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A B S T R A C T   

This study investigates the benefits of introducing Li-ion batteries as energy storage unit in the commercial sector 
by considering a representative building with a photovoltaic system. Only the costs and revenues related to the 
installation and operation of the battery are considered in this study. The operational strategy of the battery 
consists in balancing the following processes through day-ahead forecasts for both electricity consumption and 
photovoltaic production: shaving a targeted peak, performing price arbitrage, and increasing photovoltaic self- 
consumption. By reviewing the electricity price cost for commercial buildings from several companies around the 
world, a general electricity price structure is defined. Afterwards, a Monte Carlo Analysis is applied for three 
locations with different solar irradiation levels to study the impact of climate, electricity price components, and 
other seven sensitive parameters on the economic viability of Li-ion batteries. The Monte Carlo Analysis shows 
that the most sensitive parameters for the net present value are the battery capacity, the battery price, and the 
component of the electricity price that relates to the peak power consumption. For Stockholm, one of the 
investigated locations, the corresponding Pearson correlation coefficients are − 0.67, − 0.66, and 0.19 for the case 
were no photovoltaic system is installed. For the considered battery operational strategies, the current invest
ment and annual operation costs for the Li-ion battery always lead to negative net present values independently 
of the location. Battery prices lower than 250 US$/kWh start to manifest positive net present values when 
combining peak shaving, price arbitrage, and photovoltaic self-consumption. However, the integration of a 
photovoltaic system leads to a reduced economic viability of the battery by reducing the revenues generated by 
the battery while performing peak shaving.   

1. Introduction 

Electrochemical energy storage systems can provide several services 
to the grid at the generation site, as well as in the transmission and 
distribution, and at the end-user side. Generally, the application areas 
can be categorized as bulk energy services, ancillary services, trans
mission infrastructure services, distribution infrastructure services, and 
customer energy management services [1]. From a time perspective, 
energy storage technologies can be grouped into three main categories: 
bulk storage (several hours to weeks), load shifting (minutes to hours), 
and power quality (milliseconds to minutes) [2]. Staffell and Rustomji 

[3] have reviewed the available electrochemical storage technologies, 
reporting capital costs and roundtrip efficiencies. Among those, batte
ries represent a feasible technical solution for distributed energy storage 
applications in buildings or communities thanks to several advantages 
such as noiseless operation, low maintenance, high efficiency, and few 
installation constraints [4]. 

Understanding the potential of batteries and batteries’ operational 
strategies in providing various services to the electricity grid is a major 
and timely scientific challenge [5,6]. Peak shaving and price arbitrage 
are two of the main battery operational strategies that received most of 
the attention so far. 
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The peak shaving strategy consists in shifting the load from hours of 
high demand to hours with lower demand [7]. For instance, Zheng et al. 
[8] investigated different storage technologies to perform peak shaving 
in residential buildings and showed that, given the expected price 
reduction and improved efficiency for batteries toward 2050, the use of 
private battery systems could eventually lead to significant profit for 
households. Peak shaving for non-residential buildings is also attractive. 
This is demonstrated, among others, in the work of Ioakimidis et al. [9], 
where the use of parked electricity vehicle batteries reduce the 
maximum peak of the electricity consumption of a university building in 
Spain from 3% to 20% (depending on the car park occupancy). The 
benefit of battery electric storage has also been investigated at the scale 
of the distribution network. Pimm et al. [10] showed for instance that 2 
kWh of battery storage in each household allows a reduction of the peak 
demand of a residential area by half at the distribution network scale. 
They also showed that, if households are equipped with solar photo
voltaic rooftop system (i.e., 3 kW per house), the same level of perfor
mance could be obtained by increasing battery storage capacity (i.e., 
from 2 to 4.5 kWh). In Sweden, Hansson and Lakso [11] showed that a 
common battery in multifamily buildings with a capacity that corre
sponds to 0.8–1.3 kWh/apartment could reduce the power peaks by 
40%. Besides using batteries, peak shaving can also be achieved through 
other approaches such as demand side management (e.g., [7,12,13]). 

