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Figure 5.6. Average number of targets found by Round-Robin (RR), D3TS and five stan-
dalone classifiers over 80 runs. Shaded areas represent 95% confidence intervals. Arrows
indicate minimum values for corresponding colors’ classifiers, when off-the-chart. Stan-
dalone classifiers are often outperformed by RR. D3TS improves upon RR.
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Figure 5.7. D3TS: fraction of runs in which each classifier was used in step t (smoothed
over five steps).
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Figure 5.8. RR and D3TS can perform well even when including classifiers that perform
poorly as standalone.

on its own, but also when used under D3TS. Fortunately, D3TS can learn classifiers’ relative

performances and adjust accordingly.

A closer look at the distribution of the number of targets found by each method high-

lights an important advantage of leveraging diversity. Figure 5.8 shows boxplots of RR and

D3TS’ performance in each dataset, for several points in time.6 On Wikipedia, DonorsChoose

and Kickstarter, although some of the classifiers used by RR and D3TS yield poor results on

their own, RR and D3TS’s still attain large mean and low variance. D3TS was only outper-

formed by a standalone classifier on DBLP (statistically significant). Because DBLP has

the largest number of target nodes in the fringe set (on average) over all datasets, classifiers

are less likely to be penalized by the tunnel vision effect on DBLP.

5.6.3 Classifier combinations

We also conducted an exhaustive set of simulations where we consider all 31 combi-

nations of these five classifiers under D3TS. We restrict this analysis to a set of networks

D composed of the five smaller datasets. Suppose we had an oracle that could tell which

combination of classifiers performs best on a dataset D ∈ D. We can then define the

6The box extremes in our boxplots indicate lower and upper quartiles of a given empirical distribution; its
median in marked in between them. Whiskers indicate minimum and maximum values.
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(normalized) regret of a classifier setM on D as

R(M, D) = 1− N+(M, D)

maxM′ N+(M′, D)

whereN+(M, D) is the number of target nodes found byM onD. If we define the optimal

combinationM? to be the one that minimizes the maximum regret, i.e.,

M? = arg min
M

max
D∈D

R(M, D),

thenM? indeed includes all five classifiers (maximum regret is 2.8%). Otherwise, if we

define the optimal combinationM† to be the one that minimizes the average regret, i.e.,

M† = arg min
M

∑

D∈D

R(M, D)/|D|,

thenM† is the combination composed of MOD, Active Search, SVR and Random Forest

(average regret is 0.9%). We note, however, that the performance obtained by combination

M? on each dataset is at most 0.7% smaller than that obtained byM† (CiteSeer). More-

over, we observed that adding a second classifier to a standalone classifier for selective

harvesting improves results in about 84% of the cases. This attests to the robustness of

using D3TS as the classifier selection policy.

5.6.4 Running time

We measured the average wall-clock time of 80 single-threaded runs of each classifier

on an Intel Xeon E5-2660@2.60GHz processor, for five datasets. We do not include mea-

surements for DBLP and LiveJournal because they were simulated in a more heterogeneous

environment. In what follows we list inside parentheses the average wall-clock time to find

a target (in sec.), for CiteSeer, DBpedia, Wikipedia, DonorsChoose and Kickstarter (in this

respective order).
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Among standalone classifiers inM, MOD (0.06, 0.08, 0.14, 0.29, 3.55) and Active Search

(0.05, 0.11, 0.17, 0.37, 1.71) were the fastest, followed by ListNet (0.35, 0.31, 1.76, 2.13, 8.42),

SVR (0.37, 0.80, 1.26, 5.88, 9.35) and Random Forest (2.54, 4.27, 6.75, 16.75, 43.80). We

emphasize, however, that MOD and Active Search require no fitting, which is the most

expensive step for a base learner. In spite of its good performance at finding target nodes,

Random Forest takes much longer than other classifiers to fit and thus, exhibits the longest

average time between successful queries.

One of the advantages of D3TS is that it can benefit from Random Forest (and more so-

phisticated classifiers in general) while only incurring the computational cost for the steps

in which they are used. D3TS (0.54, 1.29, 1.87, 4.98, 25.67) exhibits slightly smaller ra-

tios than Round-Robin (0.64, 1.11, 2.24, 5.21, 16.35), except on DBpedia and Kickstarter,

where D3TS tends to use Random Forest more often than Round-Robin does. Note that

the D3TS running time is determined by the classifiers it uses and their implementations.

Replacing methods used in this paper by online counterparts can lead to significant reduc-

tions in running time. In particular, Random Forest – which has the largest running time –

can, in principle, be replaced by online random forests when bounds on feature values are

known in advance.7

5.6.5 Dealing with Disconnected Seeds

In the previous simulations, the search starts from a single seed (starting node). When

more than one seed is available, the search process may end up exploring various regions

of the graph at the same time. In this scenario, the question arises as to how to adequately

model the observations in these regions. Intuitively, each region may exhibit distinct char-

acteristics such as target distribution and node degree. Furthermore, some regions may be

more similar than others. In some cases, it may be better to fit classifiers to specific re-

7We attempted to replace Random Forests by Mondrian Forests [48], but the only publicly available
implementation is not optimized enough to be used in our application.

111



gions of the network where they operate (i.e., using observations collected only from that

region), while fitting all classifiers to all observations would probably be the best course if

all regions are very similar to each other. One can also consider hierarchical models, which

model each region separately but allow some information sharing.

In this section, we consider standalone classifiers and compare their performance in

two extreme scenarios: using a single classifier and starting from k seeds (thus modeling

all k regions together), or using k models, each initially associated with a single seed (each

simulation run uses the same k seeds in both scenarios to reduce variance).

In the multiple classifier scenario, the classifier associated with each region is used to

rank its corresponding fringe set at each step t. A single node to be queried must then

be selected among all fringe nodes. In particular, we use the EWLS regression model.

We select the node with the highest estimated payoff across all rankings, and the model

responsible for this estimation is then updated with the new observation.

We vary k from 2 to 6 and observe that, for datasets with a small number of attributes,

some improvement is obtained when using multiple classifiers, each with its own model.

For instance, on DBpedia, which has only five attributes, an average increase from 523.9

to 562.5 is seen for k = 3. However, as the number of node attributes increases, either

no significant differences between the average payoffs is observed (Donors, CiteSeer) or

the single classifier approach yields better performance (Wikipedia). All comparisons are

based on a 95% confidence interval of the mean total payoffs. When D3TS is used in place

of standalone classifiers, base learners must be fit to region-specific observations in the case

of datasets with few attributes, and fit to the entire training set in the case of datasets with

many attributes.

5.7 Related work

The closest work to ours is on networked active search. The goal of active search is

to uncover as many nodes of a target class as possible in a network where the topology
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is known [27, 28, 57, 60, 91]. Like selective harvesting, active search considers situations

where only members of a target class (e.g., malicious class) are sought. Since obtaining

labels is associated with a cost (time or money), it is paramount to avoid spending resources

on nodes that are unlikely to be targets. Unlike our problem, active search assumes the

network topology is known and that any node can be queried at any time.

In [70] a problem similar to selective harvesting is investigated and a learning-based

method called Active Exploration (AE) is proposed. Unlike selective harvesting, fringe

nodes attributes are assumed to be observable. Since node attributes often carry consider-

able information about the node’s label, AE is not directly comparable with other selective

harvesting methods. Our solution differs from AE in that it leverages heuristics in addition

to base learners and is applicable to a wider range of applications.

Similarly to selective harvesting, active learning is an interactive framework for decid-

ing what data points to collect in order to train a classifier or a regression model. Unlike

active search, (i) its main objective is to improve the generalization performance of a model

with as few label queries as possible, and (ii) the set of unlabeled points does not grow

based on the collected points. A slew of active learning techniques have been proposed

for non-relational data settings, including some tailored for logistic regression [82], for

dealing with streamed data [6] and for the case of extreme class imbalance [5]. Although

the retrieval of target nodes can benefit from an accurate model, it is unlikely that active

learning heuristics (e.g., uncertainty sampling [83]) for training a single classifier can be

used for selective harvesting without sacrificing performance. However, it may be possible

to adapt active learning techniques proposed for training classifier ensembles (e.g., query

by committee [84]) in such a way that, at the same time we collect points on which many

classifiers disagree, we ensure that promising candidates among fringe nodes are queried

before the sampling budget is exhausted.

