ|
2

F (ρ, τ − ρ)(τ − ρ)ρ

[(
ρ− τ − |ξ|

2

)(
ρ+

τ + |ξ|
2

)]n−3
2

dρ.

Changing variables, let

x =
2ρ− τ
|ξ|

or ρ =
τ + |ξ|x

2
.

Then

I(F )(τ, ξ) ' (τ2 − |ξ|2)
n−3
2

|ξ|n−3

∫ 1

−1
F

(
τ + |ξ|x

2
,
τ − |ξ|x

2

)
τ2 − |ξ|2x2

4

[
|ξ|2 − |ξ|2x2

4

]n−3
2

dρ

' (τ2 − |ξ|2)
n−3
2

∫ 1

−1
F

(
τ + |ξ|x

2
,
τ − |ξ|x

2

)
(τ2 − |ξ|2x2)

(
1− x2

)n−3
2 dρ.

To determine the asymptotic behavior of integrals over E(τ, ξ), we use the following

lemma.

Lemma B.3. Let a ∈ R and m > −1. For λ > 0, define

Ha
m(λ) =

∫ 1

0
(λ+ t)atm dt = λa+m+1

∫ 1/λ

0
(1 + s)asm ds.

Then

Ha
m ∼


λa as λ→∞

λmin(a+m+1,0) as λ→ 0 if a+m+ 1 6= 0

| log(λ)| as λ→ 0 if a+m+ 1 = 0.

(B.0.24)
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In particular, if a ≤ b then Ha
m(λ) & Hb

m(λ) as λ→ 0.

Proposition B.4. Let a, b ∈ R and τ > |ξ|. Define the integral

I(τ, ξ) =

∫
δ(τ − |η| − |ξ − η|)
|η|a|ξ − η|b

dη.

We have the following estimate for I:

I(τ, ξ) ∼ τA(τ − |ξ|)B

where

A = max

(
a, b,

n+ 1

2

)
− a− b B = n− 1−max

(
a, b,

n+ 1

2

)
except when max(a, b) = n+1

2 , in which case we have

I(τ, ξ) ∼ τ−min(a,b)(τ − |ξ|)
n−3
2 log

(
τ

τ − |ξ|

)
.

Proof. First apply Lemma B.2 with F (s, t) = s−at−b. Then

I(τ, ξ) ' (τ2 − |ξ|2)
n−3
2

∫ 1

−1

(
τ + |ξ|x

2

)−a(τ − |ξ|x
2

)−b
(τ2 − |ξ|2x2)

(
1− x2

)n−3
2 dρ

' (τ2 − |ξ|2)
n−3
2
|ξ|2−a−b

2−a−b

∫ 1

−1

(
τ

|ξ|
+ x

)1−a( τ

|ξ|
− x
)1−b (

1− x2
)n−3

2 dρ.

Next we split the integral at x = 0.

For −1 ≤ x ≤ 0, set t = 1 + x and note that 0 ≤ t ≤ 1. We will use the following.

1. τ
|ξ| + x =

(
τ
|ξ| − 1

)
+ t.

2. τ
|ξ| − x ∼

τ
|ξ| since τ > |ξ| implies τ

|ξ| ≤
τ
|ξ| − x ≤

τ
|ξ| + 1 ≤ 2 τ

|ξ| .

3. 1− x2 ∼ t since 1 ≤ 1− x ≤ 2 implies t = 1 + x ≤ 1− x2 = (1− x)t ≤ 2t.

Then∫ 0

−1

(
τ

|ξ|
+ x

)1−a( τ

|ξ|
− x
)1−b (

1− x2
)n−3

2 dρ ∼
(
τ

|ξ|

)1−b ∫ 1

0

((
τ

|ξ|
− 1

)
+ t

)1−a
t
n−3
2 dt

∼
(
τ

|ξ|

)1−b
H1−a

n−3
2

(
τ

|ξ|
− 1

)
.

