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ABSTRACT

ELASTOMERS BASED ON POLYESTERS

PRODUCED BY THE BACTERIUM PSEUDOMONAS OLEOVORANS

SEPTEMBER 1993

KARLA DREW GAGNON, B.S., DUKE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Drs. Richard J. Farris and Robert W. Lenz

This dissertation has explored the structure property relationships of as extracted

and chemically modified polyesters produced by the bacteria Pseudomonas oleovorans.

The as extracted polymers are considered biodegradable thermoplastic elastomers. The

two polymers studied were: poly(p-hydroxyoctanoate), PHO, and poly((3-

hydroxyoctanoate-co-(3-hydroxyundecylenic acid), PHOU.

A fed batch biosynthesis was developed and the polymer yield was increased

tenfold by optimizing feeding times of the carbon source(s). Batch-to-batch consistency

was evaluated using GC, GPC, DSC, and TGA techniques.

Mechanical property evaluations included the determination of tensile properties,

tensile set, and hardness. The physical network structure was elucidated through

equilibrium modulus determination coupled with rubber elasticity theory. The testing

results revealed a material that compared well to other commercially available

thermoplastic elastomers (also tested) but the elastic recovery was relatively poor. A

thermal analysis of stretched samples provided possible explanations for the moderate

elastic response exhibited by the material. The adhesive properties of PHO to paper wei

also evaluated and compared to several commercial tapes.

vi



Crystallization studies were conducted to understand the kinetics of crystallization

and the effect of thermal history on the material properties. Several nucleating agents

were evaluated to try and increase the rate of crystallization.

The bacterial polyesters were chemically crosslinked in order to improve the elastic

recovery. PHO, a totally saturated polymer, was crosslinked with a variety of peroxides

both with and without multifunctional coagents. A controlled level of unsaturation was

incorporated into the polymer by growing the bacteria on a mixture of carbon sources

yielding PHOU. Using these reactive moieties, various crosslinking reactions were

evaluated including sulfur vulcanization in addition to the peroxide crosslinking reactions.

The modified polymers displayed better elastic response than the as extracted

thermoplastic elastomer. The network structure was evaluated using a dynamic

mechanical analysis technique called impulse viscoelasticity.

Preliminary results of a study aimed at determining if PHO and PHOU biodegrade

and the effect of crosslinking on the biodegradation of these materials are included. The

study is being conducted jointly with the Microbiology Department at the University of

Massachusetts, Amherst.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

The existence of elastomers in plants has been known since the 1500's. 1 Natural

rubber continues as a main source of elastomeric material even with the advent of many

synthetic elastomers due in part to the renewable resource, plants.

Since the 1920's polyesters, generally known as poly([5-hydroxyalkanoates),

(PHAs), have been known to accumulate in various bacteria.2 The polymer accumulates

in intracellular inclusion bodies as seen in Figure 1.1. The polymer has been shown to be a

reserve carbon and energy source for the microorganisms 3 much like fat is for animals or

starch is for plants. These researchers found that polymer accumulation was triggered

when the environment of the bacteria either lacked, or was limited in, an essential nutrient

(such as nitrogen, in the form of ammonium) but had an excess of a carbon food source

(such as glucose). The phenomenon is similar to a bear accumulating fat because of the

environmental stress caused by the approach of winter.

Bacterial thermoplastic polyesters have been studied for approximately 70 years.

The most widely recognized is poly(p-hydroxybutyrate), PHB, which was shown to be a

brittle thermoplastic.4 Since 1981 two PHAs, PHB and the more useful P(HB/HV), have

been commercially available from ICI under the tradename Biopol. 5 The copolymer

poly((3-hydroxybutyrate-co-p-hydroxyvalerate), P(HB/HV), is produced by the bacterium,

Alcaligenes eutrophus, when grown on a mixture of glucose and propionic acid. The

processed material has thermal and mechanical properties similar to polypropylene. 5 ' 6

The material is presently being marketed in Europe in the form of a shampoo bottle. 7



a) computer enhanced optical micrograph of Pseudomonas oleovorans living cells, 2000X,

bulging with polymer inclusion bodies.

b) thin section of another PHA accumulating bacteria, Rhodospirilus rubrum, 30,000X.

Figure 1.1 Bacteria with accumulated PHA.

2



What nature makes, nature destroys is the logic behind investigating naturally

produced biopolymers as a source of truly biodegradable materials. Biodegradation is a

real property advantage at a time when landfills are near full and plastic packaging is being

blamed, fairly or not, 8 for a large volume of the waste stream.

Because PHAs are naturally produced and degraded by bacteria in response to

environmental changes, the polymer is inherently biodegradable. When PHB or

P(HB/HV) is extracted and processed, these polymers have been shown to biodegrade in

various environments.6
"7 ' 9 " 14 Studies have indicated certain bacteria excrete polymer

degrading enzymes (depolymerases) which enable the bacteria to use the processed

polymer as their sole exogenous carbon source 15 > 16 and fungus colonate the materials

extensively. 17

Besides being biodegradable, the polyesters produced by bacteria have the

advantage of using renewable food sources such as glucose. Sometimes a food source is

found which is considered part of a commercial waste stream; such as the use of whey, a

waste product in cheese manufacturing. 18

But, what if carbon food sources were used that are not normally found in the

environment yet the bacteria could be coaxed to use these substrates for polymer

production? Or, what if chemical modification was done on the extracted polymers to

enhance the material's mechanical properties? Could nature still destroy these unusual or

modified materials?

The concept of chemical modification brings up the example of vulcanized natural

rubber. Unfortunately, few biodegradation studies have been conducted on unmodified

natural rubber, the most prevalent elastomeric biopolymer. One review article 19 reported

that thin strips of dried natural rubber were completely decomposed when buried in soil

for 3 to 4 weeks by an organism identified as a species of the genus Streptomyces. Several

species of Actinomycetes have also been identified as able to biodegrade unadulterated

natural rubber.



Insufficient biodegradation studies on modified natural rubber have been

conducted. One microorganism, Nocardia asteroides, has been identified as able to

'attack' vulcanized rubber but it was not clear if the rubber itself or additives of vegetable

origin were attacked.20 Mainly the degrading effects of ozone, heat, and ultraviolet

radiation have been studied with the focus on identifying chemical compounds which

could be added to slow down the degradative processes.21 An interesting article tells of a

downed airplane that was found with a natural rubber tire still inflated after 44 years at the

bottom of Loch Ness under 70 meters of fresh water. 22 This finding implies that at least

in that water environment, organisms capable of degrading vulcanized, carbon black filled

natural rubber were not present.

Therefore, biodegradation studies of all new and modified PHAs must be

considered an essential part of the material evaluation process. Understanding of the

mechanism of enzymatic attack might also guide the type of modifications that can be

done to a material without destroying the capacity of the material to undergo enzymatic

degradation.

This dissertation has focused on the bacterium, Pseudomonas oleovorans, which

produces polymers exhibiting elastomeric behavior 23 when grown on various long chain

carbon sources. 23-39 The goal of this research is to enhance the understanding of the

structure-property relationship behind the elastomeric behavior. Both as extracted and

chemically modified PHAs were studied. Chemical modification was conducted in an

attempt to improve the elastic response of the polymer.

1 .2 Background on Flastomeric Polymers

Elastomeric behavior of solids which can be described as the ability of a material to

be extended up to several hundred percent and then immediately recover upon release of

the deforming stress is unique to polymers. For a material to behave in this way, three



general conditions are necessary. The material must be composed of long chain molecules

which are essentially freely jointed, only weak secondary forces between molecules are

present, and a three dimensional network of interconnected chains is present due to an

interlocking of the molecules at a few places along their length.40 The nature of the

junction points subdivides the materials into thermoplastic elastomers (physical crosslinks)

or vulcanized elastomers (chemical crosslinks).

1.2.1 Crosslinked or Vulcanized Elastomers

Vulcanized elastomers are the more prolific elastomers. This class is also known

as chemically crosslinked or thermoset rubbers. Vulcanized natural rubber is the first and

still most important example in this class. Several books expound upon the interesting

history of natural rubber and the vulcanization process first discovered in 1836 by

Goodyear. 1 '21 *41 The interlocking points which produce a network are formed by

covalent bonds during the curing step of crosslinking. Figure 1 2 depicts an idealized

structure of a vulcanized elastomer.

Fig. 1.2 Idealized structure of a vulcanized elastomer.
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The materials of this class generally exhibit low tensile set and can withstand high

temperatures during use. A high use temperature is possible because the crosslinks are

permanent covalent bonds and heating will not produced a polymer capable of flow.

Excessive heat will simply decompose the covalent bonds and destroy the network and

basic polymer. Another feature of crosslinked elastomers is that the materials will not

dissolve but simply swell when in contact with solvents. Also, very soft rubbers are

achievable since crosslinking can be controlled to produce materials with very large

molecular weights between crosslinks.

The raw materials are relatively inexpensive (although the synthetic rubber stocks

are from petrochemicals), but processing these materials requires several time consuming

steps which add cost to the final product. The material must be compounded with

appropriate curing agents, formed into the desired shape, then heat cured. The presence

of a covalent network in the cured material precludes recycling of scrap and finished

goods. Automobile tires are produced from vulcanized rubbers and illustrate the problem

associated with the disposal of crosslinked materials.

1.2.2 Thermoplastic Elastomers (TPEs)

Thermoplastic elastomers are a more recent development. A good history of TPE

development can be found in the book edited by Legge ex. a/..
42 The network of TPEs

are formed from reversible physical crosslinks. These physical crosslinks can be ionic

41

bonds, hydrogen bonds or can form during solidification of block copolymers. The most

common TPEs are those composed of block copolymers where chemically different blocks

form a two phase morphology during solidification. Typically one block called the hard

block either vitrifies or crystallizes forming the network of physical crosslinks while the

soft blocks remain amorphous and above their glass transition temperature. Either

6



triblock or multiblock copolymers have been found useful as TPEs. The morphology of

the triblock or multiblock copolymers are shown in Figure 1.3.

There are six classes of commercial TPEs: styrenics, urethanes, copolyesters,

amides, olefinics, and elastomeric alloys with the first four listed being block copolymers.

The hard blocks can be glassy, as for styrenics and some urethanes, or crystallites as in

copolyesters, amides, and some urethanes. Table 1.1 summarizes the types of commercial

(and one non-commercial) TPEs.

a) long block TPE

b) short block TPE

Figure 1.3 Representation of different TPE morphologies.
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Table 1.1 Summary of the different types of thermoplastic elastomers.

CLASS OF TPE CHEMICAL
DESCRIPTION

STRUCTURE OR

MORPHOLOGY

amide multiblock crystallizable hard segment

copolyester multiblock crystallizable hard segment

elastomeric alloy miscible blend

immiscible blend

MPR - melt processable rubber

thermoplastic matrix with compatible

polymeric plasticizers

TPV - thermoplastic vulcanizate

thermoplastic matrix (minor component)

dispersed thermoset rubber (major

component)

styrenic triblock glassy hard segment

olefinic multiblock

immiscible blend

graft copolymer

stereoblock homopolymer: alternating

crystallizable (isotactic) and amorphous (atactic)

sections

thermoplastic matrix (minor component)

dispersed thermoset rubber (major component)

crystallizable grafts on amorphous backbone

urethane multiblock glassy or crystallizable hard segments
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TPEs do not have as high a use temperature as vulcanized rubbers because the

elastic network can be disrupted by heating the hard segments above their softening or

melting temperature or by dissolving the material in a solvent. This feature, however,

makes recycling of scrap and finished products possible.

In general TPEs exhibit high tensile or compression set. Very soft thermoplastic

elastomeric materials cannot be produced because a minimum amount of hard segments

must be incorporated to insure phase separation occurs. The starting polymers are more

expensive but these materials can be processed on conventional injection molding and

extrusion equipment and no cure cycle is required.

1.3 Background on Polv(B-hvdroxvalkanoates). PHAs

1.3.1 History of PHAs

In the mid-1920's, Lemoigne discovered that the lipid containing inclusion bodies

he observed in Bacillus megaterium were actually a polymer of B-hydroxybutyrate,

(PHB) 2 ' 43 '
44 with the chemical structure shown in Figure 1.4. During the 1950's and

1960's, many different bacteria were found to accumulate PHB. A list of genera known to

accumulate PHB is contained in the 1973 review by Dawes and Senior. 3

Figure 1.4 Chemical structure of poly(p-hydroxybutyrate), (PHB). The asterisk indicates

the chiral carbon which is in the absolute [R] stereoconfiguration..
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Workers experimenting with polymer extracted from activated sewage sludge

identified another major hydroxyacid repeat unit in the polymer, hydroxyvalerate. 45 The

name PHA, poly(pVhydroxyalkanoate), was used to describe this copolymer. See Figure

1.5 for the chemical structure of the P(HB/HV) copolymer.

CH3

I

CH
3 O CH2 O

—O—(^H-CH2
— —

^

H~CH2~^4

Figure 1 .5 Chemical structure of the copolymer P(HB/HV). The asterisk indicates the

chiral carbon which is in the absolute [R] stereoconfiguration.

Analysis of sewage sludge in 1983 by a capillary gas-liquid chromatographic

technique 46 resulted in finding the presence of at least 1 1 different beta-hydroxyacids.47

These findings indicated that polymers accumulated by bacteria were not limited to PHB

or PHV. The name PHA was adopted in 1983 to describe bacterially produced polymers

with the general repeat unit chemical structure depicted in Figure 1.6.

O—CH-CH9—C
J x

Figure 1.6 General chemical structure of the repeat unit for PHAs. The asterisk indicates

the chiral carbon in the absolute [R] stereoconfiguration.

10



Further investigation revealed different repeat unit structures could be attained in

Alcaligenes eutrophus when the bacteria was grown on certain substrates. 47-49 This

necessitated a change to the repeat unit designation. A number was now included which

designates the number of carbons in the backbone of the repeat unit. See Fig. 1.7 for

structures of these different PHAs.

Many different aerobic bacteria have been found to accumulate PHAs. The list of

PHB accumulating bacteria from Dawes and Senior 3 has been updated by Brandl 12 to

include all presently known PHA producing bacteria.

The most widely studied species that accumulate PHAs have been Alcaligenes

eutrophus and Pseudomonas oleovorans. These two species exemplify an interesting

divergence. A. eutrophus produces PHAs with relatively short chain substituents whether

grown on short or long chain carbon sources. P. oleovorans on the other hand can only

produce polymer when grown on carbon sources with at least 6 carbons. The PHAs

produced contain relatively long pendant groups. 32 This difference in pendant group

length results in different material behavior. The next section will focus on the polymers

produced by Pseudomonas oleovorans.

1.3.2 PHAs produced bv Pseudomonas oleovorans

In 1941, investigators discovered a bacterium capable of surviving in and on an

emulsion of cutting/lubricating oil and water in a machine shop. 33 The bacteria was

named Pseudomonas oleovorans since the bacteria resembled another type of bacteria

called a monas (hence 'pseudo' monas) and the bacteria survived on oil or fat ('oleo' - fat;

'vorans' - eater).

11



o

CH
3 O CH2 o O

—CU-CU2
—6^-0—tH-CH2

—C^-^—0—CH2-CH2-CH2-CH2—H^-
3HB 3HV 5HV

substrates: 5-chloropentanoic and pentanoic acids

O—CH-CH2—C-J-^O—CH2-CH2-CH2—C—

3HB 4HB

substrates: 4-hydroxybutyric acid or 7-butyrolactone

Fig. 1.7 Structure of PHAs with unusual repeat units produced by Alcaligenes eutrophus

grown on the substrates indicated. Polymers have been determined to be random

copolymers.

In 1983, while researchers were trying to optimize the production of 1,2

epoxyoctane by Pseudomonas oleovorans when grown on octane, intracellular inclusions

which looked like the commonly known reserve material PHB, were observed. 34 Upon

analysis, the material was found to be PHO, poly(p-hydroxyoctanoate). 24

The polymers produced by Pseudomonas oleovorans have been shown to have the

basic chemical structure as depicted in Figure 1.6.
24

>
25 The R group and n length have

been found to depend on the carbon source used as the growth substrate. The polymer

was found to be optically active 35 with all chiral carbons in the absolute [R]

stereoconfiguration 25 which indicates the polymer is 100% isotactic.
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The study of this organism and the PHAs produced have been investigated when

the bacteria was grown on C6 to C 12 n-alkanes 23 "27
, C8 to C 10 n-alkenes 25

-
26

, C x
to

C 16 n-alkanoic acids 30
, C 18 alkenoic acids 30

, C\ to Cjq sodium salts of n-alkanoic acids

28 ' 29
, and Cg to C\q alcohols. 30

'
31 A compilation of the results from the different

investigations including polymer characterization results are given by Lenz et. al..
32 The

main findings are summarized below.

1) Polymer was produced only on substrates with at least 6 carbons.

2) Except for hexane and heptane, when P. oleovorans is grown on a single

carbon source, a copolymer with at least 2 and up to 8 different repeat

units was produced.

3) The copolymers are random. 51

4) The chiral carbon in the backbone is in the absolute [R]

stereoconfiguration.25

5) For C6 to C9 substrates, the dominant repeat unit in the polymer contained

the same number of repeat units as the carbon source. The remaining

repeat units were usually multiples of two carbons more or less than the

growth substrate. This incorporation of several different repeat units has

been explained in terms of the beta-oxidation metabolism of the

organism.25 -
26 Sometimes, the repeat units contained one carbon less or

more than the substrate. An explanation in terms of metabolic

decarboxylation was given. 27

6) For C 10 to C 16 substrates, the even substrates showed preferential

accumulation of C8 units while odd substrates showed a preferential

accumulation of C9 repeat units.

7) The oxidation state of the substrate appeared not to effect the polymer

composition in one study 30 but another study indicated otherwise. 32

13



8) Alkene substrates produced a mixture of alkyl pendant groups and pendant

groups with terminal double bonds.

The flexibility of the organism to grow and produce unusual polymers on novel

substrates or co- substrates has been demonstrated. Co-substrates can be used to coax the

bacteria to incorporate repeat units from a non-polymer producing substrate if mixed with

a polymer producing substrate. 36 ' 38 ' 39 Polymers with various R groups including: an

unsaturated group 25-27, 36, 37
? a methyl branched group 38

, a phenyl group 35, 36
, a

cyano group 36
, a methyl ester group 36

, a benzyl ester group 36
, a cyclohexyl group 36

, a

hydroxyl group 36
, a bromo group 36 « 39

, a chloro group 14
, and a fluoro group 14

. See

Figure 1.8 for the chemical structures of these unusual polymers.

As the experiments with the organism continue and more exotic substrates and co-

substrates are tested, more unique polymers will undoubtedly be produced. The range of

material properties will also change because of the differing structures.

Poly(p-hydroxyoctanoate), PHO, the polymer produced when Pseudomonas

oleovorans is fed octanoic acid or sodium octanoate, was chosen for further investigation

because of the high polymer yield and high percentage of one type of repeat unit. The

chemical structure of PHO is shown in Figure 1.9.

Poly((3-hydroxyoctanoate-co-p-hydroxyundecylenic acid), PHOU, produced when

Pseudomonas oleovorans is fed a mixture of octanoic acid and 10-undecylenic acid, was

also included in this study because of the reactive vinyl group located as the terminus of

the pendant chain as shown in Figure 1.10. Although alkenes have been shown to produce

repeat units with olefin terminated pendant groups, 25 ' 26 neat 10-undecylenic acid

produced 100% olefin containing repeat units 36 whereas other alkenes did not. The 10-

undecylenic acid would facilitate the incorporation of a small number of olefin containing

repeat units.

14



Figure 1.8 Chemical structures of PHAs produced by Pseudomonas oleovorans with

unusual R groups. The iso-alkyl group and phenyl group polymers did not contain the

first repeat unit depicted in the chemical structure.
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C6

(10%)

C8

(86 %)

CIO

(4%)

Figure 1.9 Chemical structure of PHO with the percent composition of repeat units

indicated. C6 (3-hydroxyhexanoate, C8 p-hydroxyoctanoate, CIO (3-hydroxydecanoate.