Despite these differences, there is an interesting parallel between selective harvesting

with many models and a body of research on active learning with a set of active learners (or
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heuristics). Both problems can be cast as MABs, where fringe nodes are analogous to un-

labeled data points. In active learning, a reward is indirectly related to the collected point:

it is computed as some proxy for or estimate of the model’s performance on a test set, when

fit to all points collected up to a given step. In contrast, rewards in active search are simply

the node labels. Like selective harvesting, active learning can either map heuristics directly

as arms [11] or map heuristics as experts that give recommendations on how to choose the

unlabeled points [38]. In both works it has been observed that combining heuristics may

often outperform the single best heuristic. While these works apply algorithms for adver-

sarial bandits to active learning, we find that Dynamic Thompson Sampling for stochastic

bandits with non-stationary rewards seem to exploit better the fact that arms rewards are

slowly changing in selective harvesting.

Last, another variant of active learning considers the task of learning an ensemble of

models [4] or finding a low risk hypothesis h ∈ H [25, 26] while labeling as few points

as possible. Since the labeled points are biased by the collection process, estimating the

models’ generalization performances requires either building an uniformly random vali-

dation set, or sampling probabilistically at every step and then using importance weighted

estimates. In active search, however, the models relative performances can be directly mea-

sured from the queried nodes payoffs. Moreover, building a random validation set is bound

to degrade performance in scenarios where target nodes are scarce.

5.8 Discussion

In this section, we discuss a few ideas that could not be put into practice or that failed

to yield performance improvements.

5.8.1 Accounting for the future impact of querying a node

The active search algorithm assigns a score to each potential query node v that consists

of a sum of two terms [91, eq. (2)]: the expected value of v’s label and sum of the expected
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changes in the labels of all other nodes multiplied by a discount factor α � 1. The dis-

counted term tries to account for the impact of querying node v, going one step beyond the

greedy solution. In selective harvesting, however, our view of the graph is limited to the

set of queried nodes and their neighbors, i.e. we cannot compute the impact of choosing a

node beyond the fringe set. Even if we could observe the entire graph, accounting for the

future impact of querying a node would require us to fit one statistical learning model to

each fringe node and predict all the remaining labels at each step, which is too expensive

even for a single online model.

5.8.2 Temporal dependencies between observations

We conducted some preliminary experiments that show that EWLS often outperforms

`2-regularized Linear Regression with forgetting factors β > 0.9 when both use the same

regularizing parameter λ ∈ {0.1, 1, 10}. We propose two non-mutually exclusive hypothe-

sis to explain this phenomenon: (i) the recruitment algorithm induces a temporal depen-

dence that is better represented by giving more weight to recent observations; (ii) the

algorithm tends to explore parts of the graph “close” to recently recruited nodes, which

represent fringe nodes better than their less recent counterparts due to similarities between

nodes that are close in the network. Exploiting this spatial dependence is computationally

expensive, as it requires branching several models in a similar fashion to the solution delin-

eated in Section 5.8.1 above. Although EWLS can exploit temporal dependencies induced

by recruitment, it is not clear how to perform cross-validation due to the dynamic nature of

selective harvesting. In other words, how to test the optimal forgetting factor β if the test

set is constantly changing? Also, the value of β that yielded the best results varied across

datasets. In the absence of a principled way to perform cross-validation, our recommenda-

tion is to combine through D3TS one or more EWLS models – choosing parameters from

β ∈ (0.9, 1.0) and λ ∈ {0.1, 1, 10} – with other types of models.
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5.8.3 Model ensembles

While D3TS makes use of multiple statistical models, only one of them is used for

prediction at each step. This differs from model ensembles, which combine predictions

of multiple models, possibly with weights. Ensemble methods, such as AdaBoost, are

known to perform very well in many classification problems. However, we find that D3TS

consistently outperforms AdaBoost. We conjecture that AdaBoost is only slightly less

susceptible to the tunnel vision effect than standalone models, as optimizing the weights

given to models in the ensemble will eventually nullify the impact of some of them.

5.8.4 Contrasting classifier diversity and diversity in ensembles

Diversity is known to be a desirable characteristic in classifier ensembles [45, 87, 93].

The intuition is that if one can combine accurate models that make independent mistakes,

the overall accuracy will be higher than those of the individual models. There are two

main classes of techniques for generating diverse ensembles [85]: (i) overproduce and

select, where a large set of base learners is generated, among which a subset is selected to

maximize a given measure of diversity, (ii) building ensembles, where the diversity measure

is directly used to drive the ensemble creation. In contrast, we did not measure diversity

explicitly to select a subset of models or to guide the model generation. This is because

the relationship between diversity and overall performance in selective harvesting is more

involved. The goal of using diverse classifiers in D3TS is to mitigate the tunnel vision

effect. Although each model is fit to the entire training set, diversity is enforced by the use

of different types of statistical learning models.

5.9 Conclusions

This chapter introduced selective harvesting, a problem where the goal is to find the

largest number of target nodes given a fixed budget and subject to a partial – but evolving

– understanding of the network. We discussed existing methods that can be adapted to
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selective harvesting and an alternative approach based on statistical models. However, we

showed that the tunnel vision effect incurred by the nature of the selective harvesting task

severely impacts the performance of a classifier trained on these conditions. We show that

using multiple classifiers is helpful in mitigating the tunnel vision effect. In particular, sim-

ulation results showed that methods used in isolation often perform worse than when com-

bined through a round-robin scheme. We raised two hypothesis to explain this observation,

which were investigated to show that classifier diversity – i.e., switching among classifiers

at each querying step – is an important ingredient to collecting a larger set of target nodes

in selective harvesting. Classifier diversity increases the diversity of the training set while

broadening the choices of nodes that can be queried in the future. Based on these observa-

tions we proposed D3TS, a method based on multi-armed bandits and classifier diversity,

able to account for what we named the exploration, exploitation and diversification trade-

off. D3TS outperforms all competing methods on five out of seven real network datasets

and exhibited comparable performance on the other two. While we evaluated D3TS’s per-

formance when used with five specific classifiers (MOD, Active Search, Support Vector

Regression, Random Forest and ListNet), the proposed method is flexible and can be used

with any set of classifiers (not shown here, replacing SVR by Logistic Regression yields

similar results). Moreover, we showed that adding a classifier to a standalone classifier

improves selective harvesting results in 84% of the studied cases.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, we investigated the role of sampling and estimation in different ap-

plications related to data science in networks. In the problems investigated in Chapters 3

and 4, sampling is used to estimate characteristics of the population as a whole. In Chap-

ter 5, sampling is used to find nodes in a network that satisfy a given query and, at the

same time, to obtain training data to fit statistical models. Unlike classical applications of

sampling and estimation, the probability of sampling a node in selective harvesting tasks

cannot be computed. Fortunately, there is no need to remove (unknown) biases.

Another difference in these studies lies in the adopted approach or perspective. In

Chapters 3 and 5, we propose the DUFS and the D3TS methods respectively. These meth-

ods are designed to account for several practical issues. Although we provide no theoretical

guarantees for D3TS and only some analytical results for DUFS, we conduct a thorough

evaluation of these methods through simulation. In particular, our empirical study of se-

lective harvesting sheds light into the tunnel vision effect and how to mitigate it. This

allowed us to propose an algorithm that currently matches or exceeds the performance of

all competing methods. In contrast to these empirical studies, assuming a simple indepen-

dent edge sampling model in Chapter 4, allowed us to establish strong theoretical results

that hold in the limit for any unbiased estimator of the set size distribution (and related

estimation problems).

The approaches that we took to solve the research problems associated with each appli-

cation illustrate different stages in the typical life cycle of a data science problem. Initially,

a task is defined, as well as the way in which data will be collected and presented, heuristics
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are proposed for solving the task, hypotheses are posed and a large volume of experiments

conducted to validate or falsify the hypotheses, a solution is carefully tailored based on the

accepted hypotheses and then evaluated through more experiments. This stage corresponds

to our current understanding of selective harvesting over networks. Later, some analyti-

cal results and theoretical guarantees are proven for proposed methods, such as the ones

we proved for DUFS. As researchers reach a better understanding of the task in hand, it

becomes crucial to consider the problem from a more theoretical perspective in order to

understand its fundamental limits and – hopefully – how to reach the optimal performance.

This stage is exemplified by our work on the set size distribution estimation.