Similarly, for 0 ≤ x ≤ 1, set t = 1 − x and note that 0 ≤ t ≤ 1. The properties we

use now are as follows.
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1. τ
|ξ| − x =

(
τ
|ξ| − 1

)
+ t.

2. τ
|ξ| + x ∼ τ

|ξ| since τ > |ξ| implies τ
|ξ| ≤

τ
|ξ| + x ≤ τ

|ξ| + 1 ≤ 2 τ
|ξ| .

3. 1− x2 ∼ t since 1 ≤ 1 + x ≤ 2 implies t = 1− x ≤ 1− x2 = (1 + x)t ≤ 2t.

As above, we obtain∫ 1

0

(
τ

|ξ|
+ x

)1−a( τ

|ξ|
− x
)1−b (

1− x2
)n−3

2 dρ ∼
(
τ

|ξ|

)1−a
H1−b

n−3
2

(
τ

|ξ|
− 1

)
.

All in all,

I(τ, ξ) ∼ (τ2 − |ξ|2)
n−3
2 |ξ|2−a−b

((
τ

|ξ|

)1−b
H1−a

n−3
2

(
τ

|ξ|
− 1

)
+

(
τ

|ξ|

)1−a
H1−b

n−3
2

(
τ

|ξ|
− 1

))
.

Now since τ
|ξ| − 1 > 0 and n−3

2 > −1 for n > 1, we can apply Lemma B.3. When τ � |ξ|,

we have

I(τ, ξ) ∼ (τ2 − |ξ|2)
n−3
2 |ξ|2−a−b

((
τ

|ξ|

)1−b( τ

|ξ|
− 1

)1−a
+

(
τ

|ξ|

)1−a( τ

|ξ|
− 1

)1−b
)

∼ (τ2 − |ξ|2)
n−3
2 |ξ|2−a−b

(
τ

|ξ|

)2−a−b

∼ τn−3τ2−a−b

∼ τn−1−a−b = τAτB

∼ τA(τ − |ξ|)B.

Now suppose 1 ≤ τ
|ξ| ≤ 2 and without loss of generality, assume max(a, b) = a. Then

since 1− a ≤ 1− b,

(τ2 − |ξ|2)
n−3
2 |ξ|2−a−bH1−b

n−3
2

(
τ

|ξ|
− 1

)
. I(τ, ξ) (B.0.25)

and

I(τ, ξ) . (τ2 − |ξ|2)
n−3
2 |ξ|2−a−bH1−a

n−3
2

(
τ

|ξ|
− 1

)
.
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For the latter we have

I(τ, ξ) . (τ2 − |ξ|2)
n−3
2 |ξ|2−a−b

(
τ

|ξ|

)1−b
H1−a

n−3
2

(
τ

|ξ|
− 1

)
. (τ − |ξ|)

n−3
2 τ

n+1
2
−a−bH1−a

n−3
2

(
τ

|ξ|
− 1

)
. (τ − |ξ|)

n−3
2 τ

n+1
2
−a−bH1−a

n−3
2

(
τ − |ξ|
τ

)
by Lemma B.3 since τ ∼ |ξ|.

If 1− a+ n−3
2 + 1 6= 0 or, equivalently, a 6= n+1

2 then

I(τ, ξ) . (τ − |ξ|)
n−3
2 τ

n+1
2
−a−b

(
τ − |ξ|
τ

)min(n+1
2
−a,0)

. (τ − |ξ|)
n−3
2

+min(n+1
2
−a,0)τ

n+1
2
−a−b−min(n+1

2
−a,0)

. (τ − |ξ|)n−1−max(n+1
2
,a)τmax(a,n+1

2
)−a−b

. (τ − |ξ|)BτA.

