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Figure 5.1 – Working Model of TbPOLIC and TbPOLID dynamic localization 

Light blue area represents the regions when the kDNA is negative for BrdU incorporation 
and the grey area corresponds to the time when BrdU is detected at the antipodal sites. 
kDNA duplication stages (I-V) are indicated on top of the table. Schematic representation 
of cytological changes within stages are indicated above the table.  
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APPENDIX 

 

RNAI-MEDIATED SILENCING OF TBPOLIB IMPACTS TBPOLIC FOCI 

 
I. Introduction 

Trypanosomes, like no other eukaryotic organism, contain six mitochondrial 

DNA polymerases (6, 7)@$GC"$"=$9B+5$)3+$!"#$%-#',+$/01$2"#75+3)*+*$H!"#$%$);:$!"#$%-

PAK) and the other four are pol I-like DNA polymerases (TbPOLIA, IB, IC and ID). 

W94:'+*$";$!"#$%$);:$!"#$%-PAK demonstrated that both of them have DNA polymerase 

and dRP lyase activity. It is suggested that these two enzymes participate in later stages 

of minicircle replication. The proposed model for kinetoplast (kDNA) replication 

';:'<)9+*$ 9B)9$ !"#$ %$ fill most of the minicircle gaps between Okazaki fragments in the 

antipodal sites. As minicircles reattach to the network, the remaining gaps are presumably 

='##+:$67$!"#$%-PAK. It is not known if these enzymes are essential for kDNA replication. 

However, using RNAi, three of the pol I-like DNA polymerases (TbPOLIB, IC and ID) 

were demonstrated to be essential for cell viability and kDNA replication.  TbPOLIB 

silencing resulted in growth inhibition, kDNA loss and the accumulation of a novel 

population of free minicircles that is mainly comprised of covalently closed minicircle 

dimers (1). It was also demonstrated to contribute to both leading and lagging strand 

synthesis. Individual silencing experiments on TbPOLIC and TbPOLID resulted in 

growth inhibition and kDNA loss suggesting that pol I-like DNA polymerases have non-

redundant roles in the kDNA replication process (2, 5).  

In addition to their essential role in the replication process we now know that they 

are located in the two main regions where kDNA replication events occur: the 
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kinetoflagellar zone (KFZ) and the antipodal sites. Using peptide antibodies against 

TbPOLIB C-terminal region this protein was reported to localize to the KFZ. We have 

demonstrated in chapters 2 and 3 that the localization of TbPOLID and TbPOLIC is not 

static and varies throughout the cell cycle. We showed that TbPOLID redistributes from 

the mitochondrial matrix to the antipodal sites during kDNA replication. These studies 

were the first report of cell cycle dependent protein redistribution during kDNA 

replication. In contrast to TbPOLID, TbPOLIC becomes undetectable by IF when is not 

present at the site of replication. In 1N1K cells when TbPOLIC was not organized as 

discrete foci, it was detected as a faint signal. A fraction of this faint signal resembled to 

the previously characterized localization to the KFZ and also to the kDNA network. It 

was detected that TbPOLIC foci colocalizes with TbPOLID foci only during initial stages 

of kDNA replication. At later stages of replication, only a fraction of these proteins 

colocalize and TbPOLID initiates to disperse throughout the mitochondrial matrix. So 

far, it is not known if TbPOLIB colocalizes with any of the other polymerases or if the 

localization of this protein is also dynamic through the cell cycle.  

We hypothesize that the role of these polymerases is highly coordinated during 

kDNA replication. We explored if silencing of individual DNA polyemarases (TbPOLID 

and TbPOLIB) impaired TbPOLIC foci and protein stability. In chapter 3, we 

demonstrated that TbPOLID silencing affects TbPOLIC foci positive cells and protein 

levels. We asked if this effect was specific for TbPOLD silencing and proceeded to 

investigate the effect of TbPOLIB silencing on POLIC-PTP foci and protein levels. The 

data presented here supports that TbPOLIB silencing also affects TbPOLIC foci and has 

a greater impact on TbPOLIC protein stability.  
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II. Materials and methods 

 

Plasmid construction. (i) POLIC knockout construct pKOPOLIC
BSR

. The 

puromycin resistance casette from pKOPOLICPuro was replaced with blasticidin sequence 

to generate pKOPOLICBSR. Briefly, the puromycin cassette was released from 

pKOPOLICPuro after AscI and PacI digestion and the blasticidin sequence from the 

pKOBSR vector was ligated into pKOPOLIC vector to generate the pKOPOLICBSR.  