Therefore, general future directions in this line or research include proposing new

heuristics, proving properties of existing methods and properties of the problems they are

designed to address. One possible extension of the work in characterizing networks consists

of investigating other sampling models. For instance, there have been attempts to character-

ize the Internet router topology using traceroute sampling. This kind of sampling is based

on the traceroute software tool, which allows a user to sample minimum-cost paths

from controlled hosts to random hosts on the Internet. Estimating structural properties on

arbitrary graphs using traceroute is an important and well-known hard problem [1, 23] and

it remains open to date. In [64] we have shed some light on what is attainable when the

graph comes from a branching process from an empirical perspective.

There are still several open questions regarding selective harvesting over networks. The

proposed algorithm, D3TS, greedily selects the node to be queried at each step. Ideally, we

would like to query the nodes more likely to lead to the greatest number of targets. While

the fact that the network is only partially observed prevent us from applying the same ideas

from networked active search to account for future impact (see Section 5.8.1), increasing

the size of the fringe set can be helpful as this gives the search algorithm more options to

query. One way to achieve this goal is by estimating the degree of each fringe node and
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selecting, among those that are most likely to be targets, those that have the largest expected

degrees.

Another question left as future work concerns the use of context to guide the arm’s

choice in D3TS. Currently, the context is only used to choose a node after the arm (classi-

fier) is selected. Presumably, using context to select an arm could help in situations where

one classifier predicts a certain action has a very high reward with small error margin.

Another avenue of investigation consists of pursuing a systematic way of achieving

diversity in selective harvesting. In our approach, diversity is infused through the use of

different models. An open question is whether multiple instances of the same model can

achieve diversity by setting their parameters differently or by assigning different weights

to the observations used to fit each instance. This investigation requires defining measure

of diversity that is correlated with the performance of the search algorithm.

While we show that classifier diversity can severely increase the number of targets

found in selective harvesting, it is not clear that this is the only mechanism that can mitigate

the tunnel vision effect. We investigated the effect of sampling nodes probabilistically by

mapping the node ranking computed by a given classifier to a distribution. While this

showed no significant improvement over deterministic sampling, this approach could be

further investigated by taking node scores into account when defining a distribution over

possible choices.

Last, we lack a good understanding of what causes certain standalone classifiers to

perform well on a given dataset. Investigating which features of a network have positive

(or negative) correlation with the performance of a given classifier can be useful to select

the set of classifiers to be combined through D3TS, or to propose an improved solution that

accounts for how efficient each classifier in this set is on the specific dataset at hand.
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APPENDIX A

HYBRID ESTIMATOR AND ITS STATISTICAL PROPERTIES

First, we derive the recursive variant of the hybrid estimator. From that we derive

its non-recursive variant. Next, we show that the non-recursive variant is asymptotically

unbiased. In the case of undirected networks where the average degree is given, we show

that the resulting hybrid estimator of the undirected degree mass is the minimum variance

unbiased estimator (MVUE).

Let us recall variables and constants used in the definition of the hybrid estimator:

ni number of vertex samples with label i

θi,j fraction of nodes in G(t) with label i and undirected degree j

mi,j number of edge samples with label i and undirected degree j

mi =
∑

jmi,j total number of edge samples with label i

N =
∑

i ni total number of vertex samples

M =
∑

imi total number of edge samples

B = N +M total budget
We approximate random walk samples in DUFS by uniform edge samples fromGu. Ex-

perience from previous papers shows us that this approximation works very well in practice.

This yields the following likelihood function

L(θ|n,m) =

∏
i θ

ni
i

∏
k((w + k)θi,k)

mi,k

(∑
s,t(w + t)θs,t

)M . (A.1)

The key idea in our derivation is that we can bypass the numerical estimation of the

θi,j’s by noticing that θi,j ∝ θi, θi,j ∝ mi,j and θi,j ∝ 1/(w + j). Hence, the maximum
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likelihood estimator of θi,j for j = 1, . . . , Z is the Hansen-Hurwitz estimator

θ̂i,j =
θimi,j

(w + j)µi
, (A.2)

where µi =
∑

kmi,k/(w + k).

Substituting (A.2) in (A.1) yields

L(θ|n,m) =

∏
i θ

ni
i

∏
k(θimi,k/µi)

mi,k

(
∑

s θs
∑

zms,z/µs)
M

. (A.3)

The log-likelihood approximation is then given by

L(θ|n,m) = −M log

(∑

s

θs
∑

z

ms,z

µs

)
+
∑

i

ni log θi+
∑

k

mi,k(log θi+logmi,k−log µi).

(A.4)

We rewrite θi as eβi/
∑

j e
βj to account for the distribution constraints

∑
i θi = 1 and

θi ∈ [0, 1]. Hence, we have

L(β|n,m) = −M log

(∑

s

eβsms

µs

)
+
∑

i

(ni +mi)βi −N log

(∑

j

eβj

)
+ C, (A.5)

where mi =
∑

kmi,k and C is a constant that does not depend on β.

The partial derivative w.r.t. βi is given by

∂L(β|n,m)

∂βi
= − Meβimi/µi∑

s e
βsms/µs

+ ni +mi −
Neβi∑
j e

βj
. (A.6)

Setting ∂L(β|n,m)/∂βi = 0 and substituting back θi yields

θ?i =
ni +mi

N +M mi/µi∑
s θ
?
sms/µs

. (A.7)
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Theorem A.1. Let N = αB and M = (1 − α)B, for some 0 < α < 1. In the limit as

B →∞,

θ̂i =
ni +mi

N +M mi
µid̂

, (A.8)

where µi =
∑

kmi,k/(w + k) and d̂ = M/
∑

i µi, is an unbiased estimate of θi.

Proof. In the limit as B →∞, we have

E[ni] = Nθi, E[mi,k] = M
(w + k)θi,k∑
s,l(w + l)θsl

, E[mi] = M

∑
k(w + k)θi,k∑
s,l(w + l)θs,l

,

and thus,

E[µi] = M

∑
k(w + k)θi,k/(w + k)∑

s,l(w + l)θsl
= M

θi∑
s,l(w + l)θsl

and E

[
mi

µi

]
=

∑
k(w + k)θi,k

θi
.

It follows that

lim
B→∞

E[d̂] =
M

M
∑
i θi∑

s,l(w+l)θsl

=
∑

s,l

(w + l)θsl.

Substituting the above in eq. (A.8), we have

lim
B→∞

E[θ?i ] =
Nθi +M

∑
k(w+k)θi,k∑
s,l(w+l)θs,l

N +M
∑
k(w+k)θi,k/θi∑
s,l(w+l)θs,l

= θi.

This concludes the proof. �

In Section 3.4.2.2 we mentioned a special case of the previous estimator, where the

vertex label is the undirected degree itself. We prove that, when the average degree
∑

j jθj

is known, this estimator is the minimum variance unbiased estimator (MVUE) of θi.
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Theorem A.2. The quantity

θ̄i =
ni +mi

N +M(w + i)/µ̄
,

where µ̄ = w +
∑

j jθj , is an unbiased estimate of θi.

Proof. We know that ni ∼ Binomial(N, θi) and mi ∼ Binomial(M, (w + i)θi/µ̄). Hence,

E[θ̂i] =
∑

ni,mi

[
ni +mi

N +M(w + i)/µ̄

A(ni)︷ ︸︸ ︷(
N

ni

)
θnii (1− θi)N−ni ×

B(mi)︷ ︸︸ ︷(
M

mi

)(
(w + i)θi

µ̄

)mi (
1− (w + i)θi

µ̄

)M−mi ]

=
1

N +M(w + i)/µ̄

(∑

ni

niA(ni)
∑

mi

B(mi) +
∑

mi

miB(mi)
∑

ni

A(ni)

)

=
1

N +M(w + i)/µ̄

(∑

ni

niA(ni) +
∑

mi

miB(mi)

)

=
1

N +M(w + i)/µ̄
(Nθi +M(w + i)θi/µ̄)

= θi.

�

Having proved that θ̂i is unbiased, we are now ready to show that it is also the minimum

variance unbiased estimator (MVUE). In order to do so, we prove Lemmas A.3 and A.5

that show respectively that ni +mi is a sufficient and complete statistic of θi.

Lemma A.3. The statistic ni +mi is a sufficient statistic w.r.t the likelihood of θi.
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Proof. The log-likelihood equation for estimator (3.8) is given by

L(θ|n,m) =

∏
i θ

ni
i

∏
j((w + j)θj)

mj

µ̂M

=

∏
j(w + j)mj

µ̂M

∏

i

θni+mii . (A.9)

We can see from eq. (A.9) that the likelihood function L(θ|n,m) can be factored into a

product such that one factor,
∏

j(w+ j)mj/µ̂M , does not depend on θi and the other factor,

which does depend on θi, depends on n and m only through ni + mi. From the Fisher-

Neyman factorization Theorem [51], we conclude that ni + mi is a sufficient statistic for

the distribution of the sample.