C6-C10 C7,C9,C11

Figure 1. 10 Chemical structure of PHOU. C(#) indicates the number of carbon atoms i

the repeat unit.
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1.3.3 Uses for PHAs

Investigators have realized the potential uses for bacterially produced

thermoplastic polymers such as PHB and P(HB/HV). In the late 1950's and early 1960's,

W. R. Grace and Co. produced small quantities of PHB for commercial evaluation 6 with

ideas for the polymer including films, molded articles, surface coatings, fibers, and medical

uses such as sutures and films to support injured arteries as outlined in 2 patents. 52 > 53

ICI, however, was the first to commercially develop the biopolymers in 1981 5
-
54

'
55 and

have expanded the ideas for the uses of the material to include film moisture barriers for

diapers, seedling containers, and sheaths for protecting saplings. A myriad of medical uses

have been envisioned including controlled drug release for animals and humans, surgical

swabs, wound dressings, powdered glove lubricant, vascular grafts and bone fracture

fixation plates. If PHB is hydrolyzed to form beta-hydroxybutyrate, a common blood

constituent, the monomers could be used as an intravenous or oral carbon supply, or as a

stereoregular organic building block for drugs. 6 « 56 Recent ideas include controlled

pyrolysis of PHB to obtain optically pure vinyl compounds. 57 and a summary of proposed

uses is included in the review by Brandl et. al. and a book by Doi. 12 ' 14

Pseudomonas oleovorans, which produces elastomeric polymers, has opened the

door to new uses for bacterially produced polymers which could take advantage of a

whole new set of material properties. The chemical modification which is aimed at

improving the elastic properties may result in a biodegradable crosslinked rubber.

1 .4 Dissertation Objectives and Overview

This dissertation is concerned with the structure-property relationships of as

extracted PHO and chemically modified PHO and PHOU.
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Chapter 2 describes the PHO yield study conducted to increase polymer

production and provide sufficient quantities of polymer for testing. The technique and

results of PHOU biosynthesis are also discussed.

Material property testing is outlined in Chapter 3. The morphology of as extracted

PHO was modeled, the tensile, hardness, and tensile set properties were determined and

all results compared to commercial TPEs. A thermal analysis was conducted to

understand the possible mechanisms of tensile set for PHO. Adhesive properties of PHO

were evaluated and compared to two commercial tapes. Other properties reported include

thermal expansion, optical rotation, and the solubility parameter estimated from studies

with several solvents.

Since the physical crosslinks for as extracted PHO are crystalline regions, several

studies on PHO crystallization were conducted and are discussed in Chapter 4. The

studies included short term kinetics, possible nucleating agents, and long term crystallite

development including the effect on mechanical properties. These studies were done to

understand the kinetics of crystallization, to try and increase the rate of crystallization, and

to insure preparation of consistent samples for mechanical evaluations. The effect of

olefin content on the thermal transitions temperatures is also included.

A change to the structure of the polymers was accomplished by chemical

crosslinking. Chapter 5 discusses the chemical crosslinking of both PHO and PHOU.

Several crosslinking chemistries were evaluated. Peroxide crosslinking was used for both

PHO and PHOU both with and without multifunctional coagents. Crosslinking success

was evaluated using a sol-gel analysis and the results analyzed using a peroxide efficiency

model. Optimization of several sulfur chemistries is discussed along with the methods

employed to monitor the vulcanization process. Two other chemistries including the use

of a tetrafunctional sulfur compound and epoxidation of the olefin followed by

crosslinking were also attempted with PHOU. The properties of the modified polymers

18



were evaluated including tensile properties, tensile set, thermal properties, and network

evaluation.

The studies on the biodegradation of PHO both as extracted and chemically

modified are discussed in Chapter 6.

The conclusions found by this study and questions raised are discussed in Chapter

7 along with possible future work aimed at answering the new questions raised by this

dissertation and expanding the knowledge on these bacterial polyesters.
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CHAPTER 2

POLYMER BIOSYNTHESIS AND CHARACTERIZATION

2J Background

The accumulation of PHA in bacteria was shown to be associated with unbalanced

growth conditions where there was an excess of the carbon food source but a deficiency in

an essential nutrient.

Many studies have been done to identify and control the limiting nutrients to

enable extensive accumulation of polymer, up to 80% of the dry biomass. The specific

nutrients that trigger PHA accumulation appear to be different for different genera of

bacteria. For Pseudomonas oleovorans the nutrients that trigger PHA production include

ammonia, magnesium, phosphate, and potassium sulfate. 1 Oxygen limitation has recently

been shown to induce PHA accumulation in Pseudomonas oleovorans.2 The ease in

which nitrogen limitation can be accomplished, simply omitting ammonia in the growth

media, has made this type of fermentation more widely used and studied 3 -
4 although

oxygen limitation greatly improved the yield in the ICI P(HB/HV) biosynthesis process. 5

The control of fermentation and all the nutrient levels can be quite elaborate but

can result in high polymer yields. Using Protomonas extorquens, PHB production was

maximized to 149 grams of PHB per liter.
6

A batch culture was the growth technique used in early studies. 3 The process

involved inoculating a sterile growth media with the bacteria of choice and monitoring

bacterial growth through optical density (OD) measurements. Optical density correlates
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to media turbidity and indicates bacterial concentration. 7 Batch cultures, with some type

of limiting substance, showed a typical growth curve as depicted in Figure 2.1.

optical

density
polymer

accumulation

time (hours)

Figure 2. 1 Typical bacterial growth and polymer production curve for a PHA producing

bacteria under nutrient limitation. Adapted from reference 1.

Note the polymer accumulation peaked during the stationary growth phase which

coincided with nutrient limitation and then the polymer was degraded, sometimes very

quickly, as in the case of phosphate limitation in P. oleovorans. 1 The optimum harvesting

time for maximum polymer yield was difficult to determine. Harvesting was accomplished

by centrifuging the bacteria out of the media then lyophilizing (freeze drying) the biomass.

Polymer extraction and purification are the next steps. The different extraction techniques

will be discussed later.

Another type of batch culture is the two stage version, the technique used

commercially. 8 First, the bacteria of choice is grown to a high concentration in a non-
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limiting media. Then either the cells are centrifuged and resuspended into a nutrient

deficient media 9 ' 10 or the media becomes depleted by not continuing the feeding of an

essential nutrient.6 The cells are now triggered into accumulating polymer. The

centrifugation/resuspension technique has the advantage of not using an expensive carbon

source for bacterial growth but only for polymer production.

Continuous culture experiments were begun in 1967 3 by employing a chemostat.

This technique affords the study on the effects of different stimuli or nutrient limitations.

A fixed concentration of bacteria are maintained by diluting the culture with fresh media at

a fixed rate. The technique is being investigated as a means to produce polymer on a

continuous basis. 11 ' 12

A fully automated continuous fed batch culture technique has been developed by

Suzuki using Protomonas extorquens.^ Nitrogen limitation is induced after high cell

concentrations are achieved by stopping the supply of ammonia. Oxygen concentrations

are kept at non-limiting levels by monitoring the dissolved oxygen content and using an

air/oxygen variable flowrate and stir speed system. All other trace nutrients are kept non-

limiting by continually monitoring and feeding.

Solvent extraction with chloroform was the first technique used to isolate the

material. 13 ' 14 A quicker extraction technique was developed which involved the digestion

of the cells with an alkaline hypochlorite solution leaving behind the polymer granules. 15

The method was later shown to be extremely destructive to the polymer. 16" 18 Recently,

the hypochlorite digestion technique has been improved to limit polymer degradation. 19

The literature is full of slight modifications to the basic solvent extraction

technique and purification by precipitation in a non-solvent. Various solvents have been

used including chloroform 13
,
pyridine 20

,
methylene chloride 2l

, 1,1,2 trichloroethane 22
,

and propylene or ethylene carbonate 23 to name a few. The use of most of these solvents

was patented.
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Another approach to extracting polymer, was the extraction then purification of

the granules by enzymatic digestion of the other cell constituents followed by sonic

disruption, centrifugation, and purification of the material by dialysis.24 An enzymatic

granule isolation technique was optimized and patented by ICI. 8

The biosynthesis technique used in our research group was standardized but not

optimized by a previous researcher in order to compare polymer production using

different substrates. 25 The standard conditions for a 12 liter batch reactor included a high

ammonium phosphate buffer growth media, 10 mM carbon source concentration, 2 liter

per minute air flow, and 100 rpm stir speed. Typically, 3 grams of polymer were

produced in a 24 hour batch biosynthesis. The stationary growth phase was believed to be

triggered by a self-induced oxygen limitation. The environmental stress was considered

self-induced because at some point all the cells would not get all the oxygen required to

sustain unrestricted growth since the oxygen input was limited by the air flow rate and stir

rate of the reactor. Once the stationary phase was reached, the bacteria were harvested

immediately to insure the accumulated polymer was not degraded.

Polymer yield can be improved by increasing the number of cells present

(perceived as a higher OD), by increasing the amount of polymer accumulated in the cells,

by optimizing the harvesting time of the cells, and/or by preventing the internal

degradation, or utilization, of the polymer by the bacteria. It should be noted that simply

increasing the carbon source concentration was not viable because at high concentrations,

the carbon source becomes toxic to the bacteria.

A multiple fed batch biosynthesis method was developed with the goal of

increasing the number of cells produced and preventing polymer utilization by the

organism thus negating the need to optimize the harvesting time. Sodium octanoate was

chosen as the carbon source because of solubility in the aqueous media, the resulting

polymer contained a large percent of one repeating unit, and the polymer was produced in

high yield. 4
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Certain assumptions were utilized to determine the optimum feeding schedule of

the carbon source. The assumptions were:

(1) Physiological Data -approximately 50% of the carbon source was used to

produce biomass (cell dry weight.) as for similar bacterial systems.

(2) OD versus Dry Cell Weight - previous experimental evidence indicated that the

OD and dry cell weight are linearly related.

(3) Sodium Octanoate Concentration - previous cell growth versus sodium

octanoate concentration experiments indicated cell growth was optimized when the

sodium octanoate concentration was between 10 mM and 30 mM, and concentrations

above or below this range resulted in a sharp decrease in cell growth.

(4 ) Oxygen Limitation - To postpone this stress until higher cell concentrations,

the air flow rate and stir rate of the reactor were increased to 5 1/min and 200 rpm (from 2

1/min and 100 rpm, respectively). These values could not be increased further because of

foaming problems.

(5) Nitrogen Limitation - early nitrogen (ammonia) limitation critically hindered

cell growth 4 but if nitrogen limitation could be coincided with the start of the stationary

phase, the percent polymer accumulation could be increased. Calculations were done to

determine when limitation occurred based on the assumptions that 10% to 15% of the

biomass was made up of nitrogen and limitation occurred when the nitrogen concentration

fell below 6 mM.

The first two assumptions gave a means to correlate OD, an easily measured

parameter, with the carbon source usage. The third assumption coupled with the first two

gave an easily measurable means (OD) to determine when the carbon source concentration

fell below the optimum range. Therefore, feeding times were established when the OD

increased by 2 i.e. 0 to 2, 2 to 4, etc.. Once experimental data was obtained to verify

these assumptions, a flow rate was determined for use on a continuous feed apparatus

using a peristaltic pump.
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The chloroform solvent extraction technique was optimized for the higher

production of biomass expected with the fed batch fermentation..

The polymer from different batches was thoroughly characterized using several

techniques to insure a high batch-to-batch consistency was present. The techniques

included GC of methanolysized polymer for composition 4
, GPC for molecular weight

determination, DSC for thermal transition temperatures, and TGA for decomposition

temperature.

The biosynthesis of PHOU with controlled olefin content was accomplished by

proportional mixing of two carbon sources: octanoic acid and 10-undecylenic acid.

Previous studies indicated that although pure undecylenic acid requires longer biosynthesis

times, a mixture of octanoic and undecylenic acids followed growth curves similar to the

pure octanoic acid.25 The designation used to describe such polymers is, for example,

PHOU(95/5). The 95 indicates 95 mole % of the repeat units are saturated and 5

indicates 5 mole % of the repeat units contain an olefin group.

2.2 Experimental

2.2.1 Biosynthesis

A New Brunswick Microfermentor using 12 liter glass fermentation tanks was

used for all biosynthesis. A stir rate of 200 rpm, 5 1/min air flowrate, and 31 °C were the

standard growing conditions. Multiple or continuous feeding was achieved by either

manually pouring in a concentrated feed solution or using a peristaltic pump and

programmable timer.

The optical density of the culture was determined using a Bausch and Lomb

Spectronic 20 instrument.
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2.2.2 Gas Chromatography

The composition of the polymer was determined using a Perkin Elmer Model

8500 Gas Chromatograph equipped with DB-Wax megabore column and a flame

ionization detector. Polymer or biomass samples were prepared using a methanolysis

procedure developed in our lab 4
. The results are compared against known standards.

2.2.3 Gel Permeation Chromatography

Molecular weight data was obtained using either of two systems. One system

consisted of a Waters Model 6000A solvent delivery system with a Model R401

differential refractometer detector and a Waters Ultrastyragel Linear column. A 1.0

ml/min chloroform flow rate was used with a 1 ,2-dichlorobenzene flowmarker. The other

system consisted of a Rabbit Model solvent delivery system with a Waters Model R401

differential refractometer detector and three Polymer Labs PL 5 |i gel columns with mean

pore diameters of 105A, 10^, and 103A. A 2 ml/min tetrahydrofuran flow rate was used

with a toluene flow marker. The molecular weight was based on polystyrene standards.

All molecular weights were based on polystyrene standards.

2.2.4 Differential Scanning Calorimetrv

Differential scanning calorimetry was conducted using a TA Instruments DSC

Model 2910. Samples were tested from -85 to 100 °C at a 20 °C/min heating rate. The

glass transition temperature reported is at the inflection point. The melting temperature

reported is the peak temperature.
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2.2.5 Thermogravimetric Analysis

Thermogravimetric analysis was conducted using a TA Instruments TGA Model

2950. TGA was conducted in both an air and nitrogen atmosphere from 30 °C to 500 °C

at a 20 °C/min heating rate. Degradation temperatures are reported as the onset

temperature of the weight loss.

2.2.6 Proton Nuclear Magnetic Resonance

The lH NMR spectra were obtained using either a Bruker 200 MHz or Varian

300 MHz *H NMR with 10 mg polymer/1 ml deuterated chloroform samples.

2J> Results and Discussion

A schematic of the entire process of polymer production used in this study is

shown in Figure 2.2. This schematic includes the modified solvent extraction technique

which worked the best for large amounts of biomass.

Ill PHO

Figure 2.3 compares the bacterial growth and polymer production curves for both

batch and the new fed batch biosynthesis. The goals of increasing bacteria production

(higher OD) and preventing polymer degradation were successful in increasing polymer

yield approximately 10 fold as shown in Figure 2.4.

Different extraction techniques were tested during the polymer yield studies.

These experiments account for some of the variation in polymer yield noted in Figure 2.4.

Soxhlet extraction which can typically handle 15 grams of biomass was abandoned since
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BATCH BIOSYNTHESIS

typical polymer yield for a 12 liter batch: 3 grams

log (optical density x 10)

time (hours)

FED BATCH BIOSYNTHESIS

typical polymer yield for a 12 liter batch: 20 grams

log (optical density x 10)

30%

wt %
polymer content

in biomass

0 5 10 15 20 25

time (hours)

Figure 2.3 Comparison of bacterial growth and polymer production curves for both a

batch and fed batch biosynthesis of P. oleovorans with sodium octanoate as the sole

carbon source.
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biomass yields started climbing towards 100 grams. Refluxing the wet biomass in

chloroform was attempted. Unfortunately, the small amount of water present caused the

released DNA and RNA of the cells to gel the biomass. The polymer could not be

extracted from the gelled biomass. Partial recovery of polymer was achieved by

sprinkling DNAse enzyme on the biomass which eliminated the DNA enough to de-gel the

biomass and enable extraction of polymer. The best extraction method found was after

lyophilization, the biomass was directly refluxed in chloroform for 48 hours. The biomass

could easily be filtered off and the polymer solution recovered, reduced, and purified by

the methods previously developed.
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Figure 2.4 Summary of polymer production yield study of P. oleovorans grown with

sodium octanoate as the sole carbon source. Numbers in parenthesis indicate % polymer

of total biomass.
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Figure 2.5 shows a representative analysis of the composition of the polymer

during the biosynthesis. A change in the polymer composition over time was observed,

but a steady state composition was attained after the culture reached the stationary growth

phase which was the time when polymer accumulation had maximized and harvesting of

the biomass was initiated.
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Figure 2.5 Typical variation in copolymer composition with biosynthesis time for P

oleovorans grown on sodium octanoate.

A fed batch biosynthesis which attempted to coincide self-induced oxygen

limitation with nitrogen limitation was successful in increasing the percent polymer

accumulated by the bacteria as shown in Figure 2.3 Runs 5B, 6A, and 6B. A recent study,

however, has indicated that nitrogen limitation was not the cause of an increase in the
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percentage of polymer accumulation. 1

1

The increase was simply an artifact caused by a

decrease in the cell growth rate.

The adaptation from multiple fed batch biosynthesis to continuous fed batch

biosynthesis was successful. However, the time to start the feed was difficult to determine

without constant monitoring of the culture. The start of feedings could be correlated to

the end of the lag phase but the lag time varied significantly from batch to batch. A

correlation between lag time and inoculum OD was not found.

Batch-to-batch consistency of PHO was good as shown by the GC, GPC, DSC,

and TGA results in Table 2.1. A typical TGA thermogram is shown in Figure 2.6.

400 500

temperature (°C)

Figure 2.6 Typical thermogram of PHO in an air or nitrogen environment. Heating rate:

20°amin.
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Table 2.1 Indicative parameters used as a measure of batch-to-batch consistency of PHO

from several fed batch biosynthesis.

Technique/Parameter mean coefficient of variation

GC-repeat unit composition3

C6

C8

CIO

12.0%

86.1%

1.9%

12.6%

1.5%

44.4%

GPC-molecular weight distribution

M,

M

n

w

PDI

84,000 (g/mol)

135,000 (g/mol)

1.6

8.3%

8.1%

3.1%

DSC-Thermal Transitions

T b
1 g.

T c

238 K (-35 °C)

334 K (61 °C)

TGA-Thermal Decomposition d

onset in NT

Tonset in air

570 K (297 °C)

566 K (293 °C)

1.2%

0.6%

0.5%

0.4%

a Values given in mole %.

D Inflection point on second heating.

c Peak value on first heating

d Onset temperature taken as the temperature where the intersection of the baseline

with the tangent to the weight loss curve occurs.
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2.3.2 PHOU

The production of an olefin containing polymer was successful as shown by the

polymer yields in Figure 2.7. The polymer olefin content was established by !H NMR

analysis of the polymer as seen in Figure 2.8. The production of PHOU with a controlled

olefin content was possible. The amount of olefin in the mixed carbon source feed was

found to directly correspond with the amount of olefin in the polymer as shown in Figure

2.9.

Grams Polymer

25
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(29.2%) (34.8%)

—
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p

1%

(16.0%)
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(24.2%)

0

(95/5) (91/9) (91/9)

PHOU

(80/20) (74/26)

Figure 2.7 Summary of polymer production yield study of P. oleovorans grown with a

mixture of octanoic and 10-undecylenic acids as the carbon sources. Numbers in

parenthesis indicate % polymer of total biomass.
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mole % olefin in feed

Figure 2.9 PHOU olefin content as a function of feed composition for P. oleovorans

grown on a mixture of octanoic and 10-undecylenic acids.

Table 2.2 summarizes the characterization results for the different olefin containing

polymers. The glass transition temperature, melting temperature, and heat of fusion all

show a steady decrease as the amount of olefin in the copolymer was increased. As more

olefin repeat units were incorporated, the number of repeat units with varying length

pendant groups would also increase. These changes in structure would disrupt the ability

of the copolymer to crystallize, lowering the heat of fusion. A lower melting temperature

would occur if the crystallites that did form were smaller. The T
g
would decrease since

the length of the pendant groups generated by the 10-undecylenic acid are longer than

octanoate. As was shown by Marchessault,22 longer pendant groups decrease the Tg.

Neither the thermal decomposition temperature nor the molecular weight were affected by

the inclusion of olefin repeat units.
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Table 2.2 Characterization results for several PHOUs. PHO included for comparison.

