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Figure 2.2: HD estimate error with 100-bit and 1000-bit response

.
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grows with number of chips tested and can become prohibitively large as the manu-

factured chips number is in the millions.

Hash table/dictionary based storage and retrieval can also be employed, but would

be efficient only for exact pattern matching. For example, for a 1000-bit response,

all the combinations of the response which are at most 10% HD would differ at most

by 100 bits. This would require
(
1000
100

)
look-ups which is a prohibitively large number

(≈ 10139). Similar issue exists even when we use only 100-bit response directly with

hash table (1013 look-ups for 10% HD). Our solution aims at reducing the run-time

of this testing problem.

2.4 Proposed Solution

In this section, we present our proposed solution for uniqueness testing. All ex-

perimental results presented in this work were generated using Arbiter PUF with

a linear delay model [63]. Arbiter PUF consists of switch components connected

serially. Each switch component contributes one of the two differential delays: dif-

ferential delay from straight connection and differential delay from cross connection.

These delay differential values of straight and cross connections are chosen from an

independent normal distribution with mean of 0 and standard deviation of 1 [63].

2.4.1 Main Idea

Our method has two main objectives: (i) To determine the uniqueness of a chip

while testing it and make a pass/fail decision by comparing the chips response to an

existing population of chip response. This decision should be fast to minimize test

time and (ii) also, achieving acceptable yield loss and false-accepts (number of faulty

chips that are passed).

For the first objective, we use multi-index hashing [54] to reduce search time. This

search is performed on fewer numbers of bits than collected (100 bits in our case).
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However, using just 100 bits can cause yield loss/false-accepts as explained in previous

section 2.3.2. So, we exploit the correlation between estimation of HD between using

N = 100 bits and N = 1000 bits. We use this correlation data to guide the search

radius.

2.4.2 Multi-Index Hashing for Rapid Search

Multi-index hashing(MIH) is a fast search technique to search nearest neighbors

in Hamming space [54]. The discussion on MIH in this subsection is based on the

previous work by Norouzi et al. [54]. MIH primarily relies on dividing the binary

code into multiple disjoint sub-strings and creating multiple hash tables to speed up

the search. MIH search has sub-linear run-time for binary codes which have a uniform

distribution.

The working principle of MIH search is described below with an example from

our PUF uniqueness testing problem. For a 100-bit response of chips, we would like

to find all neighbors which are at 10 Hamming distance from the 100-bit response

(a threshold of 10%). In MIH search, the 100-bit response is divided into multiple

disjoint sub-strings. Let us assume that each 100-bit response is divided into five

20-bit sub-strings. If two 100-bit responses differ by at most 10 bits, at least one

of the corresponding sub-strings differ at least by 10/5 = 2 elements. This can be

generalized as follows: if two binary strings of length N differ by r, and if we divide

them into b sub-strings, then at least one of the substring differs by
⌊
r
b

⌋
elements.

The proof of this lemma is derived from Pigeonhole principle [54]. Now, 5 hash tables

are created with five of these sub-strings as key. For each query, the query is once

again divided into sub-strings and all these 5 hash tables are searched for r = 2

radius neighbors. So, instead of 100C10 or 1.7 ∗ 1013 lookups, the number of lookups

reduce to 5 ∗ 20C2 or 950 lookups. Along with the look-ups, each matched sub-strings

has to be verified whether it is a true r-distant neighbor or not. This divide-and-

17



Figure 2.3: HD estimate for d100 when d1000 ≤ 10%

.

conquer approach results in tremendous speedup with ability to search millions of

records of 128-bit codes within a second for a search radius of 30 bits. Also, the

algorithm ensures exact match without any approximation, which results in low yield

loss from the test technique. Further details on theoretical analysis and performance

estimations can be found in related work [54].