�

We now prove that ni+mi is also a complete statistic for the distribution of the sample.

Definition A.4. Let X be a random variable whose probability distribution belongs to a

parametric family of probability distributions Pθ parametrized by θ. The statistic s is said

to be complete for the distribution of X if for every measurable function g (which must be

independent of θ) the following implication holds:

E(g(s(X))) = 0 for all θ ⇒ Pθ(g(s(X)) = 0) = 1 for all θ.

Lemma A.5. The statistic ni +mi is a complete statistic w.r.t. the likelihood of θi.

Proof.

E[g(ni +mi)] = 0

∑

ni,mi

g(ni +mi)Pθ(ni,mi) = 0

∑

ni,mi

g(ni +mi)A(ni)B(mi) = 0 (A.10)
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The LHS of (A.10) is a polynomial of degree M +N on θi. Hence, it can be written as

C0 + C1θi + C2θ
2
i + . . .+ CN+Mθ

N+M
i = 0. (A.11)

We prove that Pθ(g(s(X)) = 0) = 1 for all θ by contradiction. Suppose that there is a

θ such that Pθ(g(s(X)) 6= 0) > 0. In order to have E(g(s(X))) = 0, there must be terms

for which g(.) is strictly positive and terms for which g(.) is strictly negative. Let g(h1) be

the smallest h1 such that g(h1) > 0. Let g(h2) be the smallest h2 such that g(h2) < 0. Let

h = min(h1, h2).

Expanding A(ni)B(mi) in eq. (A.10) we note that the degree of the resulting polyno-

mial is at least ni + mi on θi. Therefore, the coefficient Ch in eq. (A.11) associated with

θhi cannot have terms of g(.) larger than h. Then Ch can only be zero if h1 = h2 which is a

contradiction.

�

Theorem A.6. The unbiased estimator θ̄i is the minimum variance unbiased estimator

(MVUE) of θi.

Proof. According to the Lehmann-Scheffe Theorem [51], if T (S) is a complete sufficient

statistic, there is at most one unbiased estimator that is a function of T (S). From Lem-

mas A.3 and A.5, we have that ni + mi is a complete sufficient statistic of θi. Clearly, the

unbiased estimator θ̂ in eq. (A.8) is a function ni + mi. Therefore, θ̂i must be the MVUE.

�
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APPENDIX B

SET SIZE DISTRIBUTION PROOFS

Let B(p) = [bji(p)], j, i = 1, . . . ,W be a matrix whose elements are given by

bji(p) ≡ P [α(S) = j |α(S) > 0, |S| = i] =

(
i
j

)
pjqi−j

1− qi , if 0 < j ≤ i, (B.1)

and bij(p) = 0 otherwise, where q = 1− p.

Lemma B.1 shows a closed formula for the inverse of B(p).

Lemma B.1. B(p)−1 = [b?ji(p)] (i, j = 1, . . . ,W ), where

b?ji(p) =





(
i
j

)
p−i(−q)i−j(1− qj) i ≥ j

0 i < j.

Proof. Let B(p)−1 = [b?ji(p)] with b?ji(p) defined above. We first show that Y =

B(p)B(p)−1 is an identity matrix. Consider element (j, i) of Y :

yji =
W∑

l=1

bjl(p)b
?
li(p) . (B.2)

We have three cases: j > i, j = i, and j < i.

Case 1, j > i: eq. (B.2) yields yji = 0 since bjl(p) = 0, ∀l ≤ i and b?li(p) = 0, ∀l > i.
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Case 2, j = i: Here bjl(p)b?lj(p) = 0, ∀l 6= j and (B.2) yields

yjj =
pj

1− qj · p
−j(1− qj) = 1 .

Case 3, j < i: eq. (B.2) yields

yji =
i∑

l=j

(−1)i−lpj−iqi−j
(
l

j

)(
i

l

)

= pj−iqi−j
i∑

l=j

(−1)i−l
(
i

j

)(
i− j
l − j

)

= pj−iqi−j
(
i

j

) i∑

l=j

(−1)i−l
(
i− j
l − j

)

= pj−iqi−j
(
i

j

)
(1− 1)i−j

= 0

Thus, yjj = 1, ∀j and yji = 0, ∀j 6= i, which concludes our proof. �

Lemma B.1 directly yields the inverse of the Fisher information matrix J (φ) of a single

observed set, as seen in the following lemma.

Lemma B.2. (J (φ))−1 = [[(J (φ))−1]ij] (i, j = 1, 2, . . . ,W ), where

[(J (φ))−1]ij =
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(θ) (B.3)

Proof. Denote R(φ)(p) = [R
(φ)
ji (p)] = B−1(p)diag(B(p)φ)−1, where R(φ)

ji (p) =

b?ji(p)di(φ). Based on Lemma B.1 and eq. (4.2), we have

R
(φ)
ji (p) =





(
i
j

)
p−i(−q)i−j(1− qj)di(φ), i ≥ j,

0, i < j.
(B.4)

128



Since J (φ) = R(φ)(p)(B(p)−1)T, [(J (φ))−1]ji is computed as the following equation

based on Lemma B.1 and eq. (B.4)

[(J (φ))−1]ji =
W∑

k=1

R
(φ)
jk (p)b?ik(p)

=
W∑

k=max(i,j)

(
k
j

)(
k
i

)
(−q)2k−i−j(1− qi)(1− qj)dk(φ)

p2k

=
W∑

k=max(i,j)

(
q

p

)2k (
k

j

)(
k

i

)
(−1)−i−j(q−i − 1)(q−j − 1)dk(φ)

�

Lemma B.3. (J (θ))−1 = [[(J (θ))−1]ij] (i, j = 1, 2, . . . ,W ), where

[(J (θ))−1]ii =
1

η2

(
[(J (φ))−1]ii
(1− qi)2 + θ2i

W∑

j=1

W∑

k=1

[(J (φ))−1]kj
(1− qk)(1− qj) − 2θi

W∑

j=1

[(J (φ))−1]ij
(1− qi)(1− qj)

)

(B.5)

where η =
∑W

i=1 φi/(1− qi).

Proof. The relationship between (J (θ))−1 and (J (φ))−1 is given by

(J (θ))−1 = ∇H(J (φ))−1∇HT, (B.6)

where∇H = [hik] with hik = ∂θk(φ)/∂φi. Hence

hik =





−φi/(η(1−qi))
η(1−qk) i 6= k

1−φi/(η(1−qi))
η(1−qi) i = k

where η =
∑W

k=1 φk/(1−qk) is a constant. Note that from eq. (4.3) we have θi = φi/(η(1−

qi)). Therefore the diagonal elements of (J (θ))−1 can be written as
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[(J (θ))−1]ii =
W∑

j=1

W∑

k=1

hik[(J
(φ))−1]kjh

T
ij

=
W∑

j=1
j 6=i

W∑

k=1
k 6=i

(
− θi
η(1− qk)

)
[(J (φ))−1]kj

(
− θi
η(1− qj)

)
+

W∑

j=1
j 6=i

(
1− θi

η(1− qi)

)
[(J (φ))−1]ij

(
− θi
η(1− qj)

)
+

W∑

k=1
k 6=i

(
− θi
η(1− qk)

)
[(J (φ))−1]ki

(
1− θi

η(1− qi)

)
+

(
1− θi

η(1− qi)

)2

[(J (φ))−1]ii

=
1

η2

(
[(J (φ))−1]ii
(1− qi)2 + θ2i

W∑

j=1

W∑

k=1

[(J (φ))−1]kj
(1− qk)(1− qj) − 2θi

W∑

j=1

[(J (φ))−1]ij
(1− qi)(1− qj)

)
.(B.7)

�

We split eq. (B.5) in three parts to carry out its analysis:

[(J (θ))−1]ii =
1

η2

(
[(J (θ))−1]ii
(1− qi)2︸ ︷︷ ︸

A1(i)

+ θ2i

W∑

j=1

W∑

k=1

[(J (θ))−1]kj
(1− qk)(1− qj)

︸ ︷︷ ︸
A2(j)

− 2θi

W∑

j=1

[(J (θ))−1]ij
(1− qi)(1− qj)

︸ ︷︷ ︸
A3(i)

)
.