PHO (93/7) (91/9) (80/20) (74/26)

-35 -34 -33 -38 -40

61 59 58 53 49

15 22 20 14 13

297 — 285

290 — 280

GPCa

Mw(g/mol) 161,000 165,000 148,000 168,000 172,000

Mn(g/mol) 86,000 62,000 64,000 80,000 68,000

PDI 1.9 2.7 2.3 2.1 2.5

a data obtained with THF solvent system.

DSC

T
g
(°C)

Tm (°C)

AHm (J/g)

TGA

Tonset au*
( Q

Tonset N2 (°C)
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2.4 Conclusions

The correlation developed between OD and carbon source usage coupled with the

knowledge of optimum carbon source concentration was successful in increasing polymer

yield approximately tenfold. Continuous fed batch biosynthesis was successful and eased

the burden of constantly monitoring the biosynthesis once the growth phase was reached.

Recently, the monitoring of dissolved oxygen content of the culture has proved

useful as a means to determine when carbon source feedings should occur. This method

has also eliminated the problem of determining when the first feeding should take place.

PHO production is consistent batch to batch with regards to composition,

molecular weight, thermal transition, and decomposition temperatures as indicated by the

low coefficient of variation for all these parameters.

A copolymer could be biosynthesized with a controlled amount of olefin repeat

units using a mixed carbon source in the feed with the same ratio as the desired polymer

composition.

Improvements in biotechnology and the identification of species which accumulate

large amounts of PHA are needed in order to provide a more economical means of

producing these materials. Ultimately, the use of molecular biology may have the best

chance of reducing costs. The use of molecular biology has already been accomplished for

the production of PHB 26 and P(HB/HV) 27 in Escherichia coli. The genes responsible

for the production of the polymerases were identified and inserted into Escherichia coli.

This species was chosen because of the wealth of knowledge on growth conditions and the

fast generation time of the cells. The results were remarkable, with PHB accounting for

up to 95% of the cell dry weight. In addition, the extraction of the accumulated polymer

was facilitated by genetically incorporating another enzyme which lysed the cell wall.28
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Another possible source of PHAs may be plants. Preliminary experiments have

shown that a transgenic plant species, Arabidopsis thaliana, could be genetically

engineered to accumulate PHB.29 Directing the accumulation of PHA to the tuber of a

plant such as a potato, may indeed result in the harvesting of 'plastic' potatoes. 30
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CHAPTER 3

MATERIAL PROPERTIES

3.1 Background

PHB, the most prevalent PHA, was found to be a brittle thermoplastic. 1 Adjusting

the mixture of carbon sources during biosynthesis of Alcaligenes eutrophus enabled

controlled amounts of another repeat unit , PHV, to be incorporated into the polymer

which substantially lowered the amount of crystallinity.2 The resulting mechanical

properties of P(HB/HV) where similar to polypropylene. 2 - 3
, a more useful material. The

longer ethyl pendant group also decreased the glass transition and altered the melting

temperature of the polymer.4 ' 5

Due to the metabolic pathway of PHA production in Pseudomonas oleovorans,

even when grown on a single carbon source, a random 6 copolymer containing from 2 to 8

different repeat units is typically produced rather than a homopolymer. 7 All chiral

carbons in the backbone are in the absolute [R] stereoconfiguration 8 making the polymer

100% isotactic. Crystallization occurs in PHO because the polymer is isotactic but the

overall crystallinity is significantly reduced because PHO is a copolymer and not a

homopolymer. Wide angle X-ray diffraction studies, WAXS, have indicated PHO is

approximately 30% crystalline. 9

The thermal properties of several different PHAs produced by Pseudomonas

oleovorans have been reported by various workers. 9-1

3

The thermal properties were

found to vary with the length of the side chain with a smoothly decreasing T
g
as the alkyl

pendant group increased in length. 9 Interestingly, the PHA with a three carbon pendant
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group did not show evidence of crystallinity. 10 Thermal analysis ofPHO revealed a glass

transition temperature of -36 °C and a melting temperature of 61 °C. 9 > 10

Initial mechanical property evaluations of several PHAs from P. oleovorans

including PHO, revealed a stress strain curve shape typically observed for elastomers; no

yield stress or 'knee' appeared in the curve. A tensile modulus of 17 MPa and elongation

of 250% to 350% were reported. 9 The material properties were compared to a S-B-S

thermoplastic elastomer. The study also suggested that the coupling of high (side chain)

and low (backbone) motional freedom components as determined by 13C NMR was an

explanation for the elastic material properties.

Phase-separated morphology is the general rule for thermoplastic elastomers,

TPEs, and occurs because the majority of TPEs are block copolymer or immiscible blends

as discussed in Section 1.2.2. The elastomeric properties of PHO are envisioned by this

author to be due to a combination of a T
g
below room temperature and a low level of

crystallinity. The resulting two phase morphology enables the crystalline regions to act as

physical crosslinks for the rubbery amorphous regions. PHO being a random copolymer,

has a unique chemical structure for a TPE. A full material evaluation of PHO was

undertaken to provide more details on the network structure of the physical crosslinks,

tensile properties, hardness and to quantify the elastic response of the polymer.

For comparative purposes, examples from each of the six different classes

(styrenics, urethanes, copolyesters, amides, olefinics, elastomeric alloys) of commercially

available thermoplastic elastomers, both block copolymers and polymer blends, were

prepared and evaluated alongside PHO. A comparison of these specific mechanical

properties to commercial TPEs assesses the validity of classifying PHO as a TPE in light

of the unique chemical structure of PHO compared to all other TPEs. Two olefin

containing PHOUs were also evaluated.

While working with PHO, the use of the material as an adhesive became an

obvious possibility. To quantify this assessment, the adhesive properties of PHO to paper
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were evaluated using a rudimentary 180° peel test. Because fundamental adhesive

properties cannot be gleaned from peel tests, two commercial tapes were included in a

side by side comparison. The potential usefulness of a biodegradable adhesive for

envelopes and other such paper products was the impetus for testing the adhesive strength

to paper. Using such a polymer would make the entire envelope more environmentally

friendly when discarded.

Several other properties were measured including contact angle, thermal expansion

coefficient, optical rotation, and solubility in a number of organic solvents.

12 Experimental

3.2.1 Sample Preparation

The PHO used was biosynthesized and analyzed as described in Chapter 2. A 1.6

mm thick film of PHO was prepared by melt blending a portion of polymer from several

different biosynthesis batches. The melt was stirred after first becoming molten to

thoroughly mix the various pieces. The film was cooled slowly and allowed to crystallize

at room temperature for 17 days prior to testing.

The commercially available TPEs included in this study are listed in Table 3.1. At

least one sample from each of the six different classes of TPEs was represented in the

various mechanical tests. Films, 1.6 mm thick, were formed using a Carver Hot Press

Model C equipped with a vacuum chamber. The molding temperature was chosen

according to published literature received from the different companies. The film was

removed from the press and allowed to slowly cool to room temperature. A sample of a

urethane TPE could not be found in a compression moldable grade. Therefore, a 1 .6 mm

thick film was formed from a solution processable grade cast from a 2% THF solution.
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Table 3.
1 Commercially available thermoplastic elastomers (TPEs) evaluated in this

study.

TPE Category Company Material Tradename Product Code

amide EMS Grilon ELX23NZ

amide Atochem Pebax 2533SN00

elastomeric alloy AES a Santoprene 201-55

elastomeric alloy DuPont Alcryn 3155-NC

olefinic AES a TPR 9201-65

copolyester DuPont Hytrel 5556

styrenic Shell KratonD 4141

styrenic Shell KratonG 1726

urethane BFGoodrich Estane 5703-P

a Originally obtained from Monsanto, but products now produced by Advanced

Elastomers Systems.

3.2.2 Tensile Testing

All testing was conducted using an Instron Universal Testing Instrument, Model

TTBM. Testing was based on the procedures described in ASTM D638 14
. Dumbbell

samples used in tensile testing were die cut from the polymer films using a Type V die.

A strain rate of 2 min" 1 was used for all tensile tests. All stress calculations are

based on the narrow cross-sectional area of the undeformed dumbbell. Grip slippage was

a problem even when pneumatic grips with sandpaper were used to hold the samples. No

extensiometer was available so to measure elongation, a 25 mm gage length was marked

on a sample of each material and a ruler held next to the sample during testing. A mark
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was made on the chart paper when various known elongations of the gage length were

reached. A linear correlation was found between the actual and recorded elongation and a

correction could then be made to the recorded elongation data for the remaining samples

of that material. Values reported are the average values from seven samples.

3.2.3 Tensile Set/Stress Relaxation Testing

All testing was conducted using an Instron Universal Testing Instrument, Model

TTBM. Dumbbell samples were die cut from the polymer films using a Type V die for

large deformation tensile set testing. Strips 4 mm to 5 mm wide were used in the small

strain stress relaxation experiments. Testing was based on the procedures described in

ASTM D412 15
. The samples were extended and held for 10 minutes at the intended

elongation then released at the same strain rate. The samples were then allowed to

recover for 10 minutes prior to final measurement of the gage length. For large

deformation testing (> 50%), different strain rates were used to reach the desired

elongation within approximately 15 seconds and three dumbbell samples were tested at

each elongation. The recovery after 13 hours was also measured for the large deformation

samples. For small deformation testing, a 2 min" 1 strain rate was used for all strip

samples.

3.2.4 Hardness Measurements

The hardness measurements were based on the procedures outlined in ASTM

D2240 16
. Hardness measurements were taken within one second after indentation using

either a Shore Durometer Type A or Type D-2 Tester.
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3.2.5 Contact Angle Determination

Both advancing and receding dynamic contact angles were measured with water as

the working fluid. The film tested had been crystallized from the melt at room

temperature in a glass casting dish for many months. Both sides of the film were tested

due to differences in film smoothness observed with the naked eye. The surface in contact

with air had noticeable pits and irregularities. The film surface which was in contact with

the glass casting dish was smooth.

3.2.6 Adhesive Property Evaluation

Coating rods were used to lay down controlled thicknesses of a known

concentration of a chloroform or hexane solution of PHO onto either a 25|i thick PET or

41|i thick cellulose acetate backing material. A piece of white copy paper was firmly

pressed onto the coated backing. One centimeter wide sample strips were cut and a 180°

peel test was conducted within 1 hour of coating. Two commercial tapes, Scotch Magic

Tape® which has a cellulose acetate backing and Scotch Transparent Tape® which has a

PET backing, were tested alongside PHO for comparison. The 180° peel test was based

on procedures outlined in ASTM 17 -

3.2.7 Thermal Expansion Evaluation

The thermal expansion coefficient of PHO was determined using a TA Instruments

thermal mechanical analyzer (TMA). A film sample was loaded with a minimal 0.005 N

force and the change in length was monitored as a function of temperature between -25 °C

and 20 °C. The thermal expansion coefficient was determined from the slope of the

dimensional change versus temperature curve.
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Optical Activity Determination

The optical activity of PHO in chloroform was measured by Mitch Johnson, an

analytical chemist, at one wavelength using a home-built optical polarimeter with laser

source and Faraday rotator. The source wavelength was fixed at 670 nm. The output was

calibrated by rotating the analyzer.

3.2.9 Solubility Parameter Determination

PHO was screened for solubility in various solvents at room temperature. Three

different solvent groups were included: strong, moderately, and poorly hydrogen bonding

solvents. Solvents with a range of solubility parameters were included in each group. A

small sample of PHO, typically 0.5 g, was placed in a test tube containing 5 ml of the

solvent. The polymer was considered soluble if a one phase, non-cloudy solution was

observed after 24 hours. In some cases the sample was heated slightly to try and induce

solubility, but observations were made after the sample cooled to room temperature. A

solubility parameter range for PHO was determined for each solvent group.

3.3 Results and Discussion

3.3.1 Morphology - Network Structure

From stress relaxation experiments at small strains (< 50%) and the statistical

theory of rubber elasticity 18
, the equilibrium shear modulus was determined graphically

from equation 3.1 as shown in Figure 3.1.
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(3.1)

where G = equilibrium shear modulus [MPa]

X = extension ratio, L/Lo

o = engineering stress [MPa]

stress [MPa]

strains.

The magnitude of the shear modulus in rubber theory is based on an ideal network

of point crosslinks. In physically crosslinked systems, the crystalline regions would also

act as filler particles due to their finite size which would increase the modulus

substantially. This filler effect can be estimated using the Guth-Smallwood equation 18

(3.2)
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1+2.5 V
f + 14.1 Vf

2
(3.2)

where E = tensile modulus

Vf = volume fraction of filler

o subscript refers to unfilled material

f subscript refers to filled material

The equilibrium shear modulus can then be modified to eliminate the filler effect of the

crystalline regions. Assuming PHO is 30% crystalline 9 by volume (V
f
= 0.30), Ef /E0

= 3

and the equilibrium shear modulus reduces to 0.67 MPa. The molecular weight between

crosslinks (M
c) can then be calculated using equation 3.3.

pRT
M

c =^— = 3600 g/mole (3.3)

where p = polymer density (1.019 g/cm3
)
9

R = 8.21 x 106 cm3-Pa/mol-K

T = 298 K

The number of physical crosslinks per chain is then

Mj, 84000
=

3600
= aPProx imately 10 to 20 crosslinks/chain

As an interesting comparison, the soft segments of a segmented polyurethane

typically have a Mn of 600-6000 which is analogous to the Mc .

19 The hard segments of
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segmented polyurethanes have a Mn ranging between 600 to 3000. For a typical

polyurethane with a Mn of 40,000, approximately 10 to 60 hard segments per chain would

exist, which is analogous to the number of physical crosslinks per chain. This comparison

indicates the network structure of PHO interpreted through the M
c
and number of

physical crosslinks per chain appears similar to that of another TPE, the segmented

polyurethane. Figure 3.2 is a representation of such a morphology.

Figure 3.2 Graphical representation of the network structure of PHO. Each stack of

rectangles represents a crystalline region. Adapted from reference 19.

3.3.2 Tensile Properties

The stress-strain curve and calculated parameters for PHO crystallized from the

melt at room temperature are depicted in Figure 3.3. Figure 3.4 indicates the sensitivity of

the tensile modulus of PHO to strain rate.
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Figure 3.3 Stress-strain curve for PHO crystallized at room temperature from the melt.

Average values and standard deviations from seven samples are given. Strain rate: 2 min' 1

E(MPa)

20

0 4 6

strain rate (min- 1

)

8 10

Figure 3.4 Young's modulus of PHO as a function of strain rate; sample geometry,

dumbbell.
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The values of Young's Modulus, 100% and 300% moduli, tensile strength, and

ultimate elongation for the commercially available TPEs, PHO, and several PHOUs are

charted in Table 3.2. PHO fell approximately in the middle of the range in most categories

except for ultimate elongation where PHO ranked near the low end. The classification of

PHO as a thermoplastic elastomer appears accurate based on the stress-strain parameter

values exhibited by the commercial TPEs.

3,3,3 Tensile Set

Tensile set quantifies the deviation of a material from ideal elastic behavior. A

high tensile set indicates poor elasticity and is an important consideration for any material

considered to be an elastomer.

The tensile set obtained for PHO at various elongations is depicted in Figure 3.5. A

substantial increase in tensile set was noted as the elongation was increased. No

difference was obtained between samples allowed to relax for 10 minutes or 13 hours (not

included on graph), which indicated that no additional relaxation occurred in the samples

after 10 minutes. For comparison purposes, the tensile sets of all the TPEs evaluated after

100% elongation are listed in Table 3.3. PHO had a very substantial tensile set compared

to the other commercially available TPEs evaluated, only fairing better than the

copolyester TPE.

Tensile set can result from many sources such as:

1) irreversible orientation or permanent displacement (flow) of the physical

crosslinks in the amorphous matrix

2) strain induced crystallization which does not melt upon release of the

deforming stress

3) deformation induced break-up or rearrangement of the physical crosslinks
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Table 3.2 Summajy of tensile testing of PHO, two PHOUs, and the commercial TPEs
included in this study3 .

TPE Material E, 100% 300% Tensile Ultimate

Category Tradename MPa Modulus, Modulus, Strength, Elongation,

MPa MPa MPa %
polyester Hytrel 170 18 25 46 670

styrenic Kraton G 78 2 2 3 430

amide Grilon 71 14 27 42 530

styrenic Kraton D 16 2 4 9 1070

amide Pebax 11 4 5 21 850

bacterial polyester0 PHOU(83/17) 9 3 12 12 300

bacterial polyester0 PHOU(91/9) 8 2 9 10 330

bacterial polyester PHO 8 2 7 9 380

elastomeric alloy Santoprene 7 3 7 7 340

olefinic TPR 7 1 NDb 2 180

elastomeric alloy Alcryn 5 4 9 10 370

urethane Estane 5 1 2 16 960

a Average value for 5 to 10 samples reported. Strain rate of 2 min" 1 used for all

materials.

b ND - no data - material ultimate elongation is less than 300%.

c Average from 3 ring samples.
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Figure 3.5 Tensile set of PHO as a function of elongation.
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Table 3.3 Summary of tensile set results for PHO, two PHOUs, and the commercially
available TPEs.

TPP

v^dtegory

Material Tradename % Tensile Set

after 100%

elongation

styrenic Kraton D 2

styrenic Kraton G 6

eidstomenc alloy Santoprene 8

cidMurncnc diioy Alcryn o
8

olefinic TPR 10

urethane Estane 12

amide Pebax 12

amide Grilon 31

bacterial polyester PHO 35

bacterial polyester PHOU(83/17) 43

polyester Hytrel 56

bacterial polyester PHOU(91/9) 57

In all cases, a permanent change to the undeformed reference state of the material would

occur. Tensile set will be one consequence of this permanent change.

To investigate the possible sources of tensile set in PHO, a thermal analysis of the

stretched samples was conducted. The results are shown in Figures 3.6 through 3.8.
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Figure 3.6 shows that at small deformations (< 50% strain) no change occurred in the

parameters T
g ,
Tm,

or AHm , and no change in the shape of the melting endotherm was

noted in the stretched material (not shown). These observations indicate that no change to

the size, distribution, or amount of crystallinity occurred upon small deformation. Some

change did occur in the undeformed reference state since a small amount of tensile set was

observed at these small strains as shown in Figure 3.5. These observations support the

possibility that irreversible orientation or permanent displacement (flow) of the physical

crosslinks in the amorphous matrix was a source of tensile set.

Figures 3.7 and 3.8 show the thermal analysis results of the samples after

undergoing large deformations (100% to 300% strain). The heat of fusion, AHm , a

measure of the amount of crystallinity, increased by 60% after 300% elongation. This

result supports strain induced crystallization, which does not melt upon release of the

stress, as a source of tensile set.
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Figure 3.6 DSC parameters for PHO samples after exposure to small strains,
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Figure 3.8 shows that the peak melting point of PHO decreased as the elongation

increased. In addition, a change in the endotherm peak shape was observed as the

elongation increased; the melting endotherm peak became more narrow as seen in Figure

3.9. These observations imply that overall, the size of the crystalline regions was

decreasing (lower TJ while the purity or perfection was increasing (peak narrowing).

These observations support deformation induced break-up or rearrangement of the

crystalline regions was a source of tensile set.

Figure 3.8 shows that as expected, the T
g
did not change significantly with

elongation. The glass transition temperature reflects the properties of the amorphous

regions. The material, even after extension, would still possess a relatively low degree of

crystallinity. Therefore, no appreciable change in the T
g
was expected or observed.

A Hm (J/g)

30

15

60% increase

1 1

\
f
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0 50 100 150 200 250 300 350

% strain

Figure 3.7 Changes in the heat of fusion, AHm , for PHO as a function of elongation; large

strains.
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ure 3.8 Thermal transition temperatures of PHO as a function of elongation;

strains.

Figure 3.9 DSC thermograms for PHO stretched to various elongations.
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In general, TPEs are block copolymers where one block, known as the soft

segment, phase separates from the other block, known as the hard segment and the hard

phases form a physically crosslinked network. For some polyurethane TPEs, strain

induced crystallization of the soft segments can occur upon stretching. If the melting

temperature of the soft segments is above room temperature, full recovery of the stretched

material to the undeformed dimensions will not occur at room temperature. However,

increasing the temperature above the melting point of the soft segments but below the

melting or softening point of the hard segment will result in full recovery of the material.