2.4.3 Improving Test Quality

Even though MIH search ensures exact search in Hamming space, as we are using

only 100 bits for evaluating the PUFs uniqueness, there could be substantial yield

loss and false-accepts. Instead, we perform a r radius search using MIH, where r

is larger than the required threshold. Once candidates are shortlisted, the complete

1000 bits are used to filter out false matches. The rational to chose a search radius

larger than the require threshold is explained next.

Let us consider an example in which 1000 pairs of Arbiter PUF circuits are sim-

ulated under process variation. The goal is to estimate an acceptable search radius
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for creating the hybrid approach. We estimate two Hamming distances, one with 100

random challenges and another one with 1000 random challenges. Let d100 and d1000

be the corresponding HDs calculated. In Figure 2.3, we plot the distribution of d100

for cases when d1000 ≤ 10%. Even though many of the samples of d100 are greater than

10%, still the distribution is bounded by maximum estimate of 20%. This primarily

arises from the fact there are limited number of inputs in the Arbiter PUF (64 in our

case) and the quantization at the Arbiter in the circuit.

Hence, a search radius of 20-bits can be used instead of 10-bits as a guide in the

fast search to shortlist the candidates. These candidates are further evaluated using

the complete 1000-bit response as there may exist false positives (cases where the

HD is more than 10%). This evaluation minimizes the yield loss and faulty parts to

acceptable numbers. This empirical guidance creates a hybrid approach where test

time is minimized without impacting test quality. Using just 100 bits for searching

ensures fast search and using the complete 1000 bits of information ensures the quality

of test on the shortlisted data from the fast search.

To generalize the solution, the first step in testing involves searching through the

database using MIH with a search radius larger than the required HD threshold.

This search is performed on a reduced response size (100-bits in our example). This

steps yields a list of possible candidates for further evaluation. Next, the true HD

threshold is used to compare the complete response (1000-bit in our example) to

determine whether a similar chip already has been passed. Pass/reject decision is

made based on this step.

2.4.4 Uniqueness Test Procedure

The complete procedure for testing uniqueness is illustrated in Figure 2.4.

• Step 1 : Required number of patterns are applied (through Tester or BIST). We

use 1000 patterns in our experiments.
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Figure 2.4: Illustration of testing procedure for Strong PUF

.
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• Step 2 : The results are collected and scanned-out to the tester.

• Step 3 : The tester uses a substring of the response bit to perform MIH search.

Substring length is 100 in our example.

• Step 4 : The shortlisted candidates are analyzed for accurate estimate of HD.

The complete responses of the chips are used.

• Step 5 : If there exists a chip with response with search radius lower the deci-

sion threshold, the current chip is rejected. Else, the chip is accepted and the

response is added to the database.

2.4.5 Associated DFT

In order to create responses from the circuit under test, a common random pattern

must be applied across all the chips. This common random pattern can be generated

at tester and can be applied through a scan-chain. Since only 1000 patterns are

required for evaluation, the test application time is low. For example, to apply 1000

random patterns through a single scan chain, only around 65,000 cycles are required.

This corresponds to less than 1 ms for test clock of 100 MHz. In contrast, multiple

scan-chains can be employed depending on the time/cost/pin-count trade-offs.

2.5 Experimental Results

2.5.1 Test Quality

In order to test the effectiveness of the proposed method we performed the fol-

lowing experiment. We simulated a low yield process (a process resulting in low

uniqueness) by controlling the standard deviation of the normal distribution for gen-

erating the differential delay values of Arbiter PUF. For the experiments, we assume

10% Hamming distance as the uniqueness threshold. We control the manufacturing

process in the simulation to yield an average HD of 10%. This would result in a case
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Table 2.1: Experimental results for Uniqueness test

Case % of chips

Bad and rejected 47.55

Good and accepted 52.44

Good but rejected (yield loss) 0.00

Bad but accepted (faulty chip) 0.01

where half of the chips would be rejected due to low uniqueness on an average, thus

simulating a low yield process. We implemented the MIH search in Python and sim-

ulated the problem for 100,000 chips. The statistics of the test result are tabulated in

Table 2.1. The test technique has low yield loss due to the hybrid scheme proposed.