(B.8)

Analysis of A1(i)

Based on Lemma B.2 and eq. (4.2), we have

Lemma B.4.

A1(i) = ηq−2i
W−i∑

j=0

(
i+ j

i

)
qj+iθj+igij. (B.9)

where η =
∑W

k=1 φk/(1− qk) and gij =
∑j

k=0

(
i+k
i

)(
j
k

)
(q/p)k+i.

Proof.

[(J (φ))−1]ii =
W∑

k=i

(
q

p

)2k (
k

i

)2

(−1)−2i(q−i − 1)2dk(φ)
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=
W∑

k=i

W∑

j=k

(
q

p

)2k (
k

i

)2

(−1)−2i(q−i − 1)2
(
j
k

)
pkqj−kφj

1− qj

= (q−i − 1)2
W∑

j=i

(
j

i

)
qjφj

1− qj
j∑

k=i

(
k

i

)(
j − i
k − i

)
(q/p)k

= (q−i − 1)2
W−i∑

j=0

(
i+ j

i

)
qi+jφi+jgij

1− qi+j (B.10)

where gij =
∑j

k=0

(
i+k
i

)(
j
k

)
(q/p)i+k.

Since φi/(1− qi) = θi · η, we can eq. (B.9) as a function of θ:

[(J (φ))−1]ii = η
(
q−i − 1

)2 W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij.

Therefore

A1(i) = ηq−2i
W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij. (B.11)

�

Lemma B.5. We have the following bounds for A1(i):

A1(i) < Ci

i∑

k=0

cik

∞∑

j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j (B.12)

and

A1(i) > Cicii

W−i∑

j=i(i−1)

j2i
(q
p

)i+j
θi+j (B.13)

where

Ci =
ηq−i

(i!)2

and

cik =

(
i

k

)
qk

i−k−1∏

l=0

(i− l), k = 0, . . . , i; i = 1, . . .W.
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Proof. Since the i-th derivative of (q/p)i+k with respect to q/p, is

di(q/p)i+k

d(q/p)i
=

i∏

l=1

(k + l)(q/p)k,

we have the following equations for gij

gij =
1

i!

(q
p

)i j∑

k=0

i∏

l=1

(k + l)

(
j

k

)
(q/p)k

=
1

i!

(q
p

)i j∑

k=0

(
j

k

)
di(q/p)i+k

d(q/p)i

=
1

i!

(q
p

)id
i
(∑j

k=0

(
j
k

)
(q/p)i+k

)

d(q/p)i

=
1

i!

(q
p

)id
i
(

(q/p)i(1 + q/p)j
)

d(q/p)i
.

Using a general form of the product rule [67, pp. 318] yields

gij =
1

i!

(q
p

)i min{i,j}∑

k=0

(
i

k

)(1

p

)j−k k−1∏

l=0

(j − l)
(q
p

)k i−k−1∏

l=0

(i− l), (B.14)

where to simplify the expression we define
∏−1

l=0 · · · = 1.

Substituting (B.14) back into (B.11), we obtain the following expression for A1(i)

A1(i) = Ci

i∑

k=0

cik

W−i∑

j=0

1{k ≤ j}
i∏

l=1

(j + l)
k−1∏

l=0

(j − l)(q/p)i+jθi+j (B.15)

where

Ci =
ηq−i

(i!)2

and

cik =

(
i

k

)
qk

i−k−1∏

l=0

(i− l), k = 0, . . . , i; i = 1, . . . ,W.
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We have the following upper bounds for A1(i),

A1(i) < Ci

i∑

k=0

cik

W−i∑

j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j (B.16)

< Ci

i∑

k=0

cik

∞∑

j=0

1{k ≤ j}(i+ j)2i
(q
p

)i+j
θi+j. (B.17)

A lower bound is obtained by noting that

i∏

l=1

(j + l)
k−1∏

l=0

(j − l) > ji−k
k∏

l=1

(j + l)
k∏

l=1

(j − l + 1)

= ji−k
k∏

l=1

(j2 + j + l − l2).

The latter is greater than or equal to j2i whenever j > i(i− 1) yielding

A1(i) > Cicii

W−i∑

j=i(i−1)

j2i
(q
p

)i+j
θi+j. (B.18)

�

Analysis of A2(i)

W∑

i=1

W∑

j=1

[(J (θ))−1]ij
(1− qi)(1− qj) =

W∑

i=1

W∑

j=1

W∑

k=1

(
k
j

)(
k
i

) (
q
p

)2k
(−1)−j−i(q−j − 1)(q−i − 1)dk(φ)

(1− qj)(1− qi)

=
W∑

k=1

(
q

p

)2k

dk(φ)
k∑

i=1

k∑

j=1

(
k

j

)(
k

i

)
(−q)−j−i

=
W∑

k=1

(
q

p

)2k

dk(φ)

(
k∑

i=1

(
k

i

)
(−q)−i

)2

=
W∑

k=1

(
q

p

)2k

dk(φ)

((
−q
p

)−k
− 1

)2

using (G.2)
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=
W∑

k=1

dk(φ)− 2
W∑

k=1

(
−q
p

)k
dk(φ) +

W∑

k=1

(
q

p

)2k

dk(φ)

= 1− 2
W∑

k=1

(
−q
p

)k
dk(φ) +

W∑

k=1

(
q

p

)2k

dk(φ). (B.19)

First, note that

W∑

k=1

(
−q
p

)k
dk(φ) =

W∑

k=1

(
−q
p

)k W∑

j=1

(
j

k

)
pkqj−kθjη

= η

W∑

j=1

qjθj

j∑

k=1

(
j

k

)
(−1)k

= −η
W∑

j=1

qjθj. using (G.4) (B.20)

Also,

W∑

k=1

(
q

p

)2k

dk(φ) =
W∑

k=1

(
q

p

)2k W∑

j=1

(
j

k

)
pkqj−kθjη

= η
W∑

j=1

qjθj

j∑

k=1

(
j

k

)(
q

p

)k

= η

W∑

j=1

qjθj

((
1

p

)j
− 1

)
using (G.3)

= η

(
W∑

j=1

(
q

p

)j
θj −

W∑

j=1

qjθj

)
. (B.21)

Substituting eqs. (B.20) and (B.21) into (B.19) yields

W∑

i=1

W∑

j=1

[(J (θ))−1]ij
(1− qi)(1− qj) = 1 + η

(
2

W∑

j=1

qjθj +
W∑

j=1

(
q

p

)j
θj −

W∑

j=1

qjθj

)
(B.22)

= 1 + η

(
W∑

j=1

qjθj +
W∑

j=1

(
q

p

)j
θj

)
. (B.23)
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Therefore,

A2(i) = θ2i

(
1 + η

(
W∑

j=1

qjθj +
W∑

j=1

(
q

p

)j
θj

))
. (B.24)

Note thatA2(i) is positive and may diverge or not depending on the summation
∑W

j=1

(
q
p

)j
θj .

Analysis of A3(i)

Note that

W∑

k=1

(
k

i

)(
−q
p

)k
dk(φ) =

W∑

k=i

(
k

i

)(
−q
p

)k W∑

j=1

(
j

k

)
pkqj−kθjη

= η
W∑

k=i

(−1)k
W∑

j=1

(
j

i

)(
j − i
k − i

)
qjθj

= η
W∑

j=i

(
j

i

)
qjθj

j∑

k=i

(
j − i
k − i

)
(−1)k

= (−1)iη
W∑

j=i

(
j

i

)
qjθj

j−i∑

k=0

(
j − i
k

)
(−1)k

= (−q)iηθi. using (G.5) (B.25)

We also have

W∑

k=1

(
k

i

)(
q

p

)2k

dk(φ) =
W∑

k=1

(
k

i

)(
q

p

)2k W∑

j=1

(
j

k

)
pkqj−kθjη

= η

W∑

k=1

(
q

p

)k W∑

j=1

(
j

i

)(
j − i
k − i

)
qjθj

= η
W∑

j=i

(
j

i

)
qjθj

j∑

k=i

(
j − i
k − i

)(
q

p

)k
. (B.26)
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From eq. (B.25) and (B.26), we have

W∑

j=1

[(J (θ))−1]ij
(1− qj)(1− qi) = ηθi − (−q)−iη

W∑

j=i

(
j

i

)
qjθj

j∑

k=i

(
j − i
k − i

)(
q

p

)k
(B.27)

and hence,

A3(i) = 2ηθ2i︸︷︷︸
A3,1(i)

− 2θi(−q)−iη
W−i∑

j=0

(
i+ j

i

)
qi+jθi+j

j∑

k=0

(
j

k

)(
q

p

)k+i

︸ ︷︷ ︸
A3,2(i)

. (B.28)

Since A3,1(i) is always finite, we only need to compare the magnitude of A1(i) and

A3,2(i). Since
∑j

k=0

(
j
k

) (
q
p

)k+i
< gij , we can bound |A3,2(i)| by

|A3,2(i)| ≤ 2θiq
−iη

W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij.