Recovery will occur because the original network of physical crosslinks formed by the

hard segments was not affected by the strain or application of heat.

For PHO, where the physical crosslinks are crystalline regions, strain induced

crystallization directly affects the physically crosslinked network by either forming new

crosslinks or altering original ones, or both.

To demonstrate that for PHO strain induced crystallization resulted in a permanent

change in the network structure and full recovery would not occur by the application of

heat, one stretched sample was heated in a vacuum oven slowly and incrementally. A

total recovery of 17% was observed after the heating treatment. This experiment showed

that some of the strain induced crystallization which was preventing the material from

recovering, could be removed (melted) by raising the temperature. However, full recovery

could not be achieved because heating will eventually affect all crystalline regions whether

part of the original network or strain induced.

Overall, various changes to the crystalline regions were occurring during

deformation resulting in permanent alteration of the material which produced significant

tensile set.
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3.3.4 Hardness

Hardness and modulus vary proportionally, however no simple relationship bridges

the gap between modulus and durometer, the common units for hardness. Since

durometer is often used as a design criteria and a way to distinguish one grade of

elastomer from another, hardness testing was conducted on PHO and the commercial

TPEs. The results of hardness testing for PHO and the commercially available TPEs are

listed in Table 3.4. As the level of crystallization increased over time, the hardness of

PHO also increased. For PHO crystallized at room temperature for approximately six

months, the hardness had increased to Shore 79A.

The hardness scales with the location of the different classes of TPEs and the value

measured for PHO are shown on Figure 3.10. PHO, at Shore A 60, is a relatively soft

elastomer compared to the other TPEs.

3.3.5 Contact Angle

The dynamic advancing/receding contact angles of PHO determined with water as

the working fluid were: film surface formed in contact with air (irregularities observed),

90/7; film surface formed against the glass casting dish (smooth side) 89/13. A large

contact angle indicates hydrophobic quality while a low angle indicates hydrophilic quality.

The large advancing contact angle indicates PHO has a hydrophobic quality. The large

difference between the advancing and receding angles indicates the surface molecules may

possibly be rearranging during water contact in such a way as to expose a more

hydrophilic quality.22 A rearrangement that exposes the hydroxy or carboxylic acid chains

ends could be envisioned as providing the more hydrophilic surface. The lower receding

angle for the film with the irregular surface was expected. The fluid would tend to get

caught by the irregularities and reduce the receding contact angle.
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Table 3.4 Summary of hardness testing results for PHO and the commercial TPEs
included in this study.

TPE iviaiwl Ul I 1 I (lUtlldl I \L ndraness,

Category v>iiwiv_ L/UlUlllClCI

Myiciiic ivraton u AjZA

urethane Estane 56A

elastomeric alloy Santoprene 58A

bacterial polyester PHO 60A

elastomeric alloy Alcryn 61A

olefinic TPR 64A

styrenic Kraton G 78A

amide Pebax 22D

amide Grilon 47D

polyester Hytrel 55D
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Shore A
soft

amides

vulcanized rubbers

elastomenc alloys

Shore D
hard

thermoplastics 1

Figure 3.10 Hardness scales showing hardness ranges of commercially available TPEs and

the position of PHO. Adapted from references 20 and 21.

3.3.6 Adhesive Properties

Previous studies conducted by our laboratory have revealed the peel test does not

necessarily reveal the true adhesive strength of the material tested because the deformation

of the plastic backing can significantiy affect the measured peel strength. 23 However, the

peel test can be used as a comparative test to determine adhesive strength if similar

backings are used.

The peel strength of PHO and the commercial tapes are shown on Figure 3.11 as a

function of separation speed. A slight increase of peel strength with separation speed was

observed for all the samples. The peel strength of PHO increased significantly with

increasing layer thickness but the difference in backing materials was not important. PHO

appeared to fail cohesively since the polymer was detected on both surfaces. The
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was
commercial tapes appeared to fail mainly by adhesive failure since no polymer

observed on the paper. However, the peeled tape did have small white spots of embedded

paper
. This indicates partial cohesive failure of the paper had occurred with the

commercial tapes.

peel strength (kg/mm width)

0.025

10 15

separation speed (cm/min)

20 25

cellulose acetate cellulose acetate PET Transparent Magic

6 urn thick 12 um thick 12 um thick tape tape

Figure 3.11 Peel test results for PHO of several film thicknesses and on two different

backing materials including 41|i thick cellulose acetate and 25|i thick PET. Commercial

tapes are included for comparison.

PHO has a relatively good adhesive strength as compared to the two commercial

tapes. A thicker PHO layer and proper compounding with tackifiers and plasticizers

would certainly improve the adhesive performance.
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The thermal expansion coefficient of PHO was calculated to be a = 195 |im/m°C.

This value was determined from the slope of the dimension change versus temperature

curve shown in Figure 3.12. The thermal expansion coefficient was slightly higher than

other polymers such as polybutylene (a = 130) and polyethylene (a = 100 to 180).

dimension change (um)

temperature (°C)

Figure 3.12 Thermal expansion of PHO determined from the slope of the length versus

temperature experiment.

3.3.8 Optical Activity

A PHA produced by P. oleovorans with a phenyl containing pendant group was

reported to have an optical rotation of [a] 25D = -24.5° ± 0.2°. 12 PHO is also expected to
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exhibit optical activity because of the stereoregularity of the pendant groups. The optical

rotation, [a], in standard units was determined to be -1.2°/dm per unit concentration with

a 95% confidence interval of 0.014. Due to the instrument design, rotations 180° apart

are indistinguishable. Therefore, the actual [al for PHO could be -181.2° or -361.2°.

Firm conclusions regarding the optical activity of PHO were difficult to make because of

the relatively low value for optical rotation. Measurement of the optical rotation as a

function of wavelength from about 200 nm to 700 nm would be a more useful experiment

but was not possible on the available equipment.

The conformation in solution can affect the resulting measured optical activity.

The presence of both a right-handed and left-handed helix for instance could mask the

optical activity of the polymer. Many studies on the conformation of PHB in solution

were conducted often with conflicting results.24 - 26 The present understanding is that

PHB does exhibit a helical conformation in solution although whether a right or left-

handed helix or both are present is uncertain. 26

3.3.9 Solubility

PHO was screened for solubility in various organic solvents. The results of the

solubility experiments are shown in Table 3.5. The goal of this screening was to

determine the range of cohesive energy densities or solubility parameters, 8, in (cal/cm3 )
1/2

of solvents in each group capable of dissolving PHO.27 However, the study did not result

in a range of solvents capable of dissolving PHO bracketed by solvents incapable of

dissolving PHO. Either a wide enough range of solvents was not tried in each group or

solvents were found within a postive range that had produced negative results.
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Table 3.5 Results of solubility screening of PHO in various solvents.

Type of Solvent 27
Solvent Solubility Parameter 27 Soluble

5 [(cal/cm3)fc] (+ 0r -)

Strongly Hydrogen methanol 14.5 —

Bonded ethanol 12.7 —

n-butanol 11.4 —

pyridine 10.7 +
propionic acid 8.1 +

Moderately DMF 12.1 +
Hydrogen Bonded acetone 10.0 +

MEK 9.3 +
THF 9.1 +

ethyl acetate 9.1 +
diethyl ether 7.4 +

Poorly Hydrogen acetonitrile 11.9 —

Bonded methylene chloride 9.7 +

chloroform 9.3 +

benzene 9.2 +

toluene 8.9 +

xylene 8.8 +

carbon tetrachloride 8.6

cyclohexane 8.2 +

n-heptane 7.4

hexane 7.3

n-pentane 7.0 +a

pentene 6.9 +

a requires warming for total dissolution
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2L4 Conclusions

PHO can be considered a thermoplastic elastomer unique in its source, bacteria.

Because of this natural source, PHO has a unique chemical structure for a TPE, a

stereoregular, random copolymer. The polymer is semicrystalline (30%) and because of a

low T
g
(-36 °C) and a high Tm (61 °C), the polymer exhibits elastomeric behavior within

this temperature range. The commercial TPEs involved in this study were structurally

different being either block copolymers (amides, copolyesters, olefinics, styrenics,

urethanes,) or blended dissimilar polymers (elastomeric alloys). Yet the stress-strain

properties and hardness of PHO were found to be in the range of these structurally

different, commercial TPEs.

The statistical rubber elasticity theory with a correction for the filler effect of the

crystalline physical crosslinks indicates a physically crosslinked network forms when PHO

is crystallized from the melt at room temperature with a molecular weight between

crosslinks of approximately 4000 g/mol and with approximately 10 to 20 physical

crosslink regions per chain. This network structure is similar to the segmented

polyurethanes.

As an elastomer PHO has a shortcoming, a relatively high tensile set,

approximately 35% after 100% elongation. However, the commercial copolyester

evaluated exhibited an even higher tensile set, approximately 55%, and is still classified as

a thermoplastic elastomer. The occurrence of tensile set in PHO appears to be due to the

many changes that occur in the crystalline regions upon deformation.
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CHAPTER 4

CRYSTALLIZATION

4.1 Background

Thermal history greatly affects the mechanical properties of semi-crystalline

polymers mainly due to the changes in crystallinity. Thermal conditions can affect the

crystalline growth rate, resulting crystallite size, and final degree of crystallinity.

Annealing polymers to increase lamellar thickness, increase the purity or perfection of the

crystalline regions and increase the overall degree of crystallinity is well known. 13 PHO

has been described as a thermoplastic elastomer due to a glass transition temperature of

-35 °C 4
, a melting temperature at 61 °C 4

, and approximately a 30% degree of

crystallization."5 Rubbery behavior is observed at room temperature where the crystalline

regions act as physical crosslinks.

Because the crystalline regions of PHO act as physical crosslinks, an investigation

into crystallization behavior as a function of temperature was conducted. The rate of

crystallization was investigated over a range of temperatures to determine the temperature

at which the crystallization rate is at a maximum and to estimate the theoretical maximum

melting temperature (equilibrium melting temperature). Several possible nucleating agents

6
'
7 were evaluated to see if the rate of crystallization could be increased for PHO

crystallized at room temperature from the melt. A long term crystallization study was

conducted on PHO films to determine the time required to reach a maximum level of

crystallinity, to measure the levels of crystallinity obtainable at the different crystallization

temperatures, and to measure the effect of different thermal histories on the mechanical

properties of this material. Tensile set, an indication of the inelastic nature of the material
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was also evaluated. A thermal analysis of these stretched samples was conducted

observe any changes to the crystalline regions after extension. GPC analysis

employed to evaluate any changes to the molecular weight distribution after deformation

to

4.2 Experimenta l

4.2. 1 Sample Preparation

In general, PHO films were cast from a 10% to 15% chloroform solution. Except

for the samples used in the nucleation study, the solutions were filtered through a 10

micron filter into glass casting dishes. After solvent evaporation, DSC samples were taken

from the films and melted at 80 °C for 3 to 5 minutes. Sample handling then diverges for

each test and is described separately below. The remaining films were kept in the casting

dishes and melted at 80 °C overnight in a vacuum oven and placed in the appropriate

temperature bath and allowed to crystallize.

4.2.2 Crystallization Kinetic Study

PHO does not exhibit spherulitic texture so in order to determine crystallization

rates, the melted samples were allowed to crystallize at different temperatures for 24

hours. After 24 hours a DSC thermogram was obtained to determine the heat of fusion (a

proportional indication of the level of crystallinity) which had developed in the 24 hour

period. Because all samples were compared after 24 hours and because crystallization was

not complete in that period of time, relative rates of crystallization could be determined.

Three to six samples were used for each data point.
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4*2*2—Nucleating Agent SmHy

Several possible nucleating agents including talc, saccharin, boron nitride, and

poly(p-hydroxybutyrate), PHB, were added at 0.5%, 1.0% and 5% by weight to

chloroform solutions of PHO prior to casting the films. The melted samples were allowed

to crystallize at room temperature for specific times. The samples were then re-evaluated

in the DSC to determine the AHm (a proportional indication to the amount of crystallinity)

that had developed during the allotted time.

42A Long Term Crystallization S^ irfy

PHO films crystallized at three different temperatures were evaluated for

crystallization development and mechanical properties. The temperatures used were, -20

°C, 5 °C, and 20 °C, which represent slow, fast and medium crystallization rates,

respectively, as determined by the short term crystallization study. One of the two films

crystallized at -20 °C contained a possible nucleating agent, talc, which was included to

compare the effect of the possible nucleating agent on crystallization rate and final level of

crystallinity reached after a long time. The melted DSC samples were placed in the

appropriate temperature bath for various times then run in the DSC to determine the AHm .

4,2.5 Tensile Properties

After 24 weeks the films were removed from the temperatures baths and allowed

to equilibrate to room temperature. All tensile testing was conducted using an Instron

Universal Testing Instrument, Model TTBM with an Interface SM-50 load cell. Ring

samples per ASTM D 412 8
,
Type 2, were punched from the films using a steel rule die

and Carver Hot Press Model C at room temperature. Special grips were made to hold the
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mm in

ring specimens. The ring was supported at each end by a pin, approximately 5

diameter. Each pin was engaged at both ends in the inner track of a ball bearing to insure

the stress and strain remained equal on both sides of the ring dur.ng testing. The pins are

removable for loading the sample. The initial gage length was based on half the average

circumference of the ring die. A strain rate of 1 min' was used for all tensile tests.

4.2.6 Tensile Set

After 28 weeks of crystallization, strip samples, 50 mm wide, were cut from the

films and evaluated for tensile set. All tensile set testing was conducted using an Instron

Universal Testing Instrument, Model TTBM with an Interface SM-50 load cell. Tensile

set testing procedures were based on the procedures described in ASTM D412. 8 Grip

slippage was a problem for the elastomers and since no extensiometer was available, a

ruler was held next to the sample to insure the marked gage length reached the desired

elongation. Different crosshead speeds were used to reach the desired elongation within

approximately 15 seconds. The samples were held for 10 minutes at the intended

elongation then released at the same crosshead s; eed. The samples were then allowed to

recover for 10 minutes prior to final measurement of the gage length. Tensile set was

determined as the % change in the marked gage length of the samples. Tensile set at

break was also determined from the ring samples which had undergone tensile testing and

was calculated as the percent change in the mean circumference of the samples. DSC

samples were taken from stretched areas of samples crystallized at 20 °C for long times to

evaluate any changes in crystallinity upon deformation.
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,2.7 Gel Permeation Chromatography

All molecular weight data was obtained using a Rabbit Model solvent delivery

system with a Waters Model R401 differential refractometer detector and three Polymer

Labs PL 5 n gel columns with mean pore diameters of 105A, 10*A, and 103A. A 2

ml/min tetrahydrofuran flow rate was used with a toluene flow marker. The molecular

weight was based on polystyrene standards.

4.3 Re sults and Discussion

4.3. 1 Crystallization Kinetic Study

The results of the experiment are depicted in Figures 4. 1 , 4.2, and 4.3. Figure 4.

1

shows the variation in heat of fusion, AHm , with crystallization temperature, T
c . As

expected, a bell shape curve resulted with the rate reaching a maximum at approximately

the median between the glass transition temperature at -35 °C and the melting temperature

at 61 °C. The location of the peak indicates that the fastest crystallization rate occurred

between 0° and 5 °C.

At temperatures above 25 °C, scatter in the data was noted. The three open

symbols indicate data points from single samples. The solid symbols indicate an average

of the values from 3 to 6 samples. The extent of crystallinity in the majority of samples

crystallized from 25 °C to 37 °C was higher than expected. Impurities can act as

nucleating agents and even though filtering of the polymer solutions prior to film casting

was conducted, all impurities may not have been removed. These undesired nucleating

agents would have a more profound effect at the higher temperatures where nucleation

can limit the rate of crystallization. These nuclei would enable a higher than expected

extent of crystallization to occur during the 24 hours, thereby contributing to the data
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scatter. Annealing effects are not significant, neither during the DSC scan nor during the

initial 24 hours of crystallization, as will be shown in the long term crystallization study

results. Crystallization at lower temperatures is generally limited by chain mobility and

by nucleation, so impurities acting as nucleation sites would not have as much effect

the extent of crystallization in 24 hours. In this case data scatter would not be expected,

and in fact, was not observed.

not

Figure 4. 1 The variation in heat of fusion, AHm , with the crystallization temperature, Tc ,

for PHO crystallized for 24 hours from the melt. Solid symbols represent average values

from 3 to 6 samples. Open symbols represent single data points. Error bars indicate ±

one standard deviation.

Figure 4.2 depicts the change in melting temperature, Tm , as a function of

crystallization temperature, T
c

. The melting temperature varied with crystallization

temperature in a manner common for all polymers. The line shown through the data was

determined by linear regression, and the intersection of this line with the theoretical
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Tm=Tc line was used to estimate the equilibrium melting point. The equilibrium melting

point of PHO was determined to be approximately 68 °C using this construction. Figure

4.3 shows that as expected, the glass transition temperature, T
g

, did not vary significantly

with crystallization temperature, Tr .

80

Tc (°C)

Figure 4.2 The melting temperature, Tm , as a function of the crystallization temperature,

Tc , for PHO crystallized for 24 hours from the melt.

4.3.2 Nucleating A gent Study

Two potential nucleating agents, saccharin and PHB, were soluble in chloroform.

The other two potential nucleating agents, talc and boron nitride, formed suspensions.

Heterogeneous nucleation appears to have occurred in all systems upon crystallization

from the melt. Upon cooling from the melt, the initially soluble nucleating agents formed
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films with obvious irregularities believed to be

potential

regions where phase separation of the
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Figure 4.3 The glass transition temperature, T
g

, as a function of the crystallization

temperature, Tc , for PHO crystallized for 24 hours from the melt.

nucleating agents had taken place. These regions formed sites for heterogeneous

nucleation.

Figures 4.4, 4.5, and 4.6 show the development of crystallinity in PHO as a

function of time. Crystallinity was inferred from the heat of fusion, AHm , which is

proportional to the amount of crystallinity. Three different potential nucleating agent

loading levels were used, 0.5 weight %, 1.0 weight %, and 5.0 weight %. All samples

were crystallized at room temperature from the melt. Also included on each graph are the

results for AHm development at the fastest crystallization rate, 5 °C and at room

temperature, 20 °C. None of the nucleating agents increased the development of

crystallinity above the fastest rate obtained at the subambient temperature. At 0.5 weight

% loading levels, no potential nucleating agent significantly altered the crystallization rate.

At the 1 .0 weight % loading level, saccharin increased the crystallization rate above that of
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neat PHO crystallized at the same temperature. At the highest loading level of 5 weight

%, no potential nucleating agent altered the rate of crystallization significantly. It is

interesting to note that the nucleating agent with the largest size, saccharin, was the only

nucleating agent which effected the crystallization rate significantly. These results are

unexpected since a very fine compound such as talc, usually affords the best results.

A Hm (J/g)

20
i

Figure 4.4 The heat of fusion, AHm , as a function of time for a 0.5 weight % loading level

of potential nucleating agents.
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Figure 4.5 The heat of fusion, AHm , as a function of time for a 1.0 weight % loading level

of potential nucleating agents.
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Figure 4.6 The heat of fusion, AHm , as a function of time for a 5.0 weight % loading level

of potential nucleating agents.
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,3,3 Long Term QysallizatiflO Study

Figure 4.7 shows the heat of fusion, AH^ as a function of time over 24 weeks of

crystallization for all four films. Different maximum levels of crystallinity were reached in

each film during the 24 weeks of crystallization, reaching constant levels after

approximately 10 weeks. The maximum heat of fusion obtained in the films was directly

proportional to the crystallization temperature; larger heats of fusion occurred in films

crystallized at higher temperatures.

AHm(J/g)

30
i

[]

St!

Oi 1 1 1 L_

0 6 12 18 24

time (weeks)

Figure 4.7 The heat of fusion, AHm , as a function of the 24 week crystallization time for

PHO crystallized from the melt at the indicated temperatures including one film containing

a potential nucleating agent (0.5 weight % talc).
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Results from the initial 50 hours are shown more clearly in Figure 4.8. From this

figure, constant levels in the heats of fusion appeared in all the samples. For the film held

at 5 °Q this level in the extent of crystalhnity was reached after approximately 6 hours but

took approximately 20 hours for the other films. In all cases, the levels were temporary

with a substantial increase in the extent of crystallinity, a 30% to 100% increase, observed

after the entire 24 weeks as shown in Figure 4.7.