The price arbitrage, instead, consists in storing electricity when the 
price is low and using stored electricity during high price periods [3,14]. 
Shang and Sun [15] developed a stochastic optimization model to esti
mate the potential profit from electricity price arbitrage of two types of 
plug-in hybrid electric vehicles under three scenarios, with variant 
electricity tariff and vehicles owners over a five-year period in the 
United States. However, under the considered market structure and 
prices, the analysis showed that the expected arbitrage profit is not 
enough to stimulate a larger adoption of plug-in hybrid vehicles. In a 
recent work, Lin et al. [16] proposed a methodology to evaluate the 
economic viability in terms of net present value and payback period of 
liquid air energy storage technology based on price arbitrage operations 
in the real-time electricity market in UK, finding that the arbitrage 
strategies significantly affected the profitability of the solution. Brad
bury et al. [17] conducted a similar study in the United States to analyse 
the profitability of different electric energy storage systems when used 
for price arbitrage, and determined that only pump hydro storage, 
compressed air energy storage, and in some cases sodium nickel chloride 
batteries could be profitable. Metz and Saraiva [18], instead, investi
gated the potential application of battery storage to pursue price arbi
trage on the 15- and the 60-min auctions in use in Germany. The authors 
ascertained that, considering the present price volatility and cost of the 
batteries, the revenues were not enough to justify the investment cost. 
Nevertheless, it is expected that price arbitrage could play a key role in 
the competitiveness of energy storage solutions in the next future. The 
transmission tariff has a very significant impact on the operational 
profitability of batteries based on arbitrage, irrespective of facility scale 
[19]. Yan et al. [20] performed a techno-economic analysis of energy 
storage for commercial buildings. The authors took into account the 
advantages of price arbitrage in the use of batteries to avoid cost for 
additional central generation capacity. The results indicated that lead- 
acid was the most viable storage solution with the highest net present 
value. 

Proliferation of distributed renewable energy systems, especially 
photovoltaic (PV), and progress in demand response technologies are 
increasing the volatility of the price for electricity, leading to even 
greater challenge and opportunities for storage assets [21]. PV self- 
consumption can be increased through different approaches. Lut
hander et al. [22] addressed how to increase self-consumption of PV 
system in buildings by analysing different approaches in terms of energy 
storage and load management. Merei et al. [23] studied PV-storage 
systems for a supermarket. The study indicated that although battery 
helps to increase self-consumption, they were not economically 

favourable at the time of the study. The authors suggested that the 
battery cost should decrease to 200 €/kWh in order to make battery 
storage an attractive option in the studied case. Nyholm et al. [24] used 
monitored household energy consumption data from 2104 Swedish 
single-family dwellings, and concluded that batteries helped increase 
self-consumption by 20–50 %. The self-consumption rate can also be 
increased through the better matching between production and con
sumption without the implementation of energy storage solutions. 
Martín-Chivelet and Montero-Gómez [25] proposed a method based on 
the placing of PV system in different orientations and envelope’s sur
faces. The proposed method could reach nearly 100% self-consumption 
and increase the self-sufficiency at the same time. McKenna et al. [26] 
reported monitored data of 302 UK households with PV system and 
calculated an average self-consumption rate of 45%. The studied 
households had higher fraction of daytime electricity usage than 
average, leading to higher level of self-consumption than the expected 
standard UK household. Both in the study carried out by Martín-Chivelet 
and Montero-Gómez [25] and McKenna et al. [26], higher performances 
in terms of PV self-consumption and self-sufficiency could be achieved 
with energy storage systems. Similarly, Stridh [27] analysed 369 PV 
systems with power peak lower than 20 kWp and the self-consumption 
was 37% in average in 2018. Of 60 PV systems with power peak 
comprised between 20 and 1000 kWp, the PV self-consumption was 41% 
in average in 2018. 

To the best of the authors’ knowledge, there are few studies in 
literature addressing the potential of Li-ion batteries in commercial 
buildings integrating PV system with different electricity prices and 
operational strategies. For example, Mbungu et al. [28] analysed the 
possibility of designing dynamic behaviour for energy management for 
commercial building applications in South Africa when PV and battery 
energy storage systems are mixed. Mariaud et al. [29], instead, con
ducted an optimisation study to select the capacity and the operation of 
PV and batteries for commercial buildings in UK thus serving as a de
cision support tool for evaluating their investment profitability. How
ever, none of the works presented in literature conducted a 
comprehensive investigation on the profitability of Li-ion batteries in 
commercial buildings when also a PV system is integrated with varying 
parameters costs. 

This study is an extension of the studies conducted previously by 
some of the authors of the present paper [30,31] with the following 
contributions:  

• a more integrated hybrid operational strategy that includes also 24 h 
ahead forecasts to study the impact of forecasting accuracies on the 
profit generation from batteries; 

• a Monte Carlo Analysis considering more than ten sensitive param
eters, including electricity cost components, to assess the profit
ability of Li-ion batteries for the use in commercial buildings;  

• use of different electricity profiles for different climatic zones 
(Johannesburg, Stockholm, and Rome) to analyse the impact of 
climate on the economic viability of Li-ion batteries. 

