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run on a Sun 3/160 ~ 1 inn ..
•1200 tlmes that required for evaluating N , 125

system using minimum image convpnU.n"•age convention, and over 15 times the time
required for evaluating the clusters of N mnnS 1000 system with minimum
image convention.

The linear extent of clusters at * = 0.30 is shown in Figure
(3.10) for fixed boundary conditions and the minimum image convention at
various system sizes. For small clusters whose linear extent is only a
few particle diameters and much less than half the box length, there is

no difference in the linear extents measured using different system
sizes and boundary conidtions. However, the measured linear extents of

clusters of about N = AO particles depend sensitively upon the system
size and type of boundary condition. The linear extent constructed from

the minimum image convention (filled symbols) is quite sensitive to

system size, but approaches an apparent infinite system size results for

N - 1000. In contrast, the fixed periodic boundary conditions (open

symbols) construct measures with considerably less system size

dependence; however, the linear extents are slightly more scattered

indicating that large clusters are not sampled as often as in

configurations evaluated with periodic boundary conditions.

It is not known how the linear extents calculated with the

replicate image convention behave with system size, however, it is of

interest to compare the N = 125 results using different boundary

conditions, Figure (3.11). The replicate image convention result is

most similar to the N = 125 fixed boundary condition results, while the

linear extents recorded from the N = 125 minimum image convention are
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lllrlL ^ SyStem
1

SlZe and b™nd *ry condition dependence of theaverage linear extent, l(s), versus cluster size, s, for randomlycentered spheres at * = 0.30, found from simulation using fixed
conditions (open symbols) and periodic boundary conditions In theminimum image convention (filled symbols). Fixed boundary conditions:"

d^monLr 2
les

'
inverted triangles); N = 216 particles (opendiamonds); N 512 particles (open circles). Periodic boundaryconditions in the minimum image convention: N = 125 particles (filledinverted triangles); N 216 particles (filled diamonds); N = 512particles (filled circles); N = 1000 particles (filled squares).
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Figure (3.11): Boundary condition dependence upon the average linear

spne
e

r s at T^O T i

Bl"' ?or randomly^ S«Sspheres at * = 0.30, found from simulation of N = 125 particles us ins

condit.r " ^°
ndUi °nS inv-ted triangles), periodic boundary"conditions m the minimum image convention (filled inverted triangles)

mnLri
°? 1C bTdfy Td

j
ti0nS in the "plicate image convention(rilled triangles), and from simulation of N = 1000 particles usinpminimum image convention (line).
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co„Slderably smaller> probably as . resuu o£ cius(er
«*. that whlle the repllcate lmage resuUs aoseiy ^^^^
apparent lnflnlte system si2e> (he Unear exten(s ^ Hideiy
Contrast this with the results of the N - 1000 .inime m . 1000 minimum image convention
(line), containing the least amount of scatter H 0 *scatter, descrihing clusters of
larger sizes, and costing considerahlverably less computer time than the
replicate image convention simulation.

While the replicate image convention minimizes finite size
dependence of linear or spatial measurements of clusters, it identifies
the same distribution of cluster sizes as does the minimum image
convention. Thus, neither method is advantageous for reducing the
influence of the total number of particles upon the mean cluster size.
Figure (3.12) displays the inverse mean cluster as a function of system
size for various voume fractions of randomly centered spheres. Notice
that as * increases towards the percolation threshold, * the size

dependence becomes more significant.

The overwhelming disadvantage to the replicate image convention is

its long computational time and intense storage requirements. It may be

possible to decrease computational time by finding an efficient means of

evaluating Equation (3.14) similar to the simple algebraic statement of

the minimum image convention, Equation (3.13). Since the predictions

obtained using the two conventions are similar, the remainder of our

simulation work will be accomplished using the minimum image convention.
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Figure (3.12): Inverse mean cluster size, S
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tlTcUnl?\
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-

ra^°'nly cen ^red spheres found for various volumetractions, * using the connectivity-matrix cluster counting algorithmand periodic boundary conditions. *= 0.1 (circles), * = 0.15 (squares),

(d
,=

d )