If 1− a+ n−3
2 + 1 = 0, i.e. a = n+1

2 then

I(τ, ξ) . (τ − |ξ|)
n−3
2 τ−b

∣∣∣∣log

(
τ − |ξ|
τ

)∣∣∣∣
∼ (τ − |ξ|)

n−3
2 τ−min(a,b) log

(
τ

τ − |ξ|

)
.

Using (B.0.25) we obtain the reverse inequality.

Next we turn our attention to integration over the hyperbola H(τ, ξ).

Lemma B.5. Consider the integral

I(F )(τ, ξ) =

∫
δ(τ − |η|+ |ξ − η|)F (|η|, |ξ − η|)dη

defined in the space-time region τ ≤ |ξ|. Then

I(F )(τ, ξ) ' (|ξ|2 − τ2)
n−3
2

∫ ∞
1

F

(
|ξ|x+ τ

2
,
|ξ|x− τ

2

)
(|ξ|2x2 − τ2)(x2 − 1)

n−3
2 dx.

(B.0.26)
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Proof. Following the same steps as in the proof of Lemma B.2, write

δ(τ − |η|+ |ξ − η|) = (τ − |η| − |ξ − η|)δ((τ − η)2 − |ξ − η|2)

= 2(τ − |η|)δ(τ2 − 2τ |η| − |ξ|2 + 2ξ · η).

Again using the polar coordinates (B.0.21), with a as in (B.0.22) and (B.0.23), we have

δ(τ − |η|+ |ξ − η|) = 2(τ − ρ)δ(τ2 − |ξ|2 − 2τρ+ 2|ξ|ρa)

as before. However, since |τ | ≤ |ξ|, now we have

a = −τ
2 − |ξ|2 − 2τρ

2|ξ|ρ
≥ 2τρ

2|ξ|ρ
≥ τ

|ξ|

so that τ
|ξ| ≤ a ≤ 1. Furthermore,

−τ2 + |ξ|2 + 2τρ

2|ξ|ρ
≤ 1

implies ρ ≥ τ+|ξ|
2 . So

I(F )(τ, ξ) '
∫ ∞

0

∫ 1

τ
|ξ|

δ(τ2 − |ξ|2 − 2τρ+ 2|ξ|ρa)(τ − ρ)F (ρ, τ − ρ)ρn−1(1− a2)
n−3
2 dadρ

' 1

|ξ|

∫ ∞
τ+|ξ|

2

F (ρ, τ − ρ)(τ − ρ)ρn−2

(
1−

(
τ2 − |ξ|2 − 2τρ

2|ξ|ρ

)2
)n−3

2

dρ

' (|ξ|2 − τ2)
n−3
2

|ξ|n−2

∫ ∞
τ+|ξ|

2

F (ρ, τ − ρ)(τ − ρ)ρ

[(
ρ+
|ξ| − τ

2

)(
ρ− |ξ|+ τ

2

)]n−3
2

dρ.

Setting x = 2ρ−τ
|ξ| or ρ = |ξ|x+τ

2 then gives

I(F )(τ, ξ) ' (|ξ|2 − τ2)
n−3
2

∫ ∞
1

F

(
|ξ|x+ τ

2
,
|ξ|x− τ

2

)
(|ξ|2x2 − τ2)

(
x2 − 1

)n−3
2 dx.

Proposition B.6. Let a, b ∈ R and τ < |ξ|. Define the integral

I(τ, ξ) =

∫
|η|+|ξ−η|≤2|ξ|

δ(τ − |η|+ |ξ − η|)
|η|a|ξ − η|b

dη.

We have the following estimate for I:
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• In the region where 0 ≤ τ ≤ |ξ|,

I(τ, ξ) ∼ |ξ|A(|ξ| − τ)B

where

A = max

(
b,
n+ 1

2

)
− a− b B = n− 1−max

(
b,
n+ 1

2

)
except when b = n+1

2 , in which case we have

I(τ, ξ) ∼ |ξ|−a(|ξ| − τ)
n−3
2 log

(
|ξ|
|ξ| − τ

)
.