Figure 4.8 The heat of fusion, AHm , as a function of the first 50 hours of crystallization

time for PHO crystallized from the melt at the indicated temperatures including one film

containing a possible nucleating agent, 0.5 weight % talc.

Both films crystallized at -20 °C showed nearly the same final level of crystallinity

with only a slightly lower level of crystallinity observed in the film containing talc. In

addition, no significant difference was noted in the time required to develop crystallinity

for these two samples (Figures 4.7 and 4.8). These observations indicate the talc did not
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behave as an effective nucleating agent on PHO crystallized from the melt at -20 °C.

Perhaps the talc would have affected the crystallization rate more dramatically if the film

had been crystallized at a higher temperature where nucleation is limited. In addition, the

polymer solution containing the talc had been filtered prior to casting in an attempt to limit

the talc particle size which may have significantly decreased the amount of talc

incorporated into the film.

Annealing effects are expected over the 24 weeks because the films were

maintained at temperatures above the T
g
and below the Tm . Annealing effects observable

from DSC experiments are manifested as changes in the shape of the melting endotherm,

in location of the peak melting temperature, and in the area under the endotherm peak.

Monitoring the change in the peak melting temperature over time gave an

indication of when annealing effects became significant. From Figure 4.9, no increase in

the melting temperature was observed at PHO crystallized at any crystallization

temperature until approximately 250 hours. Annealing effects were, therefore, not

considered significant during the 10 minute DSC scans, or during the 24 hour

crystallization study.

100 150

time (hours)

Figure 4.9 Changes in the peak melting temperature as a function of time.
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The thermograms in Figure 4.10 illustrate the changes that occurred in the shape

of the melting endotherm peaks which were typically observed for all films due to

combined crystallization and annealing effects. In general, a broad melting endotherm

with an obvious shoulder was at first observed. As crystallization continued, this shoulder

temperature (°C)

Figure 4. 10 DSC thermograms of PHO crystallized at 20 °C from the melt at various

times. These thermograms elucidate changes found for all films over time.

became more pronounced and it eventually coalesced into the main peak. The endotherm

shown after 24 weeks illustrates the final state of the films prior to mechanical testing.

Table 4. 1 lists the times taken to maximize the extent and stabilize the melting

endotherm shape at the different temperatures. The time required for these changes

depended on the crystallization temperature and crystallization rate. Overall, the minimum

amount of time taken to reach both a stable endotherm peak shape and extent of
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crystallinity was achieved with a medium crystallization rate and high temperature

equivalent to a slow and steady combination of crystallization and annealing.

Table 4.
1

Variability associated with certain crystallization parameters.

crystallization weeks to weeks to stable

temperature maximum extent melting endotherm

(°C) of crystallization peak shape

20 7 7

5 3 16

-20 8 19

-20 with talc 8 9

The T
g
also increased slightly in all films, by an average of 3°C to 5 °C, with the

increase observable only after approximately 250 hours. Crystallinity is known to increase

the T
g
of semicrystalline polymers due to the physical crosslinking effect these crystalline

regions impart on the material.

Monitoring the level of crystallinity was continued and Figure 4.1 1 shows the AHm

as a function of log time. It appears there continues to be a gradual increase in

crystallinity over very long times.
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Figure 4. 1 1 The heat of fusion, AHm , as a function of log time for PHO crystallized from

the melt at the indicated temperatures including one film containing a possible nucleating

agent, 0.5% talc.

4.3.4 Tensile Properties

The results of the effect of crystallization temperature on mechanical properties are

shown in Figure 4.12 where the Young's Modulus, tensile strength at break, and ultimate

elongation are plotted as a function of crystallization temperature. The range of values

obtained was large, with Young's Modulus showing a 200% increase, tensile strength at

break a 60% increase, and ultimate elongation a 50% decrease over the crystallization

temperature range evaluated.
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Figure 4.12 Young's Modulus, tensile strength at break, and ultimate elongati

function of crystallization temperature. Open symbols represent PHO, closed symbol:

represent PHO containing 0.5 weight % talc. Results are average values from ring

samples tested at a 1 min 1 strain rate.

The trends in the modulus and ultimate elongation can be explained in terms of the

differences in the maximum extent of crystallinity. Higher moduli are expected as the

amount of crystallinity increases due to the physical crosslinking and filler effect crystalline

regions have on the material. The lower ultimate elongation maybe a result of the lower

extensibility of crystalline regions and thus the whole material will become less extensible

as the extent of crystallinity increases.

After two years the material still behaved elastomerically as indicated by the stress

strain curve illustrated in Figure 4.13. The results are typical for all films independent of

crystallization temperature. Table 4.2 summarizes the effect of crystallization temperature

and time on the mechanical properties of PHO. Perhaps the elastomeric behavior of the

material would eventually be replaced by thermoplastic behavior when some critical level

of crystallinity is reached, however this would take very extended periods of time.
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stress (MPa)

strain (%)

Figure 4. 1 3 Typical stress-strain curve for PHO crystallized for two years.

Table 4.2 Summary of mechanical properties of PHO crystallized at different

temperatures and for different lengths of time.

T -20 °C

lyr. 2 yrs.

5°C
lyr. 2 yrs.

20 °C

2 wks. a lyr. 2 yrs.

E [MPa] 2.9 7.0 5.8 12.1 8 8.6 17.7

Tensile Strength [MPal 7.2 12.8 8.4 15.4 9 11.7 ndb

Ultimate Elongation [%] 470 500 350 435 380 310 ndb

100% Modulus [MPal 1.0 1.6 1.7 2.3 2 2.8 ndb

300% Modulus [MPa] 3.3 5.3 6.3 8.4 7 11.1 ndb

a 2 min" 1 strain rate. All other values for 1 min" 1 strain rate.

b nd - no data
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4.3.5 Temilr Sa

Tensile set was substantial for all films, but a slightly lower tensile set occurred in

the materia. crystalUzed at -20 °C as shown in Figure 4. 14. As a comparison, tens.le set

for PHO crystallized at room temperature for only 2 weeks is included. No difference was
noted in tensile set between PHO crystallized for 2 weeks or extended times.

% tensile set

250
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Figure 4. 14 The tensile set evaluation results for PHO crystallized from the melt for 28

weeks at the various temperatures indicated. As a comparison, the tensile set results for

PHO crystallized from the melt at room temperature for 2 weeks are also included in the

figure.

To investigate the possible reasons for the high tensile set in PHO, thermal analysis

was conducted on the strips used in the tensile set measurements from the film which had
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been crystallized at 20 °C. Samples for the DSC measurements were taken from the

stretched region of the strips. Table 4.3 lists the DSC parameters obtained for the samples

tested. The heat of fusion, initially decreased 10% after 50% elongation, but upon further

elongation, it increased to the initial value prior to elongation. The melting temperature

also exhibited a decrease after 50% elongation with no further decrease observed

samples elongated to higher extents. No change in the glass transition temperature

observed.

on

was

Table 4.3 Thermal analysis results for PHO film crystallized from the melt at 20 °C and
stretched to various elongations. From DSC thermograms at a heating rate of 20 °C/min.

% elongation AHm (J/g) Tm (°C) T
g
(°C)

0 27 62 -32

50 24 59 -32

100 25 58 -33

150 27 59 -32

200 27 58/45 -32

Some unusual changes were observed in the shape in the melting endotherm as

seen in Figure 4.15. A shoulder can be seen forming after the 100% and 150%

elongations, but after 200% elongation a new distinct melting peak emerged at a lower

melting point, 45 °C. This new peak may indicate that a different crystal structure was

formed with stretching. Another possibility is that the deformation induced chain

degradation. A bimodal distribution in the molecular weight could explain the double

melting peak.
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temperature (°C)

Figure 4.15 DSC thermograms obtained from PHO films stretched to different

elongations. Prior to stretching, the samples were crystallized at 20 °C from the melt for

28 weeks.

4,3,0 Gel Permeation Chromatography

Because of the unusual double peak melting endotherm observed after stretching

PHO 200% as shown in Figure 4.15, GPC analysis was conducted on the stretched

samples to determine if any change to the molecular weight distribution had occurred

because of the deformation. The results are shown in Figure 4.16 which shows no change

in molecular weight distribution was observed. However PHO stretched 200% did shift to

a slightly higher molecular weight. This shift corresponds to approximately a 10% change

in molecular weight which is within the error of this technique. The double melting peak
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observed for PHO stretched 200% does not appear to be the result of a deformation

induced change in the molecular weight distribution of the polymer.

intensity

0% stretched

50% stretched

150% stretched

200% stretched

* *

lower molecular weight

Figure 4. 16 GPC chromatograms of PHO before and after stretching.

4.4 Conclusions

PHO crystallization, based on the heat of fusion as the indicator of extent of

crystallinity, occurred fastest at 0 °C to 5 °C. The equilibrium melting point of PHO was

determined to be approximately 68 °C. Long term crystallization is believed to be a

combination of crystallization and annealing because the T
g
of PHO is below room

temperature. PHO crystallizes very slowly requiring approximately 7 weeks at 20 °C and

16 weeks at 5 °C to attain stable levels of crystallinity with an unchanging melting

endotherm peak shape. The AHm continues to increase over time at room temperature.

Eventually PHO may behave like a thermoplastic if a high enough level of crystallinity is

99



reached. Property results after two years at room temperature indicate the material still

behaves elastomerically.

The thermal history greatly affected the mechanical properties of the material

crystallized for 24 weeks with Young's Modulus varying from 9 MPa to 2.5 MPa, tensile

strength at break from 6 MPa to 10 MPa, and ultimate elongation from 300% to 450%

depending on the crystallization temperature. Tensile set was extensive for PHO

crystallized at all three of the temperatures evaluated, approximately 35% after 100%

elongation. Elongation of PHO films crystallized for extended times showed unusual

changes in the melting endotherm peak shape, and a new distinct, lower melting point

peak emerged at 45 °C after 200% elongation. This new peak does not appear to be the

result of a change in the molecular weight distribution. Perhaps the deformation induced a

different crystal structure. Wide angle X-ray diffraction studies would help resolve this

unusual finding.
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CHAPTER 5

CHEMICAL CROSSLINKING

SJ Background

The motivation behind conducting chemical crosslinking experiments on PHO and

PHOU is to improve the elastic response of these materials. The crystalline regions which

act as the physical crosslinks in PHO changed upon deformation and resulted in substantial

tensile set as discussed in Sections 3.3.3 and 4.3.5. The goal of chemical crosslinking is to

eliminate all crystallinity and rely solely upon chemical crosslinks for the polymer chain

junction points.

Two common chemistries used for rubber crosslinking are peroxide crosslinking

and sulfur vulcanization. 13 A comparison of these different crosslinking chemistries is

made in Table 5. 1
. Multifunctional coagents were used with peroxide crosslinking to

promote crosslinking versus chain scission reactions. 3

Four different peroxides were included in the experiments, two low temperature

peroxides 4
, lauroyl and benzoyl, and two vinyl specific peroxides 5

, dicumyl and 2,5-

dimethyl-2,5-di(t-butyl)hexane (or Varox®). Two different multifunctional crosslinking

agents 2 were employed, a difunctional agent, ethylene glycol dimethacrylate, and a

trifunctional agent, triallyl cyanurate. Several multifunctional crosslinker to peroxide

concentrations were tested. The chemical structure of the peroxides and multifunctional

coagents used are shown in Figure 5.1.
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Table 5.
1
Comparison between peroxide and sulfur chemistries used to crosslink PHO

and PHOU.

PEROXIDE SULFUR

• crosslinks both saturated and • crosslinks only unsaturated

unsaturated polymers polymers

• reaction site less predictable • reacts only with unsaturated

except with vinyl specific moiety

peroxides

• controlled cure temperature • generally higher cure

through choice of peroxide temperatures required

• expensive chemicals • less expensive chemicals

• free radical chemistry can cause • chain scission reduced

chain scission reactions 6

• transparent films • opaque tan films
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PEROXIDES

lauroyl

(80
0
C, 8 hours)

benzoyl

(80 °C, 8 hours)

¥ ¥CH3— (CH2 ) 10—c-O-O-C-(CH2 ) 10—CH 3

dicumyl

(160 °C, 1 hour)

CH3 CH3 CH3 CH3

CH 3—C-O-O-C- (CH2 )2—C-O-O-C-CH
CH, CH CHg CH;

2,5 dimethyl-2,5-di(t- butyl peroxy) hexane (Varox®)

(160 °C, 5 hours)

COAGENTS (MULTIFUNCTIONAL CROSSLINKERS)

difunctional - ethylene glycol dimethacrylate

trifunctional - triallyl cyanurate

X

Figure 5.1 Chemical structures of the different peroxides and multifunctional coagents

used in crosslinking experiments. Cure temperatures and times used for each peroxide are

also included. 4 "7
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A comparative evaluation of the different peroxides and the effect of olefin groups

was accomplished by using a peroxide efficiency model first developed for radiation

crosslinked polymers but extended successfully to chemical crosslinking.8 Equation 5.1

was used:

S + S °-5 = Po/q0 + (2 * E * Mn * (5.1)

where

S = soluble fraction of partially crosslinked polymer.

PcA> = ratio of probability of degradation to crosslink

formation per monomer per unit initiator.

E = number of crosslinks per decomposed peroxide

molecule.

[i] = peroxide concentration in moles per gram of

polymer.

Figure 5.2 shows that the inverse of the slope provides the efficiency and the y-

intercept indicates the tendency of degradation to crosslink formation. A y-value of 2

indicates that no gel formation has occurred and corresponds to the minimum peroxide

concentration needed to instigate gel formation.

Although elemental sulfur alone was first used to vulcanized natural rubber,

accelerated sulfur cures are predominately used today. 1-3 Elemental sulfur which has a

tendency to form non-productive cyclic sulfur linkages, has been replaced by sulfur

donating vulcanizing agents which require accelerators and accelerator activators to

optimize the cure cycle and properties. Trial and error appears to be the most widely used

method of optimizing the amount and combination of these chemicals to produce the

required properties.
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po/qo

(2 * Mn * [i])

Figure 5.2 Graphical use of the peroxide efficiency equation to determine the peroxide

efficiency (inverse of slope) and ratio of probability of causing chain degradation to

forming crosslinks (y-intercept).

Two different vulcanizing agents, elemental sulfur and dipentamethylene thiuram

tetra/hexa sulfide (DPTT), four different accelerators, zinc dibutyl dithiocarbamate di-n-

butylamine combination (ZBUDX), zinc dibutyl dithiocarbamate (BZ), 2-benzothiazole

sulfenamide (BBTS), and 2,2'-dibenzothiazyl disulfide (MBTS), and one combination

accelerator activator, zinc oxide / stearic acid were included in this study. 9 Figure 5.3

shows the chemical structures and required cure temperatures for the different

compounds.

The need for an olefin containing polymer is essential for sulfur crosslinking and is

believed to improve the efficiency of peroxide crosslinking. 6 Fortunately, Pseudomonas

oleovorans can produce an olefin containing polymer when fed an appropriate carbon

source. For this study, a mixture of carbon sources was used to control the amount of

olefin in the polymer designated PHOU (refer to Sections 2.2.1 and 2.3.2). Five different

compositions of PHOU were included: (95/5), (93/7), (91/9), (80/20), and (74/26).

Two other crosslinking approaches will also be discussed. The use of a

tetrafunctional sulfur compound requiring a radical initiator was included which has
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Vulcanizing Acfnts

sulfur §

DPTT - dipentamethylene thiuram tetra/hexa sulfide

^^c-iS)6-c-i^~^

ACCELERATORS

1 10 °C ZBUDX - zinc N,N-di-n-butyl dithiocarbamate, di-n-butylamine

N-C-S
C4H/

Zn
2+ +

C4H9

N—

H

140 °C BZ - zinc dibutyl dithiocarbamate

C4H9\ II

N-C—

S

C4H/
Zn

2+

160 °C BBTS - 2-benzothiazolesulfenamide

N H CH 3

)-e4 CH.

CH-

160 °C MBTS - 2,2'-dibenzothiazyl disulfide (thiazole)

ACCELERATOR ACTIVATORS

zinc oxide

stearic acid

ZnO

V
CH3
— (CH 2 ) 16

—C-OH

Figure 5.3 Chemical structures of the various sulfur vulcanization chemicals grouped as

vulcanization agents, accelerators, or accelerator activators. Required cure temperatures

indicated for the different accelerators.
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been successfully employed as a crosslinking agent for silicone containing low levels of

unsaturation. 10 The advantage of this reaction is the low temperature required for

initiator activation, 88 °C, and the tetrafunctional crosslinking agent. Epoxidation of the

olefin group followed by crosslinking was also attempted. This approach attempted to

duplicate results of a previous researcher in our group. 1

1

Figures 5.4 and 5.5 show the

chemical compounds involved with these different approaches.

5.2 Experimental

5,2,1 Peroxide Crosslinking Sample Preparation

PHO, PHOU(95/5), PHOU(93/7), PHOU(8()/20), or PHOU(74/26), peroxide, and

multifunctional coagent (if used) were all dissolved in chloroform and then pipeted into a

glass casting dish. The solvent was allowed to evaporate over approximately one week to

insure network formation was done in the absence of solvent. The polymer films, typically

0.5 mm thick were heated in a vacuum oven under either a vacuum or nitrogen

atmosphere. The cure temperature and time depended on the peroxide, see Figure 5.1.

Typically a series of 4 to 8 different peroxide concentrations were used for each polymer.

Several coagent to peroxide concentration ratios were tested usually at one peroxide

concentration where gel formation was previously confirmed. Table 5.2 summarizes the

various samples tested.

5.2.2 Sulfur Vulcanization Sample Preparation

Approximately 0.5 g (or 4 g for samples which underwent full mechanical property

evaluation) of PHOU(91/9), PHOU(93/7), PHOU(80/20), or PHOU(74/26) was softened

by heating the polymer in a watchglass then the polymer was allowed to cool.
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OH

Ahp "
c-tcHrJ-o^H_sH

]

benzopinacole pentaerythritol tetrakis (3-mercaptopropionate)

Figure 5.4 Chemical structures for the tetrafunctional crosslinking approach

O OH

meta-chloroperoxybenzoic acid

Figure 5.5 Chemical structure and proposed mechanism for the epoxidation of the olefin

group.

109



Table 5.2 Summary of peroxide crosslinked samples tested. Weight % peroxide
weight % coagent/peroxide listed.

SAMPLE
|

PEROXIDE POLYMER 1 2 3 4 5 7 QO

Lauroyl PHO 0.05 0.1 0 5 1 0 I .J i nz.u 5\j 4. (J

1.5 wt%*&di** PHO 15 25 50

1.5 wt % & tri PHO 15 25 50

PHOU(95/5) 0.05 0.1 0.5 1.0 1 5 2 0 4 0

PHOU(93/7) 0.5

0.5 wt % & di PHOU(93/7) 15 25 50

0.5 wt % & tri PHOU(93^7) 15 25 50

Benzoyl PHO 0.05 0.1 0.5 1.0 1.5 20 3 0 4 0

1.0 wt%&di PHO 25

1.0 wt % & tri PHO 25

PHOU(95/5) 0.05 0.1 0.5 1.0 1.5 2.0 3.0 4.0

PHOU(93/7) 0.1 1.0 3.0

Dicumyl PHOU(93/7) 0.05 0.1 0.25 0.5 1.0 1.5

0.5 wt % & di PHOU(93/7) 25

0.5 wt % & tri PHOU(93/7) 25

PHOU(80/20) 0.05 0.1 0.25 0.4

PHOU(74/26) 0.05 0.1 0.25 0.4

Varox® PHOU(93^7) 0.05 0.1 0.5 1.0 2.0 3.0

0.5 wt % & di PHOU(93f7) 25

0.5 wt % & tri PHOU(93/7) 25

* wt % refers to peroxide level

* *
di = ethylene glycol dimethacrylate, tri = triallyl cyanurate.
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All the sulfur vulcanization ingredients were kneaded into the softened polymer which was

then formed into a ball in preparation for curing.