(ii) PTP tag constructs. pPOLIC-PTP-PURO was generated as described (1). 

 

Generation of cell line 

TbIC-PTP/SLIB. The pSLIB vectors were generated as previously described (1). AflII-

linearized pPOLIC-PTP-PURO was transfected into SLIB RNAi cell line. Cells 

expressing a POLC-PTP and the intramolecular stem-loop vector to target TbPOLIB 

RNAi were subsequently transfected with pKOPOLICBSR to knockout the TbPOLIC wild 

972+$ )##+#+@$ \+##*$ C+3+$ 9B+;$ *+#+<9+:$ C'9B$ TF$ ?(^5#$ _ET`.$ FS$ ?(^5#$ B7(3"57<';.$ >@F$

?(^5#$ 2B#+"57<';.$ T$ ?(^5#$ 243"57<';$ );:$ TS$ ?(^5#$ 6#)*9'<':';$ 3+*4#9';($ ';$ cell lines 

expressing a single PTP-tagged POLIC allele (POLIC-PTP/SLIB/ICKOBSR). Single 

knockout was confirmed as described above. Clonal cell line P1A8 was selected for this 

study. We named this cell line TbIC-PTP/SLIB.  

 

TbPOLIB RNAi. TbIC-PTP/SLIB cells were induced for RNAi by adding 1 ?(^5# 

tetracycline, and cell growth was monitored daily using a Z2 model Coulter Counter 

(Beckman Coulter).  
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In situ TdT labeling and quantification. Cells were fixed in 4% PFA, permeabilized in 

methanol and labeled in situ with TdT as previously described (4). TdT-positive and 

negative cells were quantified at indicated times.  

Immunofluorescence (IF). TbIC-PTP/SLIB uninduced and RNAi induced cells (day 4, 6 

and 8) were harvested by centrifugation for 5 minutes at 1,000 x g; resuspended in 1X 

phosphate-buffered saline (PBS), and adhered to poly-L-lysine (1:10) coated slides for 5 

minutes. Cells were then fixed for 5 minutes using 4% paraformaldehyde (PFA) and 

washed three times (5 minutes each) in 1X PBS containing 0.1 M glycine (pH 7.4). Cells 

were permeabilized with 0.1% Triton X-100 for 5 minutes and washed in 1X PBS 3 times 

for 5 minutes. PTP-tagged proteins were detected by incubating with anti-protein A 

serum (Sigma, 1:3000) for 60 minutes followed by Alexa Fluor® 594 goat anti-rabbit 

(1:250) for 60 minutes@$/01$C)*$*9)';+:$C'9B$/1!Y$Hg$?(^5#J. Slides were then washed 

3 times in 1X PBS prior to mounting in Vectashield (Vector Laboratories). 

 

Western Blotting. Cells were harvested at 3,500 x g for 10 minutes (4°C) and pellets 

were washed once in PBS supplemented with protease inhibitor cocktail Set III (1:100) 

(CalBioChem). Cells were lysed in 4X SDS sample buffer (BioRad) containing 5% beta-

mercaptoethanol and incubated at 90°C for 5 minutes. Proteins were separated by SDS-

PAGE on a 8% acrylamide gel and transferred to a PVDF membrane overnight at 4°C at 

90 mA in transfer buffer containing 0.1% methanol. Membranes were incubated in 1% 