Therefore

A1(i)− |A3,2(i)| ≥ (q−2i − 2θiq
−i)η

W−i∑

j=0

(
i+ j

i

)
qi+jθi+jgij.

The RHS of the previous inequation is positive when

q−2i ≥ 2θiq
−i

θi ≤
1

2qi
<

1

2
.

Recall that we assumed that ∃i0 such that θi ≤ 1/2 for all i > i0. Thus by examining

only A1(i) and A2(i) we can determine whether [(J (θ))−1]ii diverges or not for i > i0.
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APPENDIX C

PROOF OF THEOREM 4.1

The lower bound of MSE(Ti(S)), given by [(J (θ))−1]ii, is described for each of the three

possible cases in Theorem 4.1. The corresponding proofs are shown in what follows.

1) When θW decreases faster than exponentially in W .

Proof. Suppose that θW decreases faster than exponentially in W . More precisely,

assume that − log θW = ω(W ). It follows that log(θW/θW+1) → ∞ as W → ∞. Hence,

for any ε > 0, there exists a W0(ε) such that log(θW/θW+1) > 1/ε for W > W0(ε). This

implies θW+1/θW < e−1/ε for W > W0(ε). Given p > 0, we can choose ε such that

qe−1/ε/p < 1. We now apply the ratio test for convergence of an infinite sum to each of the

i+ 1 sums in the upper bound for A1(i) given by (B.12).

(W + i+ 1)2i(q/p)W+i+1θW+i+1

(W + i)2i(q/p)W+iθW+i

<
(W + i+ 1)2i

(W + i)2i
qe−1/ε

p

for W > W0(ε) − i and the latter expression becomes less than one as W → ∞. Hence

A1(i) = O(1) for 0 < p < 1. A similar argument can be used to show that A2(i) = O(1).

Hence, [(J (θ))−1]ii = O(1) for 0 < p < 1. �

2) When θW decreases exponentially in W .

Proof. Suppose that θW decreases exponentially in W . More precisely, let log θW =

W log a + o(W ) for 0 < a < 1. Recall that A2(i) is positive. Therefore, the logarithm of

[(J (θ))−1]ii in (B.5) can be lower bounded as follows,

log[(J (θ))−1]ii ≥ logA1(i). (C.1)
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In addition, the logarithm of A1(i) in (B.9) can be bounded by

logA1(i) ≥ W log(q/p) + log θW + o(W )

= W log(qa/p) + o(W )

where the latter equality follows from the hypothesis. Now, if qa/p > 1, then logA1(i) =

Ω(W ), which implies log[(J (θ))−1]ii = Ω(W ). Note that qa/p > 1 iff p < a/(a+ 1).

When p = a/(a+ 1), then qa/p = 1. Hence the lower bound of A1(i) given by (B.13)

is Ω(W 2i+1). Hence, [(J (θ))−1]ii = Ω(W 2i+1).

Similarly to the proof for the case where θW decreases faster than exponentially in W ,

we can use the ratio test for convergence of an infinite sum to show that for qa/p < 1,

A1(i) = O(1). Hence, it follows that [(J (θ))−1]ii = O(1) for p > a/(a+ 1). �

3) When θW decreases slower than exponentially in W .

Proof. Suppose that θW decreases slower than exponentially in W . More precisely

assume that − log θW = o(W ). The logarithm of A1(i) can be lower bounded as follows,

logA1(i) ≥ W log(q/p) + log θW + o(W )

= W log(q/p) + o(W )

The latter equality follows from the hypothesis. Now, if q/p > 1 (i.e., p < 1/2), then

logA1(i) ≥ Ω(W ), which implies log[(J (θ))−1]ii = Ω(W ).

When p ≥ 1/2, it follows thatA2(i) = O(1). In particular if p = 1/2 and
∑W

j=1 j
2iθj =

ω(1), we can see from eq. (B.13) that A1(i) = ω(1) and in turn, [(J (φ))−1]ii = ω(1).

Note that for p = 1/2 each of the i+1 sums in the upper bound forA1(i) given by (B.12)

is bounded by the 2i-th moment of the set size distribution. Hence, if
∑W

j=1 j
2iθj = O(1),

then [(J (θ))−1]ii = O(1).

Finally, when p > 1/2, an argument similar to that used in the case where θW decreases

faster than exponentially yields [(J (θ))−1]ii = O(1). �

138



APPENDIX D

SIMPLIFIED BOUNDS

It is worth noting thatA2(i) gives us a lower bound on [(J (θ))−1]ii, asA1(i)−A3(i) > 0.

Furthermore, the convergence ofA2(i) is given by the convergence of the sum
∑W

j=1(q/p)
jθj .

Therefore, we can write

[(J (θ))−1]ii = Ω

(
W∑

j=1

(
1− p
p

)j
θj

)
. (D.1)

From that, we derive the following results.

1) When θW decreases faster than exponentially in W .

By definition, for any ε > 0, there exists aW0(ε) such that log(θW/θW+1) > 1/ε. Given

p > 0, we can choose ε such that qe−1/ε/p < 1. The ratio test for convergence of an infinite

sum reads
(q/p)j+1θj+1

(q/p)jθj
<
qe−1/ε

p
(D.2)

Let a = qe−1/ε/p. Hence, there exists a j∗ such that for all j > j?, ((1 − p)/p)jθj < aj ,

j = 1, 2, . . . . Therefore, the sum converges to a constant for any 0 < p < 1, yielding

[(J (θ))−1]ii = O(1).

2) When θW decreases exponentially in W .

By definition, there exists 0 < a < 1 such that log θW = W log a + o(W ). When p ≤

a/(a+ 1) it follows that ((1− p)/p)jθj ≥ a−jθj = Ω(1). Therefore, [(J (θ))−1]ii = O(W ).

A tighter bound can be obtained by taking into account A1(i), yielding log[(J (θ))−1]ii =

O(W ) for p < a/(a + 1) and [(J (θ))−1]ii = O(W 2i+1) for p = a/(a + 1). On the other

hand, for p > a/(a+1), we have ((1−p)/p)jθj < ajθj = O(1). Hence, [(J (θ))−1] = O(1).
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3) When θW decreases slower than exponentially in W .

When p < 1/2, it follows that (1 − p)/p = a > 1. In this case, there exists a j?

such that for all j > j?, ((1 − p)/p)jθj = ajθj = Ω(1). Hence, [(J (θ))−1]ii = O(W ) for

p < 1/2. Conversely, when p > 1/2, (1 − p)/p = a < 1. Hence, there exists a j? such

that for all j > j?, ((1− p)/p)jθj = ajθj = O(1). Thus, [(J (θ))−1]ii = O(1) for p > 1/2.

At last, for p = 1/2, the summation is exactly 1, which also implies [(J (θ))−1]ii = O(1).

In the latter case (i.e., p = 1/2), a tigher bound is obtained by taking A1(i) into account,

which yields [(J (θ))−1]ii = ω(1) if
∑
j = 1W j2iθj = ω(1) and [(J (θ))−1]ii = O(1) if

∑
j = 1W j2iθj = O(1).
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APPENDIX E

ASYMPTOTIC EFFICIENCY AND ASYMPTOTIC NORMALITY
OF THE MLE T ∗i (S)

In this section we show that there exists a Maximum Likelihood Estimator (MLE)

T
(φ)
i (S) of φi that is asymptotic efficient (i.e., MSE(T ∗i (S)) = [(J (φ))−1]ii) and asymptotic

normal. Since the Delta Method is an exact approximation for the Normal distribution,

it follows that there exists a MLE T ∗i (S) of θi that is asymptotic efficient, which can be

obtained by applying the Delta Method to T (φ)
i (S).

Consider the likelihood function obtained by expressing Eq. (4.2) as a function of φ:

dj(φ) =
W∑

i=1

bjiφi.