For the 0.5 g samples, the vulcanization curing process was monitored with a

Rheometrics RMS or RDS II Rheometer using a parallel plate geometry, 2 to 5 rad/sec

frequency, and cure temperature appropriate for the specific chemistry (see Figure 5.4).

The sample was loaded onto the preheated bottom plate. The plates were closed which

typically resulted in a 0.5 to 1 mm gap. The storage modulus was monitored as a function

of time. Table 5.3 summarizes the various samples tested.

For tensile property and tensile set testing, 4 g samples of PHOU(93/7),

PHOU(80/20), and PHOU(74/26) were placed in a 140 mm diameter mold, 0.25 mm thick

and compression molded and cured using a preheated Carver Press set at 140 °C. The

vulcanization time was determined from the rheometry experiments. The cured films were

dusted with talc for easier handling.

5.2.3 Tetrafunctional S ulfur Reagent Sample Preparation

PHOU(93/7) and the tetrafunctional sulfur compound, pentaerythritoltetrakis(3-

mercaptopropionate), were both dissolved in chloroform. The initiator was added and the

solution stirred approximately 15 minutes then pipeted into a glass casting dish and placed

in a vacuum oven.. The vacuum was oscillated with a nitrogen flush to quickly remove

the solvent. Heating was started after all solvent had evaporated to insure crosslinking

was conducted in the absence of solvent. The film was heated at 95 °C for 48 hours in a

nitrogen atmosphere. Several different polymer olefin to tetrafunctional sulfur compound

sulfur ratios were tested including 1:1, 1:2, 1:3 and 1:4, while the initiator concentration

was kept constant.
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Tab], 5.3 Summary of sulfur vulcanization samples tested. Values given are phr parts perhundred rubber, where polymer used is 100 phr.
P

CHEMISTRY I INORFnreivTg
1

SAMPLE
3-6

PHOT I

DPTT
(91/9)

1

(95/5)

2

(91/9)

2.5, 3.5,

DPTT & BZ BZ
zinc oxiHf*

0.5

J

0.5

5

4.5, or 5.5

0.5

5
stearic acid 1

1
i
1 3

S & ZBUDX

PHOU1^ 1 IV-/

u

s

ZBUDX

vvi/y)

2

1.5

(93/7)

3

1.5

(93/7)

3

3
zinc oxide .j

C
J 5

stearic acid z I

DPTT & ZBUDX

PHOUx nwu
DPTT
ZBUDX

(93/7)

3

L

(93/7)

3
1
1

(93/7)

2.5

i

zinc oxide 3 3 3

stearic acid l 1 l

!
DPTT & BBTS

PHOT T

DPTT
BBTS

3

(93/7)

2.5
1 C
1.3

(93/7)

3
1 c
L.J

zinc oxidp e
D

stearic acid 2
It

PHOT I

s

\y5ll)

7

S & BBTS BBTS
zinc oxide

stearic acid

1 ..J

5

2

PHOUX X Ivy \J

DPTT
v^j/ 1

)

3 3

DPTT&MBTS MBTS 1.5 1.5

zinc oxide 5 5

stearic acid 2 2

PHOU (93/7)

S 2

S& MBTS MBTS
zinc oxide

stearic acid

1.5

5

2

7-9

(80/20)

3.5, 4.5,

or 5.5

0.5

5

3

10-12

(74/26)

3.5, 4.5,

or 5.5

0.5

5

3
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5.2A Enoxidarion Ruction Pryp^tion

ORIS

was

The chemical compound and solvent were first purified based on procedures

described by the researcher who previously conducted this reaction and a standard

laboratory purification guide.H.12 Metachloroperoxybenzoic acid, (MCPBA), was

purified by first washing the powder in a pH 7.4 buffer (KH2P04/NaOH), collecting the

powder using a Buchner funnel and flask, then drying the powder under vacuum for 2

days at room temperature. The chloroform was washed with water to remove the ethanol

preservative, dried with potassium carbonate (K2C03 ), refluxed with phosph

pentaoxide (P205) overnight, then distilled under nitrogen. The purified chloroform

stored in the dark.

PHOU(93/7), the purified MCPBA, and the dried and purified chloroform were

dissolved together at room temperature under a nitrogen atmosphere for approximately 6

hours. A 1 :
1 stoichiometric amount of MCPBA to olefinic groups was used in the

reaction. The reaction was quenched and the acid by-product washed out using a 10%

aqueous solution of sodium sulfate (Na2S04 ). The organic layer was collected and dried

over magnesium sulfate (MgS04 ). The organic layer was then pipeted into a glass casting

dish. Crosslinking was expected to occur upon evaporation of the solvent due to the

excess acid catalyzing the hydrolysis of an epoxide group which would then react with

another epoxide group. An ether linkage would be formed in this reaction scheme.

Another possible mechanism could be the acid catalyzed hydrolysis of the epoxide

followed by reaction with a remaining olefin group forming a carbon carbon bond with a

pendant hydroxyl group. This scheme could occur if only partial epoxidation of the olefin

groups had occurred. A small sample of the organic layer was tested prior to evaporation

in a *H NMR to determine what percentage of the olefin groups had reacted with the

MCPBA.

113



£2x3 Sol-Gel Analysis

Sol-gel analysis 13 was conducted on all films and was the primary means of

determining if crosslinking had occurred. A sample of the cured film (typically 0. 1 g to

0.5 g) was weighed then placed in a round bottom flask containing approximately 3 ml to

10 ml of chloroform. The film was allowed to sit in the solvent for 2 hours at room

temperature and was agitated periodically. If a gel was present after 2 hours, it was

retrieved by filtering off the sol and catching the gel on filter paper using a Buchner filter

flask under vacuum. The gel was placed in a glass dish and dried overnight in a vacuum

oven at room temperature. The gel was re-weighed and the % sol calculated from

equation 5.2:

5.2.6 Gel Permeation Chromatography

All molecular weight data was obtained using a Rabbit Model solvent delivery

system with a Waters Model R401 differential refractometer detector and three Polymer

Labs PL 5 |i gel columns with mean pore diameters of 105A, K^A, and 103A. A 2

ml/min tetrahydrofuran flow rate was used with a toluene flow marker. The molecular

weight was based on polystyrene standards.
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5.2.7 Thermal Ana lysis

Differential scanning calorimetry was conducted using a TA Instruments DSC
Model 2910. Samples were tested from -85 to 100 °C at a 20 °C/min heating rate. The

glass transition temperature reported is at the inflection point. The melting temperature

reported is the peak temperature.

Thermogravimetric analysis was conducted using a TA Instruments TGA Model

2950. TGA was conducted in both an air and nitrogen atmosphere from 30 °C to 500 °C

at a 20 °C/min heating rate. Degradation temperatures are reported as the onset

temperature of the weight loss.

5.2.8 Tensile Set

All testing was conducted using an Instron Universal Testing Instrument, Model

TTBM. Strip samples approximately 2 to 5 mm wide by 2 to 4 cm were used. Testing

was based on the procedures described in ASTM D412 14
. The samples were extended at

a 1 or 2 mirr 1 strain rate and held for 10 minutes at the intended elongation then released

at the same strain rate. The samples were then allowed to recover for 10 minutes prior to

final measurement of the gage length.

5.2.9 Tensile Testing

All tensile testing was conducted using an Instron Universal Testing Instrument,

Model TTBM with an Interface SM-10 load cell. Ring samples per ASTM D 412 15
,

Type 2, were punched from the films using a steel rule die and Carver Hot Press Model C

at room temperature. Special grips were made to hold the ring specimens. The ring was

supported at each end by a pin, approximately 5 mm in diameter. Each pin was engaged
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at both ends in the inner track of a ball beanng to insure the stress and strain remained
equal on both sides of the ring during testing. The pinsm removable for^^
sample. The initial gage length was based on half the average circumference of the ring

die. A strain rate of 1 min-1 was used for all tensile tests.

5.2.10 Impulse yiscoelasriHfy

Impulse viscoelasticity, a dynamic mechanical technique, affords direct

measurement of the equilibrium shear modulus, From Geq , the molecular weight

between crosslinks, M
c ,
can be calculated using equation 5.3 (see Section 3.3.1 for

variable definitions).

X4 PRT
Mc -^ (5.3)

A double lap shear sample geometry was used. After a baseline was established, a small

known step strain was placed on the sample for a duration of 10 seconds then the strain

was removed. The material was allowed to relax for 60 to 120 seconds before another

pulse was applied. The relaxation times were chosen to insure the material had ample time

to relax back to the established baseline. The stress and strain were integrated over the

entire pulse and relaxation time and the equilibrium modulus, G^, was calculated from the

ratio of the stress/strain integrals. Figure 5.6 illustrates the use of this technique.

Several samples while still mounted in the apparatus, were heated above the

melting temperature of PHO and allowed to cool then retested. This procedure would

assess if crystallites had been present because the equilibrium shear modulus would

decrease significantly when evaluated after the heat treatment.
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60 80 100

time (seconds)

120 140 160

Figure 5.6 Typical shear pulse-strain deformation for a material exhibiting a viscoelastic

stress response, a) forced strain function and b) stress response of material.

Peroxide Crosslinking Results and Discussion

5.3.1 Sol-Gel Analysis

The sol-gel analysis results are shown for several peroxide cures. Figure 5.7

depicts the results for PHO crosslinked with either lauroyl or benzoyl peroxides both with

and without coagents. The results for PHOU(95/5) crosslinked with either lauroyl or

benzoyl peroxide are shown in Figure 5.8. Figure 5.9 shows the results for PHOU(93/7)

crosslinked with lauroyl, Varox® or dicumyl peroxide including the effect of coagents.

A crosslinked material did result in all cases as long as enough peroxide was used.

The % sol at first decreased as the amount of peroxide increased. This trend was followed

by a leveling off of % sol even though the peroxide concentration was increased further.

The final % sol was not zero indicating there was always some polymer not incorporated
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a) lauroyl peroxide

%sol

100

80

60

40

20

neat

15% di

25% di

50% di

15% tri

M 25% tri

HI 50% tri

0
0.05 0.1 0.5 1.0 1.5 2.0 3.0 4.0

wt % peroxide

b) benzoyl peroxide

% sol

100

80

60

40

20 h

0
I i i i i

0.5 0.1 0.5 1.0 1.5 2.0 3.0 4.0

wt % peroxide

neat

25% di

25% tri

Figure 5.7 Sol-gel analysis results of PHO crosslinked with either a) lauroyl or b) benzoyl

peroxides both with and without coagents. Di = difunctional coagent, tri = trifunctional

coagent. Percentages indicate the coagent to peroxide weight ratio.
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Figure 5.8 Sol-gel analysis results of PHOU(95/5) crosslinked with lauroyl or benzoyl

peroxide.

into the gel no matter how much peroxide was used. Perhaps a loss of chain entropy

prevented total gel formation or perhaps this sol was the result of chain scission reactions.

A molecular weight analysis using gel permeation chromatography (see Section 5.3.3) was

conducted on the sol fraction to better address these findings.

The effect of the coagent on the extent of gel formation was complex and

depended on the amount and type of coagent and which peroxides were used.

For the non-vinyl specific peroxides, lauroyl and benzoyl peroxide, the addition of

coagents generally improved the crosslinking reaction in that less extractables were

recovered. This was the finding independent of whether saturated or unsaturated

polymers were used. Refer to Figures 5.7a and b and Figure 5.9a. In contrast, the vinyl

specific peroxides and coagents resulted in a higher amount % sol, sometimes a dramatic

increase as was the case for Varox® peroxide, see Figure 5.9b. Perhaps the vinyl specific
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a) lauroyl peroxide

0.5

wt % peroxide

neat

15% di

25% di

50% di

15%iri

S 25% iri

50% tri

b) Varox® peroxide

c) dicumyl peroxide

0.05 0.1 0.5 1.0 2

wl % pcrox idc

%sol

100

80

60

40

20

0
0.05 0.1 0.25 0.5 1.0 1.5

wt % peroxide

neat

25% di

25% tn

1 neat

25% di

25% iri

Figure 5.9 Sol-gel analysis results of PHOU(93/7) crosslinked with either a) lauroyl or

b)Varox® or c) dicumyl peroxide both with and without coagents.
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peroxides were capable of homopolymerizing the coagents. This undesired side reaction

would consume the coagents and the resulting polymer could add to the % sol.

An interesting trend was noted for PHO crosslinked with lauroyl peroxide and the

coagents. The more Afunctional coagent added the more sol fraction was detected, while

the more trifunctional added the less sol fraction was detected. This was not observed for

the 7% olefin containing polymer. Compare Figures 5.7a and 5.9a. For the olefin

containing polymer, it appeared that the coagents improved the crosslinking reaction

(lower % sol) independent of the coagent concentration (same % sol independent of

coagent concentration).

Several PHOUs with varying olefin content were crosslinked with dicumyl

peroxide to study the effect of olefin content on gel formation. The results are shown in

Figure 5. 10. Very brittle gels had formed which were difficult to retrieve for final

weighing. This problem explains some higher than expected sols.

%sol

0.05 0.1 0.25 0.5 1

wt % peroxide

Figure 5. 10 Sol gel analysis of several PHOUs with varying olefin content after being

crosslinked with dicumyl peroxide.
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5.3.2 Efficiency Determination

The peroxide efficiency model allows comparison of peroxides using two criteria.

The first criteria is the amount of peroxide required to crosslink the polymer which implies

the efficiency of the thermal degradation of the peroxide to produce viable free radicals

that are not susceptible to non-productive side reactions. The second criteria is whether

the free radicals cause more chain scission than crosslinking.

The comparison between PHO crosslinked with lauroyl and benzoyl peroxide is

shown in Figure 5.11. Lauroyl peroxide was slightly more efficient than benzoyl peroxide

as seen by the smaller slope, but lauroyl peroxide had a very high y-intercept which

indicated that degradation was much more likely to occur than crosslinking.

The use of a polymer containing just 5% olefin groups altered the picture

dramatically. Lauroyl peroxide was now much less likely to cause degradation but was

now slightly less efficient than benzoyl peroxide as seen in Figure 5. 12. The effect of the

olefin group is readily seen in Figure 5.13 which depicts PHO, PHOU(95/5), and

PHOU(93/7) crosslinked with benzoyl peroxide. As the number of olefin groups was

increased, the efficiency of peroxide crosslinking improved and the tendency for

degradation to occur decreased. This efficiency analysis was attempted with

PHOU(93/7), (80/20), and (74/26) all crosslinked with dicumyl peroxide but the results

were nonsensical. Very low levels of sol were extracted from the four peroxide

concentrations tested. The analysis appears to require a larger range of % sol for

meaningful analysis.

The results of PHOU(93/7) crosslinked with lauroyl, benzoyl, dicumyl, & Varox®

peroxides is shown in Figure 5.14. This comparison showed dicumyl peroxide was the

most efficient peroxide while Varox® showed the least tendency towards degradation.

These results are more readily seen in Table 5.4 (page 135) which summarizes all the

findings for peroxide crosslinking.
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1 — i

.

0 0-2 0.4 0.6 0.8

l/(2*Mn*[i])

Iauroyl benzoyl

—B— - O-

Figure 5. 1 1 Efficiency comparison between PHO crosslinked with Iauroyl or benzoyl

peroxide.

l/(2*Mn*[i])

Iauroyl benzoyl

- o-

Figure 5.12 Efficiency comparison between PHOU(95/5) crosslinked with Iauroyl or

benzoyl peroxide.
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l/(2*Mn*[i])

PHO PHOU(95/5) PHOU(93/7)

—B— - O- —

Figure 5.13 Efficiency comparison between PHO, PHOU(95/5), and PHOU(93/7)

crosslinked with benzoyl peroxide.

l/(2*Mn*|i])

lauroyl Varox® benzoyl dicumyl

—B— —O— - O- —*r -

Figure 5. 14 Efficiency comparison between PHOU(93/7) crosslinked w/ lauroyl, benzoyl,

dicumyl, and Varox® peroxides.
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$-2*2—Gel Permeation Chromatography

Several sol fractions extracted from the crosslinked polymers were evaluated for

molecular weight distribution. Figure 5.15 shows the results of the sol fraction for PHOU
after undergoing peroxide crosslinking reactions with three different peroxides. The sol

fraction molecular weight distribution for lauroyl and benzoyl peroxide crosslinked

PHOU(93/7) revealed a Mw and Mn that was higher and broader than the original

polymer with a definite high molecular weight shoulder observed. These results imply that

chain extension had occurred but from the high % sol, not enough reactions had occurred

to completely gel the material. There was not a significant difference observed in the

molecular weight distribution between the sol from lauroyl and benzoyl peroxides. The

efficiency model indicated that excessive chain degradation occurred with lauroyl peroxide

but this prediction was not reflected in the GPC data.

The very low molecular weight sol obtained from the dicumyl crosslinked polymer,

lower than any fraction found in the original polymer, suggested that some chain

degradation had occurred.

5.3.4 Thermal Analysis

One goal of chemical crosslinking was to totally eliminate crystallinity and rely

solely on a chemically crosslinked network. The presence of crystallinity was implied by

the formation of a translucent hazy film versus a transparent film. The haziness was due to

crystallites scattering light. In addition, it was observed that if after cure the films were

still extremely sticky and gummy but firmed up overnight, crystallites were most likely

present.
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intensity

PHOU(93/7)

4.0 wi% lauroyl

0.1 wt% benzoyl

0.5 wt% dicumyl

lower molecular weight

Mw Mn PDI

PHOU(93/7) 165,000 62,000 2.6

lauroyl sol 327,000 88,000 3.7

(39.4%)

benzoyl sol 1,386,000 369,000 3.8

(35.2%)

dicumyl sol 650 490 1.3

(2%)

Figure 5.15 Gel permeation chromatographs and data of PHOU(93/7) before crosslinking

and the sol fraction of the polymer after undergoing peroxide crosslinking.
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Thermal analysis was conducted on many of the cured films to determine if

peroxide crosslinking was successful in eliminating crystallinity. If enough chemical

crosslinking is present, crystallinity should be eliminated because of a reduction in chain

entropy. An increase in the glass transition temperature could also result from chemical

crosslinking.

Figure 5.16 shows the DSC results of PHO crosslinked with either lauroyl or

benzoyl peroxide. As the wt % of peroxide was increased, the amount of crystallinity,

represented by the area under the melting peak, was reduced. For benzoyl peroxide, by

1.0 wt %, crystallinity was eliminated. For lauroyl peroxide, not even 4 wt % peroxide

was sufficient to eliminate all crystallinity.

For PHOU(95/5), both lauroyl and benzoyl peroxide totally eliminated crystallinity

by 1 .0 wt % peroxide as shown in Figure 5. 17. It is interesting that the addition of 5%

olefin groups would so drastically improve the efficiency of the crosslinking reaction and

eliminate crystallinity at a much lower peroxide concentration. The disappearance of

crystallinity at lower peroxide levels concurs with the efficiency model results which

indicated that less peroxide was needed to crosslink olefin containing polymers.

Several samples of PHOU(93/7) crosslinked with Varox® peroxide were tested for

the presence of crystallinity while mounted in the impulse viscoelasticity test apparatus as

described in Section 5.2.10. The results indicated that all crystallinity was eliminated at

and above the 0.5 wt % peroxide concentration.

Thermogravimetric analysis of both non-crosslinked and peroxide crosslinked

polymers revealed no change in the decomposition temperature as a result of the

crosslinking. The onset of decomposition occurred at approximately 290 °C for all

samples tested which included PHO and PHOU(95/5) both non-crosslinked and

crosslinked with lauroyl or benzoyl peroxide, and PHOU(93/7) non-crosslinked. The

shape of all the decomposition curves were also similar.
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b) benzoyl peroxide
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100 125

Figure 5. 16 DSC results for PHO crosslinked with either a) lauroyl or b) benzoyl

peroxide.
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a) lauroyl peroxide
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temperature (°C)

b) benzoyl peroxide
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Figure 5.17 DSC results for PHOU(95/5) crosslinked with either a) lauroyl or b) benzoyl

peroxide.
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5.3.5 Tensile Spf

Another goal of chemical crosslinking was improvement in the elastic response of

the material. Peroxide crosslinking did improve the elastic response of the polymer as

shown in Figures 5.18 and 5.19. For PHO and PHOU(95/5), as the amount of peroxide

was increased, the tensile set decreased. With PHO cured with benzoyl peroxide and

PHOU(95/5) cured with either peroxide, most of the samples could not be evaluated. The

material integrity had been compromised by the crosslinking which resulted in a material

with little or no tensile strength or tear resistance, best described as 'cheesy'. The samples

could not be removed from the glass casting dishes intact so material property evaluations

were impossible. Why the addition of 5% olefin groups to the polymer would so

drastically change the crosslinking reaction and produce such a cheesy material is not

understood. The peroxide efficiency model had indicated that the addition of olefin

groups would reduce the probability of degradation. Perhaps the gain of chemical

crosslinks did not offset the loss of crystallinity.