Roche blocking reagent (60 minutes) followed by incubation with antibodies (60 

minutes) diluted in 0.5% blocking reagent (60 minutes). PTP (ProteinC-TEV-ProteinA) 

tagged proteins were detected with 1:2000 Peroxidase-Anti-Peroxidase soluble complex 
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(PAP) reagent (Sigma). For subsequent detections, membranes were stripped for 15 

minutes at 37 °C with 0.1 M glycine (pH 2.5), washed in TBS with 0.1 % Tween-20, 

blocked and re-probed with one the following primary/secondary antibody combinations: 

C. fasciculata specific anti-Hsp70 (1:10,000) (12) /chicken anti-rabbit (1:10,000, Roche),  

T. brucei anti-!"#$ %$ HTdTSSSJ$ (7)/goat anti-rat (1:5000) and anti-TAO (T. brucei 

alternative oxidase; 1:100) (3)/ goat anti-mouse (1:1000) and anti-tubulin (1:20,000, 

Sigma) /goat anti-mouse (1:1000). All secondary antibodies were HRP conjugated. 

Signal was detected with BM Chemiluminescence Western Blotting Substrate (POD) 

from Roche. 

 

RNA isolation and quantitative PCR.  

TbIC-PTP/SLIB uninduced and induced cells (0 and 2 days) were harvested at 4°C 

(3,500 rpm for 10 minutes) and pellets were washed with cytomix (8). Total RNA was 

extracted from 5x107 cells using the TRIsol reagent (Ambion) according to the 

manufacturer's protocol. 10 ?g of RNA were treated with 10 units (30 minutes at 37°C) 

of RNase-free DNase I (BioRad) to remove any DNA contamination. Subsequently, 

RNA was cleaned using the RNA clean and concentrator kit (Zymo Research). The High 

Capacity cDNA Reverse Transcription Kit with RNase inhibitor (Ambion) and the Multi-

Scribe Reverse Transcriptase were used to convert 500 ng of total RNA to cDNA. RT-

PCT was performed in a 10-?l reaction contained 1 ?l cDNA template, 5 ?l FastStart 

universal SYBR Green master (Rox) kit (Roche Diagnostics Corp., Indianapolis, IN), 300 

nm forward and reverse primers each, and nuclease-free water. Primers used for this 

analysis are listed in Table 1. All data was normalized to GAPDH. The normalized values 
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from induced samples were compared against uninduced controls for the relative 

expression levels of mRNA. Relative mRNA levels shown in Fig. 1A and B are 

represented as the mean of two experimental replicates and three separate RNAi 

induction experiments.  

 

III. Results 

 
1.  TbPOLIB RNAi-mediated silencing causes a reduction in POLIC-PTP foci positive 

cells 

We demonstrated in chapter 3 that silencing TbPOLID altered POLIC-PTP foci. 

We investigated if POLIC-PTP foci were also affected after silencing another essential 

mitochondrial DNA polymerase, TbPOLIB. We generated a single expresser POLIC-PTP 

tagged cell line and transfected it with a POLIB stem-loop RNAi vector (TbIC-PTP/SLIB 

clone P1A8). We induced formation of TbPOLIB-specific intramolecular stem-loop 

dsRNA by adding tetracycline to the cells to knockdown the expression of TbPOLIB. 

Loss of TbPOLIB caused growth inhibition starting at day 4 (uninduced; 7.3 ± 

0.2, N=6 and induced; 7.2 ± 0.2, N=6) and persisted throughout the course of an 8 day 

induction, in agreement with a previous report on TbPOLIB silencing (Fig. 1A) (1). At 

day two of the induction, the relative amount of TbPOLIB mRNA decreased by 63 %. 