Therefore, the main novelty of this study relies on the parametric 
investigation of the profitability of Li-ion batteries in commercial 
buildings, by modelling the savings from both peak shaving, price 
arbitrage, and PV self-consumption, when different sensitive parameters 
are considered. This study does not focus on classical optimization al
gorithms for battery energy dispatch, as performed for instance in Liu 
et al. [32], in Mahmoud et al. [33], and in Sichilalu and Xia [34] due to 
the computational time constraints to simultaneously perform Monte 
Carlo Analysis and a full year dispatch optimization at high temporal 
resolution 

The paper is structured as follows: after the Introduction, Section 2 
provides the details of the models and summarizes the methodology by 
highlighting the main input data used in this study. Then, Section 3 is 
divided into three parts to report the main results of this study. The first 
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two parts deal with the techno-economic analysis and sensitivity ana
lyses of different battery operational strategies. The last part of Section 3 
discusses the results of the Monte Carlo Analysis to identify the main 
sensitive parameters on the economic viability of Li-ion batteries. 

Section 4 draws the conclusions of the work. More information 
concerning the input data, methodology, and models validation are 
provided in the Appendix. 

2. Methods 

2.1. Data 

In this study, the measured hourly electricity consumption of a 
commercial building in Västerås (59.60◦ N, 16.54◦ E), about 100 km 
west of Stockholm, Sweden, was used as a reference building electricity 
consumption. The electricity profile refers to 2017. The building is 
connected to the district heating system for the supply of the heating and 
cooling demand; therefore, the seasonal signal embedded within the 
electricity consumption pattern stems from change in lighting 
throughout the year. For sensitivity analysis purposes, we have consid
ered three locations with different solar irradiation: a) Stockholm, with 
961 kWh/m2 (annual global horizontal irradiation); b) Rome, with 
1640 kWh/m2, and c) Johannesburg, with 2020 kWh/m2 [35]. The same 
electricity consumption for appliances and lighting has been considered 
for Rome while with respect to Johannesburg, this electricity profile has 
been adjusted to take into account the different season alternation in the 
south hemisphere. To further generalize the electricity consumption 
profiles, it has been assumed that the heating and cooling demand of the 
building was satisfied by means of heat pumps, thus including the effects 
of ambient conditions (i.e., ambient temperature and solar radiation). 
The hourly weather data (i.e., ambient temperature, wind speed, and 
solar radiation (global horizontal and diffuse horizontal)) for a typical 
meteorological year are from Meteonorm database [36]. The electricity 
consumption for heating and cooling is further detailed in Section 2.3 
and in the Appendix. 

In order to evaluate the influence of different forecasting algorithms 
on the effectiveness of the battery operational strategy (see Section 3.2), 
we have used the available multi-year measured data at hourly resolu
tion from a further representative commercial building located in 
Västerås (59.60◦ N, 16.54◦ E). The available data were used for training 
the shallow and deep neural networks for forecasting. The data con
cerning hourly meteorological data were retrieved in this case from the 
Swedish Meteorological and Hydrological Institute (SMHI) [37]. 

2.2. Electricity price 

We have reviewed the electricity price tariffs of several cities around 
the world, focusing mostly on the electricity tariffs for commercial 
buildings. The results are summarized in the Supplementary Material. 
For all the cities considered, the electricity price scheme refers to com
mercial loads. Despite some discrepancies in the components cost 
included into the tariff, a generalized equation of the electricity cost 
could be derived: 

Cy = c1 +
∑8760

t=1
c2,t∙Pc,t + c3

∑12

m=1
Pmax,m −

∑8760

t=1
c4,t∙Pexp,t, (1)  

where, c1 is a constant tariff (US$), which can be associated to a fixed 
yearly fee, as for the case of Stockholm (see Supplementary Material), c2, 

t (US$/kWh) refers to the hourly price of the power consumption inte
grated in the hour t Pc,t (kWh), c3 (US$/kW/month) is a tariff for the 
monthly max power consumption Pmax,m (kW), c4,t is the tariff at which 
the surplus of PV electricity is exported (Pexp,t). The product c2,t⋅Pc,t is an 
element-by-element multiplication since c2 can vary with the time as it is 
for the electricity spot price [38] or in the time-of-use tariff [39]. It in
cludes charges due to generation and distribution. As regards to c4, the 