To explore the concept that the loss of crystallinity was not overcome by the

amount of chemically crosslinking, higher olefin content polymers, PHOU(80/20) and

PHOU(74/26) were biosynthesized. If more olefin groups provided more crosslinks

perhaps the loss of material integrity associated with the loss of crystallinity would be

surmounted. These polymers were crosslinked with several different concentrations of

dicumyl peroxide. These materials still displayed very poor mechanical integrity.
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a) lauroyl peroxide

250

% elongation

b) benzoyl peroxide

250

0 50 100 150 200 250 300 350

% elongation

Figure 5.18 Tensile set of PHO crosslinked with either a) lauroyl or b) benzoyl peroxide.

Non-crosslinked PHO results are also included for comparison.
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a) lauroyl peroxide

b) benzoyl peroxide

Figure 5.19 Tensile set of PHOU(95/5) crosslinked with either a) lauroyl or b) benzoyl

peroxide. Non-crosslinking PHOU(95/5) results are also included for comparison.
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Tensile Properpe

^

Figure 5.20 reveals the modulus as a function of wt % peroxide for PHO,

PHOU(95/5), and PHOU(93/7) crosslinked with various peroxides. Again, results could

only be obtained on a limited number of samples because of the lack of material integrity.

The results obtained did show a drastic decrease in the modulus as the amount of peroxide

was increased. Only PHO crosslinked with lauroyl peroxide could be tested at most

peroxide levels. As mentioned in Section 5.3.3 this combination of polymer and peroxide

never totally eliminated all crystallinity even at high peroxide concentrations. These

results support the argument that material integrity is compromised by the loss of

crystallinity and not offset by the gain of chemical crosslinks.

5.3.7 Network Structure.

The network structure as revealed by the molecular weight between crosslinks,

Mj., was determined for PHOU(93/7) crosslinked with Varox® peroxide using the impulse

viscoelasticity technique. The M
c was estimated at 3000 g/mol for the polymer

crosslinked with 0.5 wt % to 2.0 wt % peroxide.

5,3,8 Summary

The various peroxides were all successful in producing crosslinked materials. The

efficiency or amount of peroxide required to reach a maximum amount of gel varied. The

effect of olefin groups dramatically increased the peroxide efficiency. The goal of

eliminating the crystalline regions which acted as the physical crosslinks was achievable for

most peroxides if enough peroxide was used. The elastic response was improved but in
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general the material integrity was very poor. A summary of the results for peroxide

crosslinking is given in Table 5.4.

1
10

so

6

4

2

0
0

PHOU(95/5) non-crosslinked

PHO non-crosslinked

- o
__L

O

I

0.5

_L_

1 1.5 2

wt % peroxide

2.5

PHOU(95/5) PHOU(95/5) PHO PHO PHOU(93^7)

benzoyl lauroyl benzoyl lauroyl Varox

Figure 5.20 Tensile modulus as a function of peroxide concentration. Sample geometry

strips.
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Table 5.4 Summary of peroxide crosslinked sample result including model efficiency
parameters, molecular weight between crosslinks, Mc, and crystallinity.

iyc5ci i pi ion reroxide

Efficiency
Po/q0 Mr (g/mol) crystallization

PHO

lauroyl 0.55 0.73 —
YES

ucnzoyi 0.41 0.35 YES to NO

PH0U(95I5)

lauroyl 1.04 0.21 —
YES

benzoyl 1.28 0.11 — YES TO NO

PH0U(93I7)

lauroyl 1.03 0.78 YES

benzoyl 1.82 0.14 YES TO NO

Varox® 1.52 0.10 2400-4200 YES TO NO

dicumyl 2.54 0.17 YES TO NO
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Sulfur Vulcanization Basults and Discussion

5.4.1 Vulcani/fiHnn

The vulcanization process is typically monitored using a modified rheometer called

a cure meter which measures the torque as a function of time during isothermal curing. ^

For this study, the storage modulus which is proportional to the torque, was monitored

over time using a rheometer. Cure curves can take on three different shapes: plateau,

reversion, or marching depending on how the torque (or storage modulus in this study)

varies with time. 16 Figure 5.21 shows examples of these different types of cure curves. It

is important to know which type of cure a specific chemistry will produce to insure the

cure is optimized.

All samples were an opaque cream color after compounding. After cure, most

samples had darkened to a tan or dark tan color and remained opaque. This tan color is

similar to a sulfur vulcanized rubber band in appearance. One sample cured with the sulfur

and BBTS chemistry turned into a dark brown liquid shortly after heating began and was

discarded.

Figure 5.22 shows a series of cure curves typically observed for the thiuram

(DPTT) dithiocarbamate (BZ) sulfur chemistry. As the olefin content was increased, the

final dynamic modulus attained at the plateau also increased. The higher modulus reflects

the higher crosslink density achieved with more reactive groups available for crosslinking.

PHOU(80/20) cured at several vulcanizing agent concentrations is shown in Figure

5.23. The trend of an increasing plateau dynamic modulus with increasing vulcanization

agent was observed. The increase was substantial from 3.5 to 4.5 phr vulcanizing agent

but insignificant when the concentration was raised to 5.5 phr. These results imply that

the vulcanization agent did not limit the curing process after 4.5 phr vulcanizing agent was

used. Similar results were obtained for PHOU(74/26).
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a) plateau cure curve

G' [Pa]

time [s]

b) reversion cure curve

G' [Pa]

time [s]

c) marching cure curve

G' [Pa]

time [s]

Figure 5.21 Examples of different cure curves encountered with sulfur vulcanization.
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Figure 5.22 Effect of olefin content on cure of several PHOUs using 4.5 phr DPTT and

0.5 phr BZ. Cure temperature 140 °C.

G' [Pa|

1.000,000

1,000 1,500

time [s]

2,000

Figure 5.23 Effect of vulcanizing agent concentration on cure of PHOU(80/20) using

DPTT and 0.5 phr BZ. Cure temperature 140 °C.
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The feel of the material after cure also changed with olefin content. The low olefin

content PHOU(93/7) remained sticky and was soft after curing whereas PHOU(80/20)

and PHOU(74/26) were dry to the touch and harder.

5.4.2 Sol-GH Analyse

A sol-gel analysis was conducted on the many of the vulcanized samples. Figure

5.24 compares the results of the different sulfur chemistries. All sulfur cures produced a

gel. Generally a trend of decreasing sol with increasing sulfur vulcanization agent was

observed.

% sol

100

80

60

40

20
3 r—i 2.5

2.5

3.5

4.5
5.5

0
(DPTT & ZBUDX) (S & MBTS)

(DPTT & MBTS) (DPTT & BBTS)

cure system

(DPTT & BZ)

*

Figure 5.24 Sol-gel analysis results for PHOU(93/7) sulfur vulcanized with several

different sulfur chemistries. The numbers above the bars indicated the amount of

vulcanizing agent in phr. The * indicates PHOU(91/9) was used for these samples.

139



One chemistry which showed promistng results was evaluated further with

polymers containing different ievels of olefins. The sol-gel results of these samples are

given in Figure 5.25. The uends observed in the % so, results reflect the results obtained

from the cure curves. Increasing the olefin content produced a material which was more

thoroughly crosslinked as indtcated by a decreasing % sol in each group of three bars.

The use of more vulcanizrng agent also decreased the amount of extractables but with less

dramatic an influence than the olefin content.

Figure 5.25 Sol-gel analysis showing the effect of polymer olefin content and

concentration of vulcanizing agent on % sol.

5.4.3 Gel Permeation Chromatography

The sol fractions extracted from several sulfur vulcanized samples were evaluated

for molecular weight distribution. Figure 5.26 shows the results of the sol fractions for

PHOU(91/9) after undergoing sulfur vulcanization with three different vulcanizing agent

concentrations. The samples were vulcanized in the rheometer from 25 to 60 minutes.
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intensity

soi j.j pnr

sol 4.5 phr

sol 5.5 phr

lower molecular weight

Mw Mn PDI

PHOU(91/9) 148,000 64,000 2.3

3.5 phr sol 600 490 1.2

(19.3%)

4.5 phr sol 27,000 12,000 2.3

(9.7%)

5.5 phr sol 18,000 12,000 1.6

(11.0%)

Figure 5.26 Gel permeation chromatographs and data for PHOU(91/9) before

lcanization and the sol fraction of the polymer after undergoing sulfur vulcanization

with various levels of DPTT and 0.5 phr BZ.
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Tr,e molecular weight distribution changed shape and shifted to a lower molecular

weight fraction for all the sols analyzed. The sol fraction from the sample vulcanized with

3.5 phr DPTT exhibited the lowest molecular weight being totally beyond the molecular

weight range found in the original polymer. The sols from the 4.5 and 5.5 phr DPTT
samples exhibited a slight shift to a lower molecular weight than the original polymer and

also exhibited a pronounced broadening of the distribution. The shifts suggests that some

chain scission reactions had occurred during cure. It is unknown whether the low

molecular weight fractions were generated from the vulcanization process of simply

because of heating to 140 °C for approximately 25 minutes.

5.4.4 Thermal Analy^

The presence of crystallinity could be implied if the material after cure was still

sticky and gummy but hardened up overnight. To corroborate the observations, DSC

testing was conducted approximately one week after vulcanization giving ample time for

the polymer to crystallize. The goal of eliminating all crystallinity was achieved with

several chemistries. Generally a trend of decreasing crystallinity and increasing glass

transition temperature was observed as the amount of vulcanization agent was increased

as shown in Figure 5.27. These results indicated that a more highly crosslinked network

was produced when more vulcanization agent was used. The polymer chains were

constrained in such a way that crystallization was prevented or disrupted and the glass

transition was shifted to a higher temperature due to the extra junction points. These

results indicate that other chemistries which did not eliminate all crystallinity may still be

viable candidates if higher vulcanization agent concentrations were employed.

Interestingly, for 3.5 phr DPTT, the glass transition for a 7% olefin containing

vulcanized polymer appeared higher than for either the 20% or 26% olefin containing

polymers. The difference was approximately 2 °C.
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Thermogravimetric analysis showed that the thermal decomposition of sulfur

vulcanized PHOU occurred approximately 20X below that of as extracted PHOU yet

retained the same decomposition curve shape. The onset of thermal decomp,

independent of the amount and type of vulcanization agent used. Perhaps the added

compounds promoted the mechanism of decomposition in the bacterial polyesters.

•osition was

AHm (J/g)

20

Figure 5.27 DSC results for several PHOUs vulcanized with DPTT and BZ. Open

symbols indicate T
g

. Closed symbols indicate AHm .

5.4.5 Tensile Set

Tensile set was virtually eliminated in the sulfur vulcanized PHOUs as shown in

Figure 5.28. Even after 200% elongation, PHOU(93/7) showed less than 5% tensile set.

Non-crosslinked PHOU(93/7) would typically exhibit a tensile set of approximately 150%
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after 200% elongation. Unfortunately, the tensile strength was so compromised in the

higher olefin content PHOUs that less than 100% elongation was possible. But even at

these low strains, the tensile set was reduced fivefold. Typical values for non-mocHfied

PHOU would be a tensile set of approximately 20% after 50% elongation.

Figure 5.28 Tensile set of several PHOUs sulfur vulcanized with 4.5 phr DPTT.

5.4.6 Tensile Properties

The mechanical properties of several vulcanized polymers are summarized in Table

5.5 and compared to a non-crosslinked PHOU. The modulus, tensile strength, and

elongation were all substantially below the values for non-modified polymer. The PHOU

with only a 7% olefin content still retained a relatively high elongation.
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Table 5.5 Tensile properties of PHOU(91/9) non-erosslinked and several PHOUs sulfur
vulcanized with 4.5 phr DPTT. Strain rate 1 nun-1. Standard deviadon approximately

Polymer E

[MPa]

Tensile Strength

[MPa]

Ultimate Elongation

[%]

PHOU(91/9)

non-crosslinkeda
8 10 370

PHOU(93/7) 1.2 0.8 250

PHOU(80/20) 1.8 0.8 90

PHOU(74/26) 1.2 0.8 80

a Samples tested at a 2 miir 1 strain rate.

The tensile modulus was determined at several strain rates for three different

PHOUs. The results are summarized in Table 5.6. The modulus increased slightly when

the olefin content was increased from 7% to 20%. The modulus did not increase further

when the olefin content was increased to 26%. The effect of strain rate was negligible

even when varied between 1 min -1 and 25 min" 1
. In addition, the modulus did not change

after repeated stretching of the same sample at any of the strain rates.
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Table 5.6 Sulfur vulcanized PHOU tensile modulus values at several strain rates
Standard deviation approximately 20%.

strain rate PHOU(93/7) PHOU(80/20) PHOU(74/26)

[min -1
]

25 0.7 1.5 1.1

10 0.7 1.4 1.2

5 0.7 1.3 1.2

2.5 0.8 1.7 1.3

1 1.2 1.8 1.2

5A7 Network Structure

Impulse viscoelasticity experiments were conducted on several sulfur vulcanized

samples. Figure 5.29 shows the equilibrium shear modulus values obtained. Increasing

the vulcanizing agent concentration increased the shear equilibrium modulus. A dramatic

increase in the modulus was noted when the olefin content of the polymer was increased

from 7% to 20%. An increase to 26% olefin content did not alter the modulus value

significantly above the 20% value. An increase in modulus corresponds to a decrease in

the molecular weight between crosslinks. In other words, the more vulcanization agent

used or the higher olefin content polymer, the higher the crosslink density.
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The molecular weight between crosslinks, M
c , was calculated from equation 5.3

using the equilibrium shear modulus values. Sulfur vulcanized PHOU(93/7) exhibited an

Mc that was one order of magnitude larger, approximately 20,000, than those for peroxide

cured PHOU(93/7) which had an M
c of approximately 3000. The olefin content

dramatically affected the M
c with the value decreasing to approximately 6, 000 when the

olefin content was increased to 26%.

An interesting calculation revealed that if all the olefin groups in PHOU(80/20)

resulted in a crosslink point, the resulting M
c should be approximately 750. This indicates

that only 10% to 15% of all olefin groups reacted during sulfur vulcanization. Perhaps

all the olefin groups are somehow prevented from participating in the reaction. This idea

would be supported by the concept of reduced chain entropy occurring after partial

crosslinking.

Ge<l (MP*) Mc (g/mol)

vulcanizing agent (phr)

(91/9) (80/20) (74/26) (95/5) (95/5)

DPTT DPTT DPTT DPTT sulfur

-e e-

Figure 5.29 Shear equilibrium modulus, G^, and molecular weight between crosslinks,

M
c , as a function of the vulcanizing agent concentration for several systems.
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5.4.8 Summary

Several sulfur vulcanization chemistries were successful in producing crosslinked

PHOUs. The higher the olefin content, the less extractables, the lower the level of

crystallinity detected (if at all), and the lower the molecular weight between crosslinks.

The materials exhibited less than 5% tensile set even after 200% elongation. The tensile

modulus and tensile strength of the material were reduced dramatically compared to non-

modified PHOU. Table 5.7 summarizes the findings for sulfur vulcanized PHOUs.

Table 5.7 Summary of sulfur vulcanization results including % sol, crystallinity, and

molecular weight between crosslinks, M
c

.

CURE
CHEMISTRY

%SOL CRYSTALS Mr (g/mol)

DPTT & BZ 10-30 YES TO NO 6K - 34K

DPTT & ZBUDX 10-20 YES TO NO 20K - 28 K

S & ZBUDX YES

DPTT & BBTS 33 YES

S & BBTS 100 YES

DPTT & MBTS 12 YES 18K

S& MBTS 10 VERY LOW 25K

148



5£ Tetrafunctional Sulfur
Qassliflksr.

Several stoichiometries including 1:1, 1:2, 1 :3, and 1 :4 polymer olefin to sulfur

compound sulfurs were tested. The sol-gel analysis results are shown in Figure 5.30. A
gel was produced using these compounds. All the cured materials were transparent. The

1:1 stoichiometry film was slighdy sticky after cure but firmed up overnight indicating that

some crystallinity may be present. The other stoichiometries produced firmer films.

However, the mechanical integrity of all the films was compromised; the material exhibited

a 'cheesy' character similar to peroxide cured PHOU. The similarity to peroxide cured

films may be due to the use of a free radical initiator. The expected chemistry which relies

on heat to produce a free radical initiator which attacks the sulfur compound may not be

the only reaction occurring. The polymer may also be involved directly as in peroxide

crosslinking especially with the use of a substantial 0.1 wt % initiator concentration.

1:1 1:2 1:3 1:4

polymer olefin/crosslinker sulfur

Figure 5.30 Sol-gel analysis results for PHOU(93/7) crosslinked with the tetrafunctional

sulfur compound.
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Several peroxides at the 0.
1
w, % level did produce gels. The sulfur reagent did influence

the amount of gel produced implying that the initiator was no. the only reagent involved ,„

promoting crosslinking.

5*6 Epoxidation Results

The !H NMR results shown in Figure 5.31 indicated that the reaction of the

polymer with metachloroperoxybenzoic acid was successful in eliminating the olefinic

proton signals. However, the presence of epoxy proton signals (g, h lf and h2) expected at

2.47, 2.74, and 2.90 ppm were not present. The film formed after solvent evaporation

was still liquid-like after two weeks and appeared to contain a large amount of a white

compound which had crystallized and was intimately mixed with the polymer. No

crosslinking had occurred. This approach to crosslinking was abandoned.

12 Conclusions

Peroxide crosslinking was successful in producing a gel. The crystallinity was

reduced or eliminated and the tensile set was reduced in the samples tested. However, the

loss of tensile strength was a general feature of peroxide crosslinked PHO and especially

PHOU both with and without coagents. It is believed that the gain of chemical crosslinks

was not substantial enough to overcome the loss of crystallinity in providing mechanical

integrity to the material even when high olefin content PHOUs were used. It is possible

that chain scission was a factor, a common problem with free radical chemistry, although

the peroxide efficiency model did not indicate this was the case. Perhaps the "vinyl

specific" peroxides for silicones are not vinyl specific for polyesters and random

crosslinking (and chain scission) had occurred.
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Figure 5.3 1 *H NMR spectra from PHOU(93/7) both before and after reaction with

m£f<2-chloroperoxybenzoic acid
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more
Another explanation may be the effect of chain ends which would be

pronounced in a random crosslinking reaction. Generally synthetic rubbers which are to

be peroxide crosslinked must have a high molecular weight, on the order of 200,000 to

500,000 g/mol. The high molecular weight is required to overcome the network defects

introduced by chain ends " The bacterial polyesters used have substantially lower

molecular weights, approximately 80,000 g/mol. At this time the bacteria cannot be

coaxed to alter the molecular weight of the polymers produced. However, one end of

each polymer chain terminates with a hydroxyl group. The reaction of the polymer with a

diisocyanate would double the molecular weight. Perhaps this higher molecular weight

polymer would exhibit superior mechanical properties after peroxide crosslinking.

Sulfur crosslinking was also successful in producing a gel, reducing or eliminating

crystallinity, and almost eliminating tensile set. The tensile properties of the vulcanized

materials were dramatically reduced and a soft elastomer was produced. Sulfur

crosslinking requires the use of many chemicals which brings up the concern of

environmental fate when (and if) the crosslinked material biodegrades.

The use of a tetrafunctional sulfur agent did produce a crosslinked material.