• In the region where −|ξ| ≤ τ ≤ 0,

I(τ, ξ) ∼ |ξ|A(|ξ|+ τ)B

where

A = max

(
a,
n+ 1

2

)
− a− b B = n− 1−max

(
a,
n+ 1

2

)
except when a = n+1

2 , in which case we have

I(τ, ξ) ∼ |ξ|−b(|ξ| − τ)
n−3
2 log

(
|ξ|
|ξ| − τ

)
.

Proof. Now we will apply Lemma B.5 with F (s, t) = s−at−b. Note that since

x =
2ρ− τ
|ξ|

=
2|η| − (|η| − |ξ − η|)

|ξ|
=
|η|+ |ξ − η|

|ξ|

restricting to the ellipsoid |η|+ |ξ − η| ≤ 2|ξ|, we have 1 ≤ x ≤ 2. Then

I(F )(τ, ξ) ' (|ξ|2 − τ2)
n−3
2

∫ 2

1

(
|ξ|x+ τ

2

)−a( |ξ|x− τ
2

)−b
(|ξ|2x2 − τ2)(x2 − 1)

n−3
2 dx

' |ξ|2−a−b(|ξ|2 − τ2)
n−3
2

∫ 2

1

(
x+

τ

|ξ|

)1−a(
x− τ

|ξ|

)1−b
(x2 − 1)

n−3
2 dx.

Assuming 0 ≤ τ ≤ |ξ|, set t = x− 1.

1. x+ τ
|ξ| ∼ 1 since 1 ≤ x ≤ x+ τ

|ξ| ≤ 2 + 1.

2. x− τ
|ξ| =

(
1− τ

|ξ|

)
+ t.
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3. x2 − 1 ∼ t since 2 ≤ x+ 1 ≤ 3 implies t = x− 1 ≤ x2 − 1 = (x+ 1)t ≤ 3t.

Then

I(F )(τ, ξ) ∼ |ξ|2−a−b(|ξ|2 − τ2)
n−3
2

∫ 1

0

((
1− τ

|ξ|

)
+ t

)1−b
t
n−3
2 dt

∼ |ξ|2−a−b(|ξ|2 − τ2)
n−3
2 H1−b

n−3
2

(
1− τ

|ξ|

)
.

If 1− b+ n−3
2 + 1 6= 0 or, equivalently, b 6= n+1

2 then

I(F )(τ, ξ) ∼ |ξ|2−a−b(|ξ|2 − τ2)
n−3
2

(
1− τ

|ξ|

)min(n+1
2
−b,0)

∼ |ξ|2−a−b(|ξ| − τ)
n−3
2 |ξ|

n−3
2 |ξ|−min(n+1

2
−b,0) (|ξ| − τ)min(n+1

2
−b,0)

∼ |ξ|max(n+1
2
,b)−a−b (|ξ| − τ)n−1−max(n+1

2
,b) .

If 1− b+ n−3
2 + 1 = 0, i.e. b = n+1

2 then

I(F )(τ, ξ) ∼ |ξ|−a(|ξ| − τ)
n−3
2

∣∣∣∣log

(
1− τ

|ξ|

)∣∣∣∣
∼ |ξ|−a(|ξ| − τ)

n−3
2 log

(
|ξ|
|ξ| − τ

)
.

Assuming −|ξ| < τ ≤ 0, also set t = x− 1. Then we have the following.

1. x− τ
|ξ| ∼ 1 since 1 ≤ x ≤ x− τ

|ξ| ≤ 2 + 1.

2. x+ τ
|ξ| =

(
1 + τ

|ξ|

)
+ t.

3. x2 − 1 ∼ t.

With these observations, we proceed as above to obtain

I(F )(τ, ξ) ∼ |ξ|
n+1
2
−a−b(|ξ|+ τ)

n−3
2 H1−a

n−3
2

(
1 +

τ

|ξ|

)
and the result will follow exactly as before.
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