(triangles)
' *

= °' 25 (Averted triangles), * = 0 3D
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E. Summary

in this chapter we have described the develops of a generalized
cluster counting algorithm designed for assembl ies of continue
particles of arbitrary shape, interpar ticle potential, and connectivity
criteria. The algorithm is based upon a new method of tallying
connectedness in a matrix notation where operations on the matrix
recover information about indirectly connected pairs and cluster
listings. We have implemented the algorithm using fixed boundary
conditions and periodic boundary conditions in the minimum and replicate
image conventions, showing that the boundary conditions which best
minimize finite size effects at minimal cost to computational time and

storage requirements is the minimum image convention. This

connectivity-matrix algorithm and the minimum image convention serve as

an essential tool in assessing present theories of particle

connectedness, Chapter IV, and in developing new theories, Chapter V.

Although developed in the context of continuum models, the

connectivity-matrix method can also be applied to lattices. The

Hoshen-Kopelman algorithm is most efficient for evaluating lattices

where the range of connectedness is limited to nearest neighbors;

however, if different connectedness criteria is used, then the Hoshen-

Kopleman algorithm must be completely recoded. The connectivity-matrix

algorithm on the other hand, may be slightly less efficient for lattice

configurations, but it can be applied to lattice systems having

arbitrary connectedness criteria without appreciable recoding.
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CHAPTER IV

COMPARISON OF MONTE CARLO RESULTS AND INTEGRAL EOUATION PREDICTIONS

FOR ASSEMBLIES OF PERMEABLE AND PARTIALLY PERMEABLE SPHERES

Prior to the development of the connectivity-matrix method,

presented in Chapter III, cluster counting in continuum configurations

was quite time consuming, making the compilation of the pair

connectedness function a considerable undertaking. For this reason,

most comparisons between theoretical prediction and simulation results

were restricted to the location of the percolation threshold (with the

exception of the work of Seaton and Glandt, 1987). Consequently, an

understanding of the performance of the closure approximation to the

connectivity Ornstein-Zernike integral equation was rather incomplete.

This chapter describes one of the first comparisons of theoretical

prediction with simulation results and assesses the Percus-Yevick

approximation over the full pre-percolation density regime for two

models of assemblies of penetrable particles. The first model system is

fully permeable or randomly centered spheres of diameter X, where two

such spheres are considered to be connected by virtue of particle
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overlap. The second system is the concents shell (or extended sphere)
-del where t he particles are hard spheres of diameter . centered within
a pe^eable concentric sphere of diameter a + X, Figure (4 . 1} . The hard
spheres of two concentric shell particles exclude volume, i.e., the hard
core portion cannot overlap, and direct connectedness is hy virtue of
overlap of the permeable, concentric shell. We retain our earlier
definition of system volume fraction: , is tne number density q£
particles ti.es the volume enclosed by the permeable surface. For the

concentric shell model we can define the volume fraction of hard core,

denoted ^ as
[ a / (a + X)

,

3
In the model systems we investigate>

we limit our studies of concentric shell particles to X = 0.1a and X =

0.5a.

Besides the comparison of theory and simulation, the randomly

distributed sphere and concentric shell models also provide clues as to

how changes in the connectedness criteria affect cluster measures.

Using the overlap criteria of connectedness, these models can be

interpreted as simple hard core models having different connectedness

criteria. For example, the concentric shell model of volume fraction <j»

represents a hard core system of composition * where two hard core

particles are connected if they reside within a minimum distance X + a.

Increasing the width of the concentric shell, X, and maintaining

constant hard core diameter, a, corresponds to increasing the range of

connectedness for the hard sphere model at constant composition of hard
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of » vni
'

1

S
^
hematlc of concentric shell particles, each consistingof a volume excluding core of diameter cx, surrounded by a permeableshell of thickness A/2. The volume fraction * is defined as the numberdensity of particles, p, times the volume enclosed by the permeablp

surface. The volume fraction of hard cores
<f> , is given by

[o / (a + X)]
3

<f>.
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cores, V Moreover, the randomly distributed sphere model might be

considered as a model of randomly placed points, where two points are
connected if they reside within a minimum distance X.