We evaluated the relative mRNA levels for the two other essential mitochondrial DNA 

pols (TbPOLID and TbPOLIC) and several kDNA replication proteins (TopoII, UMSBP, 

PRI1 and PIF1).  No significant reduction in the mRNA levels was detected for all of 

these genes by quantitative PCR analysis (Fig. 1B and C).  
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To assess the effect of TbPOLIB knockdown on kDNA networks, we monitored 

progressive loss of kDNA at day 4, 6 and 8 of induction (Fig. 1D). We quantified 200 

individual cells (uninduced and induced) from three separate RNAi inductions per time 

point for normal, small and loss of kDNA (Fig. 1D).  DAPI-stained networks that 

exhibited normal-sized networks represented 97% in an uninduced population. At day 4 

of the induction, the percentage of cells with normal-sized networks decreased to 30% 

while the percentage of cells with small kDNA increased to 59%. Only 2% of the cells 

contained normal-sized kDNA following 8 days of TbPOLIB RNAi. At this time, there 

was a dramatic increased in cells with no detectable kDNA (68%) as the percentage of 

cells with small kDNA declined to 30%. Kinetics of kDNA loss in TbIC-PTP/SLIB cells 

is comparable to those previously reported (Fig 1D).  

We evaluated the effect of TbPOLIB RNAi on the accumulation of 

gapped/replicating minicircles at the antipodal sites using TdT labeling. Additionally, 

POLIC-PTP foci positive cells were monitored during TbPOLIB RNAi. Uninduced and 

induced (day 4 and 8) cells were fixed and labeled with DAPI, anti-protein A and TdT. In 

an uninduced population, 27 % of the cells are TdT-positive and have the same labeling 

patterns as described in Fig 3 (Fig. 2A). In these cells, POLIC-PTP foci colocalized with 

gapped/replicating minicircles at the antipodal sites (Fig. 2B, day 0). After 4 days of 

TbPOLIB RNAi, the number of TdT-positive cells decreased to 17% (Fig. 2A). 

Additionally, the population of cells with POLIC-PTP foci decreases to 11% after 

TbPOLID silencing (Fig 2C). On day four of the induction, POLIC-PTP foci were 

present only in TdT-positive cells (Fig. 2B, day 4), which represented 17% of the 

population (Fig. 2B and C). Nearly all cells were negative for TdT labeling and POLIC-
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foci on day 8 of the induction (Fig. 2).  These data suggest that accumulation and 

assembly of POLIC-PTP foci to the site of replication is dependent on POLIB expression 

and kDNA replication. 
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Figure 1 – Effect of TbPOLIB RNAi 

(A) TbIC-PTP/SLIB clonal cell P1A8 was grown in the absence (open circles) or presence (filled 
*o4)3+*J$"=$ 9+93)<7<#';+$HT$?(^5#J$ 9"$+823+**$ 9B+$TbPOLIB stem-loop dsRNA. Cell density was 
plotted as function of cumulative doublings. Values represent the mean of six independent RNAi 
induction experiments. (B and C) qRT-PCR analysis of the relative amounts of TbPOLIB, 

TbPOLIC, TbPOLID, TopoII, UMSBP and PIF1 mRNA levels following two days (D2) of 
TbPOLID RNAi. Uninduced (day 0) GAPDH was used as our normalizer. Normalized values 
from induced samples were compared against uninduced controls for the relative expression 
levels of mRNA. Values represent the mean from three separate experiments. Error bars represent 
the SEM. (D) Quantitation of kinetics of kDNA loss by microscopy. More than 200 cells per 
timepoint were scored for normal sized kDNA (open circles), small kDNA (filled squares) or no 
kDNA (open squares). Others (filled triangles) represent cells with abnormal karyotypes. Values 
represent the mean from three independent experiments. Error bars represent the SEM. 
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Figure 2 – Effect of TbPOLIB RNAi induction on POLIC-PTP localization 

Quantification of TdT-positive cells after 4 and 8 days of TbPOLIB silencing (200 cells per time 
point). (B) Detection of POLIC-PTP (red) and gapped/replicating minicircles after TdT labeling 
(green) during TbPOLIB silencing.DAPI-stained DNA is shown in blue. Representative images 
)3+$*B"C;@$W<)#+$6)3.$TS$?5@$ H\J Quantification of TdT-positive (dark grey) and TdT-negative 
(lighter grey) in uninduced and POLID RNAi-induced cells (Day 4, 6 and 8).  Values represent 
the mean of three separate experiments (200 cells per time point). Error bars represent the SEM. 
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2. POLIB knockdown affects POLIC protein levels 