electricity exported to the grid has typically a lower economic value 
compared to the electricity bought from the grid (i.e., c2 > c4) [40]. For 
instance, the retail electricity price c2 for a commercial company in 
Sweden ranges from 0.1 to 0.15 US$/kWh (1 SEK ≈ 0.1 US$) including 
grid charges and taxes, while the average PV electricity selling price c4 is 
around 0.03 US$/kWh (the early average of 2018 was 0.458 SEK/kWh 
in zone SE3, which is more than two times higher than 2015 when it was 
0.206 SEK/kWh) that is the Nord pool electricity trading price excluding 
green electricity certificates (the value has become very low in 2020 and 
will almost disappear if nothing changes in the laws about the certifi
cates) or other compensations [40]. 

2.3. Building heat and cooling consumption 

Regarding the heating and cooling demand, it is assumed to be 
satisfied by means of a heat pump, thus including the influence of 
location on the global electricity load profile (sum of the electricity for 
heating and cooling and the reference building electricity consumption 
profile). In particular, the heating/cooling demand of the building has 
been calculated by solving the following energy balance: 

Qh&c = HL − HG+Mcp,b
dT
dt
, (2)  

where Qh&c is the heating or cooling consumption (kW), M is the thermal 
mass of the building (kg), cp is the specific heat capacity (kW/(kg⋅◦C)), T 
is the indoor temperature (◦C), t is the time step (1 min), HG the heat 
gains (kW), and HL the heat losses (kW) [41]. The 1-min simulation 
results are aggregated to hourly data to temporally match the electricity 
consumption profile. We have assumed to have the same building with 
the same characteristics in all the three considered locations. An 
assumption of this study is to use a proportional–integral–derivative 
(PID) controller to provide a better control compared to simple on/off 
type control and it is described by the following differential equation 
[42]: 

u(t) = kpe(t)+ ki

∫ t

0
e(τ)dτ+ kd

de(t)
dt

, (3)  

where u is the control signal for heating and cooling, kp is the propor
tional gain, ki is the integral gain, kd is the derivative gain, and e is the 
error signal. The tuning of the PID controller has been performed 
through trial-and-error method. Regarding the duration of the heating 
and cooling seasons, each country adopts its own regulations with the 
common goals of assuring the internal comfort of the users while 
limiting the energy consumption. In this study, the following logic has 
been adopted to define the heating and cooling seasons for all consid
ered locations: the heating season is marked out by a daily average 
ambient temperature lower than 15 ◦C, while for the cooling season the 
daily average temperature is 25 ◦C. The building model is implemented 
in Matlab®. More details about the building model are provided in the 
Appendix. The total electricity consumption profiles for all the investi
gated locations are also provided in the Appendix. 

2.4. PV systems modelling 

The production of electricity from the photovoltaic system has been 
calculated using the I-V curve approach as in Walker [43]. The global 
tilted radiation has been calculated from the global and diffuse hori
zontal radiation using the Perez transposition model [44]. The trans
position model is embedded in the open-source package OptiCE [45]. A 
PV system of 150 kWp has been assumed based on the load profile to 
avoid significant over production. Concerning the PV system orienta
tions, the azimuth angle has been set equal to zero for all the locations. 
The tilt angle has been set equal to 40◦ for Stockholm using the rela
tionship latitude/optimal tilt angle as provided recently in Campana 
et al. [46] for Sweden. For Johannesburg and Rome, the optimal tilt 
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angle has been calculated using the recommendation provided by 
Jacobson and Jadhav [47]. The degradation rate of the PV system has 
been assumed equal to 0.5%/year [48]. 

2.5. Li-ion battery modelling 

The Li-ion battery has been modelled by using the improved Shep
herd model as in Tremblay and Dessaint [49]. The model describes the 
voltage-current relationship depending on the state of charge of the 
battery. In particular, the charging and the discharging processes are 
modelled following Eqs. (4) and (5), respectively: 

V = E0 − K
Q

it − 0.1Q
i* − K

Q
Q − it

it+Ae− Bit − Ri, (4)  

V = E0 − K
Q

Q − it
i* − K

Q
Q − it

it+Ae− Bit − Ri, (5)  

where V is the battery voltage (V), E0 is the battery open circuit voltage 
(V), K is the polarization resistance (Ω), Q is the battery capacity (Ah), it 
is the extracted capacity (Ah), i is the battery current (A), i* is the filtered 
current (A), A is the exponential zone amplitude (V), B is the exponential 
zone time constant inverse (Ah− 1), and R is the internal resistance (Ω). 
The battery lifetime has been estimated by the following equation 
[50,51]: 