From the sum-to-one contraint on the parameters, it follows that φ1 = 1 −∑W
i=2 φi.

Thus we can rewrite the previous eq. as

dj(φ) = bj1 +
W∑

i=2

(bji − bj1)φi. (E.1)

Hence,

∂

∂φk
log dj(φ) =

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

2 < k < W.

From Theom. 5.1 [50, Chapter 5], we prove that there exists a MLE that is asymptotically

efficient and asymptotically normal by showing that assumptions (A0)-(A2) and (A)-(D)

are satisfied.

Proof. (A0) Follows from (E.1).

141



(A1) The support of φi for 2 ≤ i ≤ W is 0 < φi < 1 subject to
∑W

i=2 φi ≤ 1.

(A2) Observations are assumed to be independent.

(A3) Follows by the assumption that 0 < φi < 1 for 2 ≤ i ≤ W .

(A) We have

∂

∂φk
dj(φ) = bjk, 2 ≤ k ≤ W

and hence

∂3

∂φm∂φl∂φk
dj(φ) = 0, 2 ≤ k, l,m ≤ W.

(B) The expectation of the first logarithmic derivative of f is

Eφ

[
∂

∂φk
log dj(φ)

]
=

W∑

j=1

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

(
bj1 +

W∑

i=2

(bji − bj1)φi
)

=
W∑

j=1

bjk −
W∑

j=1

bj1

= 1− b11

= 0.

As for the second derivative, we have

E

[
∂

∂φl
log dj(φ)

∂

∂φk
log dj(φ)

]
=

W∑

j=1

(bjl − bj1)(bjk − bj1)(
bj1 +

∑W
i=2(bji − bj1)φi

)2

(
bj1 +

W∑

i=2

(bji − bj1)φi
)

=
W∑

j=1

(bjl − bj1)(bjk − bj1)
bj1 +

∑W
i=2(bji − bj1)φi

,

which is equivalent to
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E

[
− ∂2

∂φl∂φk
log dj(φ)

]
=

W∑

j=1

−


− (bjk − bj1)(bjl − bj1)(

bj1 +
∑W

i=2(bji − bj1)φi
)2

(
bj1 +

W∑

i=2

(bji − bj1)φi
)


=
W∑

j=1

(bjl − bj1)(bjk − bj1)
bj1 +

∑W
i=2(bji − bj1)φi

.

(C) The vectors
[

∂
∂φ2

log dj(φ), ∂
∂φ3

log dj(φ), . . . , ∂
∂φW

log dj(φ)
]

for 1 < j < W must

be linearly independent with probability 1. Note that and bjk > 0 ⇐⇒ j ≤ k (in

particular, bj1 > 0 ⇐⇒ j = 1). It follows that for j > k ≥ 2

∂

∂φk
log dj(φ) =

bjk − bj1
bj1 +

∑W
i=2(bji − bj1)φi

= 0, for j > k ≥ 2, and

∂

∂φk
log dj(φ) =

bjk∑W
i=2(bji − bj1)φi

> 0, for j ≤ k.

Therefore, the j − 1 leftmost entries in the j-th vector are 0 while the remainder are

positive. Hence the vectors are linearly independent.

(D) Consider a constant εj > 0 such that dj(φ) = bj1 +
∑W

i=2(bji − bj1)φi ≥ εj for

1 ≤ j ≤ W . Thus,

∣∣∣∣
∂3

∂φm∂φl∂φk
dj(φ)

∣∣∣∣ =

∣∣∣∣∣∣∣

−(bjk − bj1)(bjl − bj1)× 2(bjm − bj1)φm(bj1 +
∑W

i=2(bji − bj1)φi)(
bj1 +

∑W
i=2(bji − bj1)φi

)4

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

2(bjk − bj1)(bjdj(φ)l − bj1)(bjm − bj1)φm(
bj1 +

∑W
i=2(bji − bj1)φi

)3

∣∣∣∣∣∣∣

≤
∣∣∣∣
2(bjk − bj1)(bjl − bj1)(bjm − bj1)φm

ε3j

∣∣∣∣ .

Since Mklm(j) =
∣∣∣ ∂3

∂φm∂φl∂φk
dj(φ)

∣∣∣ <∞, then Eφ[Mklm(j)] <∞ for all k, l,m. �
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APPENDIX F

AVERAGE SET SIZE PROOFS

Lemma F.1. Let p be the sampling probability and m̂φ denote an unbiased estimate of the

average size of the observed sets mφ. Then,

MSE(m̂φ) = O

(
m

(2)
φ −m2

φ

N

)
.

Proof. The estimation error lower bound of the average set size is [89, p. 83, Prop. 3]

MSE(m̂φ) ≥
(1, . . . ,W )(J (φ))−1(1, . . . ,W )T −m2

φ

N
. (F.1)

Lemma B.2 yields

(1, . . . ,W )(J (φ))−1(1, . . . ,W )T

=
W∑

k=1

k∑

i=1

k∑

j=1

ij

(
k

j

)(
k

i

)(
q

p

)2k

(−1)2k−i−j(q−i − 1)(q−j − 1)dk(φ)

=
W∑

k=1

(q/p)2kdk(φ)

(
k∑

i=1

i

(
k

i

)
q−i − 1

(−1)i

)(
k∑

j=1

j

(
k

j

)
q−j − 1

(−1)j

)

= d1(φ) +
W∑

k=2

(q/p)2kdk(φ)

((
−1− q

q

)k
k

1− q

)2

=

(
1− 1

p2

)
d1(φ) +

1

p2

W∑

k=1

dk(φ)k2. (F.2)

Now (4.2) yields

d1(φ) =
W∑

i=1

ipqi−1

1− qiφi (F.3)
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and

W∑

k=1

dk(φ)k2 =
W∑

k=1

W∑

i=k

(
i
k

)
pkqi−k

1− qi φik
2

=
W∑

i=1

i∑

k=1

(
i
k

)
pkqi−k

1− qi φik
2

=
W∑

i=1

(
i∑

k=1

(
i

k

)
pkqi−kk2

)
φi

1− qi .

Using the relation

i∑

k=1

(
i

k

)
xkyi−kk2 =





x, i = 1,

ix(ix+ y)(x+ y)i−2, i ≥ 2.

yields
W∑

k=1

dk(φ)k2 =
W∑

i=1

ip(ip+ q)φi
1− qi . (F.4)

Putting together (F.1), (F.2), and (F.4) yields

MSE(m̂φ) ≥
(

W∑

i=1

i(pi+ qi+1 − 2qi + q)φi
p(1− qi) −m2

φ

)
/N (F.5)

which concludes the proof. �

Lemma F.2. Using the observed set sizes S = {Sk}Nk=1 the following

m̂φ =

∑N
k=1 Sk
Np

+

(
1− 1

p

)∑N
k=1 1Sk=1

N
, (F.6)

is an efficient (smallest variance) unbiased estimator of mφ.
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Proof. We start by noting that

mφ = [1, ...,W ]φ = [1, ...,W ]B−1d(φ). (F.7)

Denote z = [z1, . . . , zW ] = [1, ...,W ]B−1. From Lemma B.1, we have

zi =
W∑

j=1

jb?ji

=
i∑

j=1

j

(
i

j

)
p−i(−q)i−j(1− qj)

= (−q/p)i
i∑

j=1

j

(
i

j

)
1− qj
(−q)j (F.8)

For i = 1 (F.8) yields z1 = 1 and for 2 ≤ i ≤ W ,

zi = (−q/p)i
(
−1− q

q

)i
i

1− q =
i

p
.

Therefore,

z =
[p, 2, 3, . . . ,W ]

p
.

Thus applying the above back into (F.7) yields

mφ =
md

p
+

(
1− 1

p

)
d1(φ), (F.9)

where md =
∑W

i=1 idi is the expectation of average set size of observed subsets. Rewriting

(F.9) using the set sizes S we get

m̂φ =
1

N

N∑

k=1

(Sk
p

+

(
1− 1

p

)
1Sk=1

)
.
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Based on our assumption that {Sk}mk=1 is an i.i.d. sequence, we have that {Sk}Nk=1 is also

i.i.d. with distribution d(φ). Therefore,

E[m̂φ] = E

[Sk
p

+

(
1− 1

p

)
1Sk=1

]
,

and

Var[(m̂φ)2] =
1

N
Var

[(Sk
p

+

(
1− 1

p

)
1Sk=1

)2
]
.