Also, it has very low false-acceptance ratio, where chips with low uniqueness were

passed incorrectly. The empirical run-time for our 100,000 chip simulation was 0.55

seconds. As the implementation was programmed in scripting language, this is a very

pessimistic estimate. As the run-time efficiency of the MIH search has been analyzed

in previous work [54], we do not focus on time efficient implementation (using faster

languages like C/C++). Also, previous work has already shown that the MIH search

scales well even for data set of billion values with search time less than 0.15 second.

2.5.2 Yield Loss

In this subsection, we show the relation between low process variation and yield

loss during uniqueness testing. The results were generated for 1000 chips with 1000

random pattern. The standard deviation of the differential delay of the PUF are

varied to simulate the process variation.

Metrics like inter-class Hamming distance are typically used to determine the

uniqueness of a population. Nevertheless in practice yield-loss is an important met-

ric in high volume manufacturing. Hence, to study this, the following experiment

was performed. Consider an example where a population of Arbiter PUF chips are
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Figure 2.5: Yield loss and process variation

.

produced and the chips are tested sequentially using the proposed method. Let the

criteria for rejecting two chips be similarity of less than 10% HD. We simulated this

experiment and calculate the amount of yield-loss for different amount of process vari-

ation. The result is plotted in Figure 2.5. As expected, the yield loss reduces with

increase in process variation. Experimental analysis similar to this can be performed

to test the efficiency of the testing scheme and understand the other sources of yield

loss.

2.5.3 Impact of Systematic Faults

Similar to low process variation, systematic faults can also cause low uniqueness.

Consider the Arbiter PUF shown in Figure 2.1. Let Di,a and Di,b be the differential

delay of element i under challenge i = 0 and i = 1, respectively. Let us assume

that there exists systematic error in manufacturing system which creates large delay

faults. A large-delay fault is said to occur when the delay Di,a and Di,b are far larger

than typical delay of other elements of Arbiter PUF. The impact of such delay on the
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Figure 2.6: Effect of fault size on Uniqueness

.

uniqueness on a set of chips is shown in Figure 2.6. We plot the change in inter-class

HD with fault size. The results were generated for 1000 chips with 1000 random

patterns. As shown in Figure 2.6, the inter-class Hamming distance of the population

decreases with increase in fault size. This directly implies an increase in yield-loss

with the fault size.

2.6 Testing Weak PUFs

Usage model for strong and Weak PUFs are different. Weak PUFs are primarily

used for key generation while Strong PUFs are used for authentication. Consequently

low uniqueness leads in strong and Weak PUFs lead to different concerns.

Unlike Strong PUFs, if two Weak PUFs result in similar but not identical keys,

it is not a concern. Since the keys are used along with cryptography algorithms, the

resulting output will not be similarity preserving. For a 128/256-bit key, even in a

low process variation manufacturing process, the probability of the exact same key
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Figure 2.7: Illustration of uniqueness testing procedure for Weak PUF

.
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in two chips is fairly low. Hence, two Weak PUF chips can be considered similar

unless they are same. In contrast to Strong PUFs, the search problem in Weak PUFs

has different constraints. Weak PUFs have the requirement that the key should

not be brought out during testing as the key can be compromised in any section

of the supply chain. Considering these requirements and constraints, we propose a

uniqueness testing method for testing Weak PUFs below.

The primary aim of the method is to compare whether manufactured Weak PUF

keys are unique, ensuring the secrecy of the keys. We use the existing hardware

structures to achieve this. As Weak PUFs are primarily used with cryptographic

blocks, we can use the cryptographic blocks for testing. The proposed scheme is

shown in Figure 2.7. During testing, the tester sends a number to the chip under

test. The number is encrypted/hashed with the cryptographic block already present

in the chip using the secret key. This response is sent back to the tester and the tester

checks whether the same response exists in the database. If the same response exists

the chip is rejected; else it is accepted and the new response is added to the database.