C(t) = C0 − ae
b

(

1
T−

1
Tr

)

e
c

(

ΔSOC
T − 1

Tr

)

n0.5, (6)  

where, C(t) is the effective capacity degradation over time (%), C0 is the 
initial effective capacity (%), a, b, and c are fitting parameters, T is the 
temperature (K), Tr is the reference temperature (K), ΔSOC is the state of 
charge variation (%), and n is the number of days. The assumed fitting 
parameters are 0.00266, − 7280, and 930, respectively [51]. The battery 
temperature is calculated using a lumped thermal capacity model [52]. 
To prolong the battery lifetime, we assumed to operate the battery be
tween 10% and 90% SOC [53]. 

2.6. Battery operational strategies 

In a similar commercial building, the role of the battery is manifold: 
(i) increase the PV self-consumption; (ii) balance the peak shaving; and 
(iii) perform the price arbitrage. The PV self-consumption strategy 
consists in storing the surplus of electricity production from the PV 
system, to be used during the hours when the PV production does not 
cover the consumption, or the production is zero. The savings are 
generated by the difference in prices between the electricity bought 
from the grid and the sale of the PV electricity surplus. 

When performing the peak shaving, the benefits generated by the 
battery are dual: reducing the peak power (thus reducing the cost 
associated to the peak power consumption), and transferring the energy 
consumption related to the peak power consumption later in the day, 
when the electricity price is lower. The price arbitrage strategy, instead, 
consists in charging the battery during off-peak hours, and discharging it 
during peak hours. The corresponding savings are due to the difference 
between off-peak and peak electricity prices. In commercial buildings, 
the peak hours typically coincide with the hours when the electricity 
prices are high; for this reason, performing peak shaving also implies 
indirectly performing price arbitrage [54]. Based on day-ahead forecasts 
on PV production and electricity consumption, the optimal operational 
strategy of the battery aims at maximizing the revenues or the savings 
generated by its use. 

The PV electricity production and the electricity consumption are 
forecasted using the persistence forecasting method [55] as follows: 

Ppv,f ,t = Ppv,t− 24, (7)  

Pc,f ,t = Pc,t− 24*7, (8)  

where, Ppv,f,t is the forecasted PV production integrated in the hour t 
(kWh), while Ppv,t-24 is the measured PV production integrated in the 
hour t minus 24 h (kWh), Pc,f,t is the forecasted power consumption 
integrated in the hour t (kWh), and Pc,t-24*7 is the power consumption 
integrated in the hour t in the previous week. A further comparison with 
more advanced forecasting techniques, including Artificial Neural Net
works (ANN) and Long Short-Term Memory (LSTM), is provided in the 
Results section, and complemented in the Appendix. The operational 
strategy can be summarized as follows:  

• if the forecasted day-ahead PV electricity production is lower than 
the forecasted day-ahead electricity consumption, the battery can be 
employed for peak-shaving and price arbitrage strategy. We assumed 
monthly peak shaving targets, Ptarget,m = αPmax,m, where α is equal to 
80% of the historical monthly max power consumption. If the power 
consumption exceeds Ptarget,m, power is taken from the battery to 
cover the difference between Ptarget,m and the actual power con
sumption. Besides shaving the specified monthly peak power target, 
the battery provides power to the electric load during the peak hours 
until being fully discharged, whilst it is recharged during the night 
time during off-peak hours (i.e., low electricity price)  

• if the forecasted day-ahead PV electricity production is larger than 
the forecasted day ahead electricity consumption, the battery 

Fig. 1. Annual hourly electricity consumption and PV production profiles for a 
commercial building located in Stockholm with a PV system capacity of 
150 kWp. 

Table 1 
Battery techno-economic assumptions.  

Assumption Value Reference/ 
comment 

Battery capacity (kWh) 210 [56] 
Depth of Discharge (%) 80 [53] 
System efficiency (%) 88 [56] 
Max charge–discharge power (kW) 50 [56] 
Targeted peak to be shaved (% of the actual monthly 

peak) 
20 Assumed value 

Battery price (US$/kWh) 500 [58] 
Annual maintenance rate (% of ICC) 2 [57] 
Discount rate (%) 4 [59] 
Tax rate (%) 25 Assumed value 
Battery lifetime (yr) 20 [57] 
Cycle durability at Depth of Discharge 7000 [57] 
Salvage value (% of ICC) 10 Assumed value  
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