However, the material properties were similar to the peroxide cured materials, low tensile

strength and low tear resistance. A reaction conducted by a previous researcher which

involved epoxidation followed by crosslinking could not be duplicated. The procedure

was unsuccessful in creating a gel.

The long term crystallization study discussed in Section 4.3.3 indicated that

crystallization is very slow and annealing can also occur over the long term. Will a

peroxide crosslinked or sulfur vulcanized film devoid of crystallinity stay crystallite free?

PHOU(91/9) which had been sulfur vulcanized with DPTT and BZ was re-evaluated for

crystallinity using the impulse technique approximately 1 1 months after vulcanization. The

equilibrium modulus dropped significantly after the material was heated above the melting
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point and allowed ,o cool ,o room temperature implying that crystallization had occurred

over the 1
1
months. Higher olefin content PHOUs whtch produced a tighter network

upon vulcanization need to be investigated after long times to determine if the higher

crosslink density would prevent crystallization from ever occurring.
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CHAPTER 6

BIODEGRADATION

6.1 Background

Biodegradation is a term used often but not often defined. This confusion has led

to a mistrust of materials reputed to be biodegradable. At the First International Scientific

Consensus of Degradable Materials, environmentally degradable was broken down into

three forms of degradation: photodegradable, chemically degradable, and biodegradable. 1

Biodegradable was further defined as disintegration of plastic material where the primary

mechanism is through the action of microorganisms.

A recent article 2 tries to explain the complexities of defining biodegradability and

charges that the real concern is environmental fate. The article discusses the ASTM

standards that are being established which would outline laboratory test protocols for

determining the biodegradability of polymers. A more meaningful term, mineralization, is

applied to materials which under the influence of aerobic microorgansims are totally

converted to carbon dioxide, water, and salts (plus methane for anaerobic minerialization).

Work to date on evaluating the biodegradability of bacterial polymers has relied

heavily on two main methods: development of enzymatic assays and placing the polymers

directly in different environments. Biodegradation has been established by monitoring

weight loss, deterioration in mechanical properties, microbial colonization, formation of a

clear zone 3
, and changes in pH 4

.

Most work has focused on determining the biodegradability on the more readily

available PHB and PHB/HV polymers. Several bacteria have been identified that excrete

PHB depolymerase which can be concentrated for the development of laboratory

assays. 5 '6
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PHB and PHB/HV have been placed in a wide range of environments have been

found to biodegrade in anaerobic sewage, well watered soil, sea and lake water sediments,

aerobic sewage, leaf compost, the rumen of cattle, sea and lake water, in vivo

(subcutaneously or intramuscularly) and in vitro with negligible Degradation in moist

air. 7, 8 Good reviews on the biodegradation studies Qn pHB pHB/Hy ^
written. 9, 10 0ne reviewer comments on the expected changes in biodegradation rates

with poly-{3-hydroyalkanoates such as PHO. The more hydrophobic nature of the polymer

due to the long alkyl pendant groups would most likely extend the mineralization time.

The number of studies conducted on PHO to date is rather limited mainly because

of the scarcity of material. An early study on the biodegradability of PHO showed that

PHO was not degraded by the depolymerase known to degrade PHB. 1

1

A recent study

has identified 26 bacteria from various soils, lake water, and activated sludge that used

PHO as their sole carbon source. 12 One microorganism from the study was identified as

P fliwrescens and was found to excrete a PHO depolymerase into the culture media. The

extracellular PHO depolymerase was isolated and characterized. Interestingly, this

enzyme did not degrade PHB/HV.

Studies on the mechanism of PHB or PHB/HV biodegradation can shed light on

the general requirements for biodegradation of PHAs. The chiral backbone of the PHA is

believed to be essential for enzymatic attachment and attack because enzymes are also

chiral. However one study has showed that biodegradation did occur on a 77% fR]

atactic and 50% [R] syndiotactic PHB. 4 The study mainly dealt with initial

biodegradation rates and did not quantitatively determine if all the non-natural [S]

stereoisomer was completely mineralized.

The effect of crystallinity on the rate of biodegradation has been the subject of

several papers. 4 - 13 » 14 The results indicated that the amorphous regions were more

quickly degraded by the microorganisms. Also large surface area increased the rate of

degradation. 15 PHO and long pendant group PHAs generally have a much lower degree
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of crystallinity, typically 35% compared to either PHB at 85% or PHB/HV which can be

reduced to 60% crystallinity. PHO may exhibit a faster degradation rate because of the

low level of crystallinity once environments which degrade the polymer are established.

A joint study with the Microbiology Department has been initiated to investigate

the biodegradation of PHO. Establishing the environment(s) and conditions for PHO

biodegradation is an essential part of the material investigation.

Both field (leaf compost and sewage) and laboratory (enrichment and culture)

studies have been conducted to determine the conditions required for the biodegradation

of PHO. PHO crosslinked with lauroyl peroxide was also included in the leaf compost

study.

An enrichment culture is an aqueous growth media (Minimal Basal Medium

[MBM] and vitamins) containing a film sample of PHO that is inoculated with a sample

from an ecosystem that contains a variety of microorganisms. Subsequent transference of

a sample of this media to fresh media and PHO film eventually eliminates all carbon

sources except for the PHO sample. The new culture will flourish only if organisms

capable of using PHO as a carbon source are present. Both anaerobic and aerobic

enrichment cultures were studied. Several aqueous cultures (MBM with vitamins)

inoculated with fungal isolates were also tested. All studies were conducted by two

colleagues within our reseach group and one colleague in the Microbiology Department at

the University of Massachusetts, Amherst.

6.2 Experimental

6.2. 1 Leaf Compost

Drs. David Gilmore and Anton George conducted a field study for biodegradation

using a Muncipal Leaf Compost Facility located in Springfield, Massachusetts. Leaf
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mounds or windrows, approximate 30 m long by 3 m wide by 2 m high are formed from
collected leaf waste in autumn. The windrows are aerated by turning the piles

approximately every 2 weeks with machinery. By May of the following year, the leaves

have turned into soil and the experiments were ended. The temperature of the windrows

was measured and recorded monthly. Approximately 0.5 mm thick film samples ofPHO
and PHO crosslinked with roughly 5 weight % lauroyl peroxide were attached to wooden

stakes along with PHB and PHB/HV samples and placed in the leaf windrows. The stakes

were removed during aeration of the windrows. Samples were removed monthly for

evaluation. Control samples were incubated in sterile leaves at 55 °C. Weight loss

the primary means of determining biodegradation. Microbial colonization was used

another sign of biodegradation.

was

as

6,2,2 Sewage Sludge

Dr. David Gilmore conducted a field study for biodegradation using activated

sewage sludge located in a nearby municipal facility. Film samples approximately 0.5 mm

thick of PHO were attached to wooden stakes which were hung using nylon rope into the

first aeration area of the sewage treatment plant. PHB and PHB/HV samples were also

included in the study. Control samples were incubated in sterile sewage at 10 to 20 °C.

Weight loss was the means of determining biodegradation.

6.2.3 Enrichment Cultures

Both anaerobic and aerobic enrichment cultures were tested. All aqueous media

consisted of 50 ml minimal basal media, 0.25 ml vitamins, 50 mg PHO, and inoculm. For

the anaerobic cultures, the head space consisted of 80% nitrogen and 20% carbon dioxide.
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anaerobic inocula:

• muck from Hawley Bog, MA

• muck from Hardwick Bog, MA

. muck from a Winogradsky column, standard lab anaerobic inoculum

The cultures were incubated at 30 °C in the dark. After 2 weeks, samples from the

Winogradsky column were transferred into 4 fresh MBM, vitamin, and PHO containing

flasks and grown under the same conditions,

aerobic incocula:

• garden compost

• forest soil

The cultures were incubated at 37 °C on a slow shaker. After one month, sampl

from each flask were transferred to two new flasks with fresh MBM, vitamins, and PHO

and grown under the same conditions. After one more month, samples were transferred

again to new MBM, vitamin, and PHO containing flasks. The cultures were incubated at

30 °C on a slow shaker.

es

6.2.4 Fungal Cultures

To insure no other organisms were present except for the inoculum, the following

steps were taken.

1) flasks and MBM autoclaved

2) added pre-weighed PHO

3) added vitamins

4) inoculated

5) incubated on slow shaker at 37 °C
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The PHO was either presterilized with a 70% ethanol soak for 15 minutes then

dried in a sterile petri dish or after addition of the PHO, the entire flask contents were heat

treated at 55 °C for 30 minutes.

Fungal inoculi, types of penicillum, were designated T3A, M2A, and Gl. These

fungi had been shown to degrade PHB and PHB/HV. Two flasks of each were

inoculated. After one month, the protein content and PHO weights were determined.

Controls were included in this study and consisted of uninoculated PHO, MBM, and

vitamins.

Protein content was evaluated as a means to determine if the fungi were flourishing

while polymer weight loss was used to monitor biodegradation. Two different methods

were used to separate the PHO from the liquid media for evaluation. For one method, the

liquid was poured off and measured. The PHO was sonicated twice for 2 minutes each

time to break-up and remove any organisms then dried and re-weighed. The other method

consisted of combining equal volumes of media and chloroform in a separatory funnel.

When the polymer had dissolved, the organic layer was drained into a pre-weighed

aluminum weigh pan, the solvent allowed to evaporate, and the polymer weight

determined. The MBM/protein layer was collected in a test tube and a protein assay

conducted using a colorimetric technique.

6.3 Results and Discussion

6.3.1 Leaf Compost

The leaf windrows averaged approximately 45 °C to 55 °C. The PHO samples

appeared to have melted and soaked into the wooden stakes used to hold the samples. No

determination of weight loss could be made. The peroxide crosslinked PHO became

sticky in the leaf compost. Leaf material became imbedded in the samples and could not
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be removed with washing. Weight loss could not be determined for the PHO samples. By
comparison, PHB/HV had nearly disintegrated after 6 months.

6.3.2 Sewage
Slfldgfi

PHO was submerged in the activated sewage sludge for several months. No

weight loss was observed. The material properties did not appear to alter during the

course of the experiment. By comparison, a 65% weight loss was reported for PHB/HV

after 1 50 days of exposure.

6.3.3 Enrichment Cultures

The anaerobic enrichment cultures showed little or no growth on PHO.

After 6 weeks, two of the four aerobic enrichment cultures showed some growth,

the liquid was cloudy. Samples were transferred to two new flasks and are presently

incubating at 30 °C on a slow shaker.

6.3.4 Fungal Cultures

After one week, growth was observed in all flasks. A gray-greenish and/or silver

fuzz was noted on the PHO samples. Also growth clumps were floating in the liquid.

The results of the PHO weight and protein content analysis are recored in Table

6.1.
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Table 6.
1
Summary of biodegradation study on PHO using fungal cultures.

Fungual Separation Original Change in PHO rTotein

Culture Method Weight of Weight % Weight Vg/nasKj

PHO(mg) (mg) Loss

T3A sonication 53.0 0 7
1.3 1180

T3A CHCl^

M2A sonication 52.1 3.4

M2A CHCla
.1

Gl sonication 49 8 ^ 7 7 /I 840

Gl CHC13 750

control 1 CHCl^ 3.5 0

control 2 CHCh 1.8 0

44 Conclusions

With the leaf windrows averaging 55 °C, it is not surprising that the PHO melted

or that the peroxide crosslinked PHO became sticky. Relying on weight loss

determinations for confirmation of PHO biodegradation does not appear feasible using leaf

composting facilities.

Activated sewage sludge does not appear to have the required microorganisms to

degrade PHO. However, another explanation could be that the time required for

biodegradation of PHO may be longer than the length of the experiment. Microorganisms

require an aqueous environment to flourish. The biodegradation of PHO would be

expected to be slower than for PHB or PHB/HV because PHO has a more hydrophobic
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nature due ,o the longer alkyl side ehains. *m useofaM^^^
require a very long time to estab.ish whether PHO is btodegradable in that environment

Tne enrichment culture work is continu.ng. Growth appears to be occurring in the

aerobic systems under evaluation.

The fungal cultures appear the most promistng. The results did show weight loss

for PHO in the range of 1.3% to 7.4%. However, the controls also showed weigh, loss

of 1.8% to 3.5% presumably due to the separation technique. The control weigh, loss

values are very close to the weigh, losses reported for PHO so firm conclusions cannot be

drawn at this point. The use of the chloroform separation technique will not be possible

with crosslinked PHO or PHOU because the material will not dissolve. A separation

technique designed for both crosslinked and non-crosslinked material should be

developed.

The use of fungi that were shown to degrade PHB and PHB/HV may be dubious.

The bacteria P. fluoresces which could degrade PHO could not degrade PHB/HV. ^

Investigating other fungi or obtaining other organisms known to degrade PHO appears

more appropriate. One species, P. fluoresceins, has already been identified in the

literature. Another bacteria, Xanthomonas malta, has been identified as excreting a PHO

depolymerase and has been obtained for evaluation. 16

Determining environments which degrade PHO requires further investigation.

Establishing the conditions and the degradation characteristics of PHO is essential before

the effect of chemical crosslinking can be assessed. Because sulfur vulcanization and

crosslinking with vinyl specific peroxides presumably limits the sites of crosslinking to the

terminal pendant olefin group, the chiral backbone would remain unperturbed.

Biodegradation, if it indeed relies on the chiral backbone, may be least effected by these

types of crosslinking chemistries. Interestingly, a preliminary evaluation of the enzymatic

degradation of peroxide crosslinked PHB/HV was conducted. The results indicated that
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peroxide crosslinking had not affected the biodegradability of the material. 17 Further

investigations are required before any conclusions can be drawn.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

ZJ Conclusions

Waste management of polymers has sparked interest in biodegradable polymers.

Bacterial polyesters appear to be truly biodegradable or minerializable by the action of

microorganisms in several environments. But if these materials were made part of the

consumer market, where would these materials biodegrade? The main disposal system

used today, the landfill, has been shown to be lacking in sufficient microbial activity to

enable significant degradation of disposed items. 1 Archeological type digs of old landfills

have found food that is still recognizable and newspapers that are still intact and

readable. 1 The landfill system appears to preserve the waste for all time.

This new understanding about landfills and the fact that space is running out in the

depositories has started generating ideas on ways to handle waste. These main ideas

include:

• source reduction

• recycling

• composting

• incineration

• depolymerization

Each method has advangates and disadvantages and is beyond the scope of this work to

explore the options thoroughly.

With the bacterial polyesters in mind, the idea of bioreactors may be viable. This

idea is a combination of composting, depolymerization, and recycling. The disposed
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biomaterials could be used as a feed stock for bacteria which would break down the waste

and generate new polymers.

Making consumer products out of the bacterial polymers has begun with a

shampoo botde being marketed in Europe. Biosynthesizing, extracting and purifying the

polymers from bacteria is still an expensive process. A combination of understanding the

metabolic pathway of the bacteria and development of more sophisticated biotechnology

tools will improve the situation. Ultimately, the use of genetic engineering will

undoubtably be a key to decreasing the cost of these biopolymers where the amount of

polymer accumulated, the prevention of internal degradation or utilization of the

accumulated polymer, and easier extraction and purification techniques could be

envisoned.

With all this in mind, the first step is still the basic exploration into the types of

polyesters bacteria can produce or be coaxed into producing. An understanding of the

structure property relationship of the new polymers is needed to determine if the material

properties would fill a need. The goal of this dissertation was to understand why PHAs

from Pseudomonas oleovorans exhibited elastic material properties and quantitatively

measure the material properties. In trying to improve the elastic response, chemical

modification of several PHAs was accomplished. These samples raised the question as to

whether biodegradation will still occur after chemical modification. The answer is

unknown at this time but crosslinked samples are now available for testing.

7.1.1 Thermoplastic Elastomeric PHO

PHO is a thermoplastic elastomer with a random copolymer chemical structure

which is unique for a thermoplastic elastomer. The natural source of the polymer,

bacteria, endows the chemical structure with an absolute [R] stereochemistry at every

chiral carbon resulting in a 100% isotactic polymer. The tacticity allows crystallization to
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take place but because the metabolism of the bactena produces a copolymer even when
grown on one carbon source, the level of crystallinity is low. The low level of crystallinity

together with a glass transition temperature well below room temperature results in elastic

behavior at room temperature with the crystalline regions acting as the phys.cal crosslinks.

The network structure is similar to a segmented polyurethanne where the molecular

weight between crosslinks is approximately 4000 g/mol and each chain is involved with

approximately 10 to 20 crosslink sites.

The elastic response of PHO decreased as the amount of strain increased due to

deformation induced changes in the crystalline regions and overall crystallinity of the

material. However, the material properties of PHO compared well with examples of all six

classes of commercial thermoplastic elastomers.

The crystallization rate ofPHO is very slow requiring at least 10 hours even at the

fastest crystallization temperature before the material forms a film with mechanical

integrity. Attempts to increase the rate of crystallization through the incorporation of

possible nucleating agents was unsuccessful.

The crystallization temperature influences the mechanical properties significantly.

Regulation of the material properties can be achieved through the use of specific

crystallization temperatures. It is unknown if the material will remain elastic since

crystallization and annealing are continuing at room temperature. However, the material

still exhibited an elastomeric shaped stress strain curve after crystallization and annealing

for over 2 years.

7.1.2 CrosslinkedPHOandPHOU

Pseudomonas oleovorans was capable of producing a polymer with a predictable

olefin content by controlling the mix of different carbon sources during biosynthesis.

These new polymers enabled testing of several crosslinking chemistries. Peroxide
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crosslinking and sulfur vulcanization were studied extensively. The elastic response of the

bacterially polyesters were improved by both types of chemical crosslinking. Peroxide

crosslinking in general produced a •cheesy
1

material which exhibited little tensile strength

or tear resistance. Sulfur crosslinking produced a material with exceUent elastic response,

less than 5% tensile set was measured after 200% elongation. However, the tensile

strength and tear resistance were much lower than in the unmodified polymer. The effect

the crosslinks may have on the biodegradability of the material is unknown at this time.

Establishing environments where PHO degrades must first be accomplished.

L2 Future Work

Many questions have been raised by this investigation into the strucutre property

relationships of PHO and PHOU. Several studies have been proposed below to answer

some of these questions and to futher extend the knowledge about these polymers.

• PHO when stretched after crystallizing for many months exhibited an unusual

melting endotherm. Another lower melting temperature peak developed as the

strain was increased. Determining why this new peak formed would be interesting.

Perhaps a new crystal structure was induced by the deformation.

• A continued investigation into long term annealing effects on PHO seem

appropriate. Perhaps crystallinity will develop to such an extent that the material

will no longer behave as an elastomer.

• Developing a correlation between degree of crystallinity (through WAXS studies

and heat of fusion (DSC studies) would be informative and allow the application of

the Avrami model of crystallization kinetics.
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Determination of the average crystallite size through SAXS studies would enable a

better determination of the network structure. In addition, changes to the

crystallite size after deformation could be directly measured.

The peroxide crosslinked materials showed poor mechanical integrity. The use of

fillers such as fumed silica, may be a way to improve the tensile strength and tear

resistance.

The poor mechanical properties of PHO and PHOU after the random crosslinking

reaction of peroxide may be due to the low molecular weight of the starting

material. Doubling the molecular weight could be achieved with a diisocynanate

since one end of each chain terminates in a hydroxyl group.

Several other rubber crosslinking chemistries could be investigated including

phenolic resins, quinone derivatives, maleimides, and metal oxides (ZnO & MgO).

Environments that biodegrade PHO and PHOU need to be established along with

the degradation characteristics (how long, environmental fate). The influence that

chemical crosslinking has on the biodegradation of PHO and PHOU then needs to

be established. Procedures are being developed to accurately determine

biodegradation through a carbon balance methodology using lab composting

equipment. These test procedures and equipment are all outlined in the new

ASTM standard on biodegradation. PHO film samples have been prepared for

inclusion in a study.
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If chemical crosslink^ does not prevent bicxiegradation, experimenting with other

PHAs which do not crystallize would seem pertinent. Relying on crosslinking to

disrupt crystallinity would no longer be a concern.

A biodegradable thermoplastic elastomer with an improved elastic response would

result from a triblock of different PHAs. A hard block from a highly crystalline,

higher melting temperature PHA such as PHB coupled with a soft block of a PHA
which does not crystallize and has a very low glass transition temperature.
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