The search problem is exact-string-matching rather than searching in the Hamming

space as is the case for Strong PUFs. This search can be done in O(1) using hash

tables/dictionary. As pre-existing encryption hardware blocks are used for testing,

the area overhead for any DFT is negligible.

2.7 Conclusion

PUFs are promising as hardware root-of-trust. High volume manufacturing (HVM)

of PUFs require test methods to evaluate their uniqueness. Current solutions are for

offline analysis. They are not suited for HVM, which requires real-time comparison

against all previously tested PUFs. In this work, we have proposed a scalable test so-

lution for uniqueness testing of Strong and Weak PUFs in high-volume manufacturing

setting and demonstrated its practicality.
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CHAPTER 3

IMPROVING MACHINE LEARNING RESISTANCE OF
STRONG PUFS

3.1 Introduction

Strong PUFs are a subclass of PUFs which have exponential challenge-response

pairs and are aimed at authentication applications. It has been shown that many

Strong PUF designs are vulnerable to machine learning (ML) attacks, where a model

can be built to predict PUF response to any input after training with the observa-

tions. These attacks have necessitated design of ML attack-resistant Strong PUFs

and machine learning attack analyses to ensure sufficiently secure designs. In this

chapter, we propose a ML attack-resistant PUF design based on a circuit block to

implement a non-linear voltage transfer function. The proposed circuit is simple,

exhibits high uniqueness and randomness. Further improvements are proposed to

enhance PUF reliability. The simulation results indicate a significant improvement

in ML attack resistance in comparison to traditional PUFs. Along with the new de-

sign, we also propose fast simulation methodology and analyses based on Gradient

Boosting algorithm. This methodology facilitates analyzing the security of the PUF

against potent machine learning attacks.

3.2 Modeling attacks on Strong PUFs

Despite of the inherent advantages of PUFs, machine learning based modeling at-

tacks have exposed the vulnerability of Strong PUF circuits [63]. A machine learning

model trained with a certain number of responses from PUF circuits, can predict the
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future PUF response with high degree of success. Arbiter PUFs were initially shown

to be vulnerable to ML attacks [41]. Digital modifications were proposed to increase

the machine learning resistance but machine learning techniques such as Support Vec-

tor Machine (SVM), Logistic Regression and Evolutionary Strategies have been used

to mount attacks with increasing success [63]. Kalyanaraman et al. have proposed a

machine learning resistant PUF based on non-linear operation of leakage current of

MOSFETS [33]. The circuit they proposed relies on difference between two arrays of

transistors which are in sub-threshold region to generate responses. Exponential de-

pendence of leakage current on supply voltage and temperature is well known. Hence

these circuits have reliability issues with variations in temperature or supply volt-

age. Kumar et al. have presented a circuit that relies on non-linear current mirrors

to generate machine learning resistant PUF [35]. The current sources used in the

simulation were assumed to be ideal current sources which in practical circuit can

experience voltage and temperature variations. So the impact of using ideal current

sources for simulation on the reliability metric is not clear. This motivates the need

for further investigation into design of modeling attack tolerant PUF circuits that are

also robust with respect to variations in environmental conditions.

Due to the threat of machine learning attacks, the strength of a Strong PUF is

defined by the complexity of modeling input challenge to output response. But there

are still no Strong PUFs that are complex enough to be ML-resilient and remain so

over a range of environmental conditions such as voltage and temperature. In this

work we propose a new PUF to solve this problem. In addition to the novel design, we

also propose efficient analysis methodology using fast software model based on spice

simulations. Taking advantage of the software model we perform further exploration

into the machine learning resistance of the proposed PUF and present novel insights.

Our primary contributions in this work are
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