Since

E[Sk] = md =
W∑

i=1

idi(φ),

and

E[1Sk=1] = d1(φ),

we have E[m̂φ] = mφ from (F.9), which indicates that m̂φ is unbiased. Then

E[(Sk)2] =
W∑

i=1

i2di(φ),

E[(1Sk=1)
2] = d1(φ),

and

E[Sk1Sk=1] = d1(φ),

yield

Var[(m̂φ)2] =

(
1− 1

p2

)
d1(φ) + 1

p2

∑W
k=1 dk(φ)k2 −m2

φ

N
.

From (F.1) and (F.2) we find that m̂φ is an unbiased estimator that achieves the Cramér-Rao

lower bound (i.e., it is an efficient estimator). �
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Lemma F.3. Let m̂ denote an unbiased estimate of the average set size mθ. Then,

MSE(m̂θ) ≥
1

η2

(
W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi) +m2

θ

W∑

i=1

W∑

j=1

[(J (φ))−1]ji
(1− qj)(1− qi) −

2mθ

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)
. (F.10)

Proof.

MSE(m̂θ) ≥
∇M
∇θ

(∇H
∇φ (J (φ))−1

∇H
∇φ

T) ∇M
∇θ

T

=

(∇M
∇θ
∇H
∇φ

)
(J (φ))−1

(∇M
∇θ
∇H
∇φ

)T
. (F.11)

where ∇M∇θ = (1, . . . ,W ). Note that

[∇M
∇θ
∇H
∇φ

]

k

=
W∑

i=1

ihik

=
W∑

i=1
i6=k

i

(
− θi
η(1− qk)

)
+ k

(
1− θk

η(1− qk)

)

=
1

η(1− qk)

(
k −

W∑

i=1

iθi

)

=
k −mθ

η(1− qk) . (F.12)

Substituting eq. (F.12) in eq. (F.11), we have

MSE(m̂θ) ≥
W∑

i=1

W∑

j=1

(
j −mθ

η(1− qj)

)
[(J (φ))−1]ji

(
i−mθ

η(1− qi)

)

=
1

η2

(
W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi) +m2

θ

W∑

i=1

W∑

j=1

[(J (φ))−1]ji
(1− qj)(1− qi) −

2mθ

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

)
.
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Similarly to what we did for eq. (B.5), we split eq. (F.10) into three pieces to analyze

its behavior.

MSE(m̂θ) ≥
1

η2

(
W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi)

︸ ︷︷ ︸
U1

+m2
θ

W∑

i=1

W∑

j=1

[(J (φ))−1]ji
(1− qj)(1− qi)

︸ ︷︷ ︸
U2

−

2mθ

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj)

︸ ︷︷ ︸
U3

)
.

Analysis of U1

W∑

i=1

W∑

j=1

ij[(J (φ))−1]ji
(1− qj)(1− qi) =

W∑

i=1

W∑

j=1

W∑

k=1

ij

(
k

i

)(
k

j

)(
q

p

)2k

(−q)−i−jdk(φ)

=
W∑

k=1

(
q

p

)2k

dk(φ)

(
k∑

i=1

i

(
k

i

)
(−q)−i

)2

=
W∑

k=1

(
q

p

)2k

dk(φ)

((
−q
p

)−k
k

p

)2

using (G.1)

=
1

p2

W∑

k=1

k2dk(φ)

=
η

p2

W∑

i=1

ip(ip+ q)θi

= η(
W∑

i=1

i2θi +
q

p
mθ).

Note that U1 is bounded by the second moment of the distribution θ.
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Analysis of U2

Note that U2 =
m2
θ

θ2i
A2(i). Therefore, we conclude that U2 diverges if either θW de-

creases exponentially in W and p < a/(a + 1) or θW decreases slower than exponentially

in W and p < 1/2.

Analysis of U3

W∑

i=1

W∑

j=1

j[(J (φ))−1]ji
(1− qi)(1− qj) =

W∑

k=1

(
q

p

)2k

dk(φ)
k∑

i=1

(
k

i

)
(−q)−i

k∑

j=1

j

(
k

j

)
(−q)−j

=
W∑

k=1

(
q

p

)2k

dk(φ)

((
−p
q

)k
− 1

)((
−p
q

)k
k

p

)
using (G.2,G.1)

=
1

p

W∑

k=1

kdk(φ)

︸ ︷︷ ︸
ηpmθ

−1

p

W∑

k=1

(
−q
p

)k
kdk(φ)

︸ ︷︷ ︸
−ηqθ1

= η(mθ +
q

p
θ1).

Thus,

U3 = 2mθη(mθ +
q

p
θ1).

It is interesting to note that, counterintuitively, U2 goes to infinity for certain values of

p and θ while U1 and U3 are always finite, even though the factor [(J (φ))−1]ji that appears

inside the double summation in U2 is the same factor that appears multiplied by j and ji in

U1 and U3, respectively.

Proof of Theorem 4.3

Note that U1, U2 and U3 are positive quantities and, moreover, MSE(m̂θ) > 0 ⇒

U1 + U2 > U3. We observe that U1 diverges if the second moment of θ is infinite, U2

diverges if
∑W

j=1

(
q
p

)j
θj →∞ as W →∞, while U3 is always finite.
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Proof. 1) When θW decreases faster than exponentially in W .

In this case, the second moment of θ is finite and the sum
∑W

j=1

(
q
p

)j
θj = O(1) for

0 < p < 1. Therefore, MSE(m(S)) = O(1) for 0 < p < 1.

2) When θW decreases exponentially in W .

The second moment of θ is still finite. However, we can show that the sum
∑W

j=1

(
q
p

)j
θj

is Ω(W ) for p ≤ a/(a + 1) and O(1) for p > a/(a + 1) by using an argument similar to

the one used in Section E of Appendix A. Hence, MSE(m(S)) = Ω(W ) for p ≤ a/(a+ 1)

and MSE(m(S)) = O(1) for p > a/(a+ 1).

3) When θW decreases more slowly than exponentially in W .

We can show that the sum
∑W

j=1

(
q
p

)j
θj is Ω(W ) for p < 1/2 and O(1) for p ≥ 1/2

by using an argument similar to the one used in Section E of Appendix A. However, the

second moment of θ shows up in U1 and it can be either finite or infinite. Although it

does not affect the bound for p < 1/2, in which case we have log MSE(m(S)) = Ω(W ),

it does change the bound for p ≥ 1/2. In particular, if p = 1/2 and
∑W

j=1 j
2θj = ω(1),

then MSE(m(S)) = ω(1). On the other hand, if p = 1/2 and
∑W

j=1 j
2θj ≥ O(1), then

MSE(m(S)) = Ω(1). Finally, if p > 1/2, then MSE(m(S)) = Ω(1) as well.

�
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APPENDIX G

USEFUL IDENTITIES

k∑

j=1

j

(
k

j

)
(−q)−j =

(
−q
p

)−k
k

p
(G.1)

k∑

j=1

(
k

j

)
(−q)−j =

(
−q
p

)−k
− 1 (G.2)

j∑

k=1

(
j

k

)(
q

p

)k
=

(
1

p

)j
− 1 (G.3)

j∑

k=1

(
j

k

)
(−1)k = −1 (G.4)

j∑

k=0

(
j

k

)
(−1)k =





1 if j = 0

0 otherwise
(G.5)
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APPENDIX H

CAN WE LEVERAGE DIVERSITY USING A SINGLE
CLASSIFIER?

Intuitively, when a learning model is fitted to the nodes it chose to query, it tends to

specialize in one region of the feature space and the search will consequently only explore

similar parts of the graph, which can severely undermine its potential to find target nodes.

One potential way to mitigate this overspecialization would be to sample nodes prob-

abilistically, as opposed to deterministically querying the node with the highest score.

Clearly, we should not query nodes uniformly at random all the time. It turns out that

querying nodes uniformly at random periodically does not help either, according to the

following experiment. We implemented an algorithm for selective harvesting that samples

at each step t, with probability p, an uniformly random node from B(t), and with 1− p, the

best ranked node according to a support vector regression (SVR) model. Table H.1 shows

the results for p = 2.5, 5.0, 10, 15 and 20%.

0.0% 2.5% 5.0% 10% 15% 20%
760.5± 52.1 773.85± 34.5 768.0± 32.3 770.8± 34.1 753.0± 59.8 764.7± 28.0

Table H.1. Results for SVR w/ uniformly random queries on CiteSeer (at t = 1500)
averaged over 40 runs. Top line shows probabilty of random query; bottom line shows
number