 We investigated if POLIC-PTP protein levels were affected by perturbation of 

TbPOLIB. POLIC protein levels and other mitochondrial proteins (mtHsp70 and 

alternative oxidase (TAO)) were monitored in uninduced and induced TbIC-PTP/SLIB 

cells (day 4, 6 and 8) (Fig. 3A). Membranes corresponding to three separate experiments 

were probed with PAP, anti-TAO, anti-mtHsp70, and anti-tubulin (Fig. 3A). Protein 

levels from a representative induction are shown in fig 3A. The intensities of each band 

C+3+$ o4);9'='+:$ 4*';($ Y5)(+$ L$ );:$ C+3+$ ;"35)#'e+:$ C'9B$ 9B+$ <"33+*2";:';($ %$ 9464#';$

control (Fig. 3B). No significant changes in POLIC-PTP protein levels were detected at 

day 4 (8%) and 6 (2%) of TbPOLID silencing (Fig. 3B). At this time point, TAO and 

Hsp70 show a slight decrease of less than 10%. After 8 days of TbPOLIB RNAi, a 

dramatic decrease in POLIC-PTP proteins levels was detected (66%) (Fig. 3B). However, 

mitochondrial proteins TAO and Hsp70 were not dramatically affected. We did not detect 

proteolytic processing of POLIC-PTP at different time points of the induction (data not 

shown).  Here we demonstrate that following TbPOLIB silencing POLIC-PTP protein 

levels were dramatically affected.   
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Figure 3 –  POLIC-PTP protein levels following TbPOLIB silencing 

 
(A)Western blot detection of POLIC-PTP, alternative oxidase (TAO) and Hsp70, during 
TbPOLIB RNAi. Cells were harvested 4, 6, and 8 days post-induction, and 5x106 cells were 
loaded into each lane. The membrane was probed with antibodies against each individual protein. 
(B) Quantification of the relative protein levels during TbPOLIB RNAi. Values were normalized 
against tubulin. Values represent the mean of three independent induction experiments. At day 8, 
a statistical significant decreased in POLIC-PTP protein levels was detected (p<0.01). Error bars 
represent the SEM. 
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IV. Discussion 

 

We conducted RNAi experiments of TbPOLIB to evaluate if perturbing TbPOLIB 

has an impact on TbPOLIC foci. The localization of POLIC-PTP was evaluated in a 

single expresser cell line that expressed the stem-loop vector for TbPOLIB RNAi 

silencing. Previously, we demonstrated that TbPOLIB silencing resulted in growth 

inhibition, kDNA loss, and a decline in nicked/gapped (replicated) minicircles species 

(2). A similar phenotype for after TbPOLIB silencing was detected in TbIC-PTP/SLIB 

cells. Consistent with previous reports we detected growth inhibition and an increase in 

small kDNA by day 4 of the induction. Importantly, mRNA levels for TbPOLIC, 

TbPOLID and few kDNA replication proteins were not affected (Fig. 1B and C) 

indicating that observed phenotype is specifically due to downregulation of TbPOLIB.  

Moreover, using TdT in situ labeling we demonstrated that TbPOLIB silencing caused a 

rapid decline (Day 4) of gapped/replicating minicircles at the antipodal sites, indicating 

that minicircle replication is impaired (Fig. 2A).  POLIC-PTP foci were also affected 

during TbPOLIB silencing (Fig. 2B). At day 4 of the induction, only cells in which 

replication was not yet inhibited (TdT positive) had POLIC-PTP foci (Fig. 2B). POLIC-

PTP was never detected in cells with small kDNA and no kDNA. Gradual accumulation 

of TbPOLIC foci to the antipodal sites seems to depend on the expression of the two 

essential DNA polymerases (TbPOLIB and TbPOLID). It is not clear how individual 

silencing of TbPOLIB and TbPOLID affects TbPOLIC protein stability. 
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