The remainder of the Chapter is organized in the following manner.
In Section A, we describe the Monte Carlo simulations, and list
morphological features that are not available from theory - these are
system size dependence upon the mean cluster size, found directly from
cluster counting, and the linear extent of clusters. In Section B, we

present the simulated pair connectedness functions and compare these

results with the predictions of the C-OZ integral equation in the PY

approximation. Based upon this comparison we assess, in Section C, the

performance of the PY approximation for particle systems of variable

penetrability over the full pre-percolat ion density regime.

A. Monte Carlo simulation

The simulations were started with the particles on the sites of a

simple cubic lattice and were carried out for various values of
<f> below

the percolation threshold. At each value of <>, the simulations were

carried out using several different numbers of particles, N = 64, 125,

216, 512, and sometimes 1000, in order to estimate finite size effects

and to extrapolate to infinite system size results. Each simulation

consisted of 10,000 moves per particle, where a move constitutes a

translation of arbitrary magnitude. For the concentric shell model, any

move rendering an overlap of hard cores is not accepted and recorded as
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a move of zero translation. Eaullioration was considered complete after
500 moves per particle. The morphological characteristics were
evaluated using the connectivity-matrix algorithm at intervals of 5
moves per particle. The interparticle separations were evaluated using
periodic boundary conditions with the minimum image convention.

Tables (4.1) through (4.3) list simulation data for the inverse

mean cluster size, S"
1

, for the permeable sphere model and the
concentric shell models with X . 0.1a and X . 0.5c. This data is listed
for various system sizes and includes extrapolated values for infinite
system size. The system size dependence of both the mean cluster size
and the pair connectedness function is similar in the randomly centered
and concentric shell models, indicating that the size dependence is

influenced by the minimum image convention and not by the particle

model. Using values of S"
1
extrapolated to infinite systems size, and

plotting these values as S"
1/2

versus we have estimated and included

in the tables the percolation threshold of the respective systems.

Figure (4.2) displays the cluster size distribution of clusters of

size, s, less than 50 for randomly centered spheres at = 0.10 and 4> =

0.30. As the volume fraction of particles is increased, larger clusters

occur with higher probability, and the distribution becomes assymptotic

to zero at large s as the percolation threshold is approached. At f =

0.10 the results are independent of the system size and only the results
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Table (4.1): Inverse mean cluster size s"
1

nf a ,spheres from Monte Carlo simulation, listed \or\°\
™nd™ 1 * entered

At each density the value obtained by ex rapolatl™^ *ystem slzes
>

N.
results to 1/N = 0 is shown For ««iI«!

P
S ! "? finite system size

individual system sizes are M shown p ? den
f
Ules

'
resu *ts for the

is 4> = 0.35.
0Wn

' Estlmated percolation threshold

N -1

0. 10

0.15

0.20

0.25

0.30

64

125
216
512
N -> 00

N -> °°

64
125
216
512
N -> 00

N -> oo

64

125
216
512
N -> 00

0.435
0.434
0.431
0.432
0.431

0.652

0.160
0.155
0. 149

0.144
0.141

0.064

0.0476
0.0353
0.0278
0.0214
0.0164
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Table (A. 2): Inverse mean cluster size S
-1

~fVith X = 0.5c from Monte Carlo Simula ion ] ist'ed'T^^ SheU m°del
sizes, N. At each density the value obtJn^ k

° r varlo"s system
system size results to 1/N = 0 h

3 by ^^olating finite
results for the individual system sill's areV^^ densities

>

percolation threshold is
<f>

= 0.33.
0 shown> Estimated

* N
s
-l

0.10 1 N -» oo
0.519

0.1331 N -> 00
0.394

0.20 64 0.208
125 0.193
216 0.188
512 0.184
N -> oo 0.180

0.2662 N -> oo 0.046

0.2827 N "> oo 0.025

0.3181 125 0.0022
216 0.0015
512 0.0008
N -> oo 0.0003
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-1Table (4.3): Inverse mean cluster sizewithe X = 0.1a from Monte Carlo iImM.H ' °, •
shell model

sizes, N. At each density the value oh a ned' , ^ f ° C Va *" i0US S^m
system size results to 1/N ! n

b
\ extr?Pola ^ng finite

results for the individual system sizes T.'
Se

J
ected densities,

percolation threshold is <b = 0 41 ° shown
- Estimated

p
*»«••

N

0.10 N * 00
0.778

0.20 64 0.508
125 0.512
216 0.512
512 0.508
N -> 00 0.510

0.2662 N -» oo 0.310

0.30 64 0.224
125 0.215
216 0.208
512 0.203
N -> 00 0.200

0.35 N -> 00 0.063

0.40 125 0.0228
216 0.0151
512 0.0082
1000 0.0046
N » oo 0.003
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Figure (4.2): Cluster size distribution, n*(s) = n(s) / £ n(s) versus

cluster size, s, of randomly centered spheres at
<f>

= 0.10 and <j> = 0.30.
found from simulation using various system sizes, N. N = 512 particles
at <j> = 0.10 (triangles), N = 512 particle system at

<f>
= 0.30 (circles).

N = 216 particle system at
<f>

= 0.30 (diamonds), N = 125 particle system
at c|> = 0.30 (inverted triangles), N = 64 particle system at * = 0.30
(squares)

.
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for N . 512 have been given. On t he other hand the results tor » . 0 30
show substantial syste. size dependence, especially for large clusters
The corresponding results for the concentric shell models shov si.ilar
behaviour.

To investigate whether the clusters in these systems are ramified
or compact we have calculated the average linear extent defined as the
average maximum interpar tide distance in a cluster as a function of the
size of the cluster. This is displayed in Figure (4.3) for the three
model systems with * . Q.20. The linear extents of clusters of the

concentric shell models are larger than those for the randomly centered

spheres. Similarly, for the concentric shell models the values for X =

0.1a are greater than those for X , 0.5a. These observations reflect

the fact that increasing the size of the hard sphere core expands the

clusters relative to the randomly centered spheres at a fixed value of

B. Comparison of simulation results with integral equation predictions:

Pair connectedness function and related quantities

The simulations described in the previous section also provide the

pair connectedness function using the method outlined in Chapter II.

The simulated pair connectedness functions are reported for the largest

system sizes explored, and hence, are not appreciably affected by finite

system size, except near the percolation threshold. In this section we
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s

Figure (4.3): Average linear extent, l(s), versus cluster size, s, for
randomly centered spheres (circles), concentric shell model with X =

0.5ct (squares), and concentric shell model with X = 0.1a (triangles) at
<f> = 0.20, from simulation using N = 512 particles.
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conpare the simulated pair connectednss ^ ^
predictions of the C-OZ equatio„ in the PY approxlmation . „, ^
compare the simulated mean cluster size results, obtained directly from
the cluster counting procedure, with the predictions obtained from the
integral equation method, described in Chapter II.

1. Randomly centered spheres

We have obtained solutions of the PY approximation to the C-OZ

integral equation for randomly centered spheres using the method of

Baxter (1968) as described by Chiew and Glandt (1983). The theoretical

predictions for three densities are shown in Figure (4.4) together with

the corresponding Monte Carlo data. The agreement between theory and

simulation is very good at the lowest density, but becomes progressively

worse as the density is increased towards the percolation threshold.

The pair connectedness function predicted by the PY approximation

underestimates the simulation results for r > X. This is consistent

with the PY prediction of a percolation threshold,
<J»

p
= 0.50, that is

considerably larger than that found by other methods, as for example, by

computer simulation, $ ~ 0.36. The pair connectedness function found

from the simulation of N = 512 particles at 4> = 0.30 probably still

retains considerable finite size effects, particularly for r > 2X, the

apparent infinite system size p(r) being slightly lower. However, this

deviation brought about by finite size effects is considerably smaller

than the deviation between the apparent infinite system size results and
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Figure (4.4): Pair connectedness function, p(r), for randomly centered
spheres at

<f> 0.10, 0.20, and 0.30, found from the C-0Z integral
equation in the PY approximation (lines) and Monte Carlo simulation
using N = 512 particles (symbols).

<f>
= 0.1 (circles); <j> = 0.2

(triangles); and
<f>

= 0.30 (diamonds).
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the PY prediction. Figure (4 . 5) shous t „. corresponding ^ ^
inverse mean cluster size as a function o£ density; the theoretical
predictions are greater than the simulation results a, all densities.

2. Concentric shell model

For the concentric shell model, we obtained solutions of the PY

approximation using the expressions given by DeSimone et al. (1986). A

comparison between the theoretical predictions and simulation results is

given in Figure (A. 6) and Figure (4.7) for X = 0.1a. For r < a + X,

Figure (A. 6), the pair connectedness function is simply the pair

correlation function, h(r), for hard spheres with volume fraction + .

<y

The agreement between theory and simulation is very good since
<f> is
o

low, reflecting the accuracy of the PY approximation in systems of hard

spheres. For r > a + X, Figure (4.7), the discrepancies between

simulation and theory are not large in absolute terms except for r

slightly greater than a, i.e., the contact range. However, this

discrepancy becomes apparent in the second moment of these functions and

consequently will be evident in the predicted mean cluster size.

Moreover, like the randomly centered spheres, the difference between the

theoretical prediction of p(r) and the simulation results increases as

the percolation threshold is approached. Figure (4.8) shows the

corresponding comparison for X = 0.5a. For r < a + X the agreement

between theory and simulation is better, reflecting the increased
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Figure (4.5): Inverse mean cluster size, S , as a function of volume
traction,

<f>, for randomly centered spheres, found from the C-OZ integral
equation in the PY approximation (line) and extrapolated from simulation
results of various system sizes (symbols).
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Figure (4.6): Pair connectedness function, p(r), for the concentric
shell model with X = 0.1a at <j» = 0.1331, 0.2662, and 0.3563 for a < r
cr + X, found from the C-OZ integral equation in the PY approximation
(lines) and Monte Carlo simulation using N = 512 particles (symbols).

<f>

= 0.1331 (circles),
<f>

= 0.2662 (squares), and <j> = 0.3563 (diamonds).
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air connectedness function, p(r), for the concentric
shell model with X = O.lo at

<f>
= 0.1331, 0.2662, and 0.3563 for r > o I

A, found from the C-OZ integral equation in the PY approximation (lines)
and Monte Carlo simulation using N = 512 particles (symbols).

<f>

-

0.1331 (circles),
«f> = 0.2662 (squares), and <j> = 0.3563 (diamonds).
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Figure (4.8): Pair connectedness function, p(r), for the concentric-
shell model with X = 0.5a at

<f>
= 0.1331 and 0.2662, found from the C-OZ

integral equation in the PY approximation (lines) and Monte Carlo
simulation using N = 512 particles (symbols).

<J>
= 0.1331 (circles) and

4> = 0.2662 (squares).
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ions or
<J>

o

accuracy of PY approbation at smaller hard core frac,

However, for r > „ . x tHe differences het.een theory and slmulation „„
fairly significant as the percoiatlon threshold is approached.

in Figure (4.9, the theoretical predictions and station results

of the inverse mean cluster <H 7*> q" 1
^cluster size, S

,
are compared over the density

range for the two concentric shell models On™muueis. once again the PY

approximation yields values of S"
1

that are consistently higher than the
simulation results, reflecting the statically lower values of the
pair connectedness function obtained fro. theory. Nevertheless, the
overall shape of the curves is well reproduced by the PY approximation.

The model systems listed in order of increasing hard core content
are: randomly centered spheres, the concentric shell model with X =

0.5a, and finally the concentric shell model with X . 0.1a. However, as

shown in Figure (4.10), a composite of Figures (4.5) and (4.9), the mean

cluster size is not necessarily monotonic with hard core content: at

low
<f> (e.g., j . o.lO), the mean cluster size decreases with increased

hard core content, but at moderate + (e.g., * > 0.25), the mean cluster

size reaches an apparent maximum as the hard core content is increased.

This non-monotonic behavior was first noted in the percolation

thresholds of these same models by DeSimone et al. (1986), and is

apparent in our percolation threshold predictions as well, Table (4. A).

The percolation thresholds from simulation are, in order of increasing

hard core content, 0.35, 0.33, and 0.41. This hard core content
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Figure (4.9): Inverse mean cluster size, S~\ versus volume fraction.
V n ^ C°nCentr

n

1C She11 m0del With X " °> 5a (inverted triangles) and
" Y

,ls
.

( tr iangles) found from the C-OZ integral equation in the PYapproximation (lines) and extrapolated from simulation results olvarious system sizes (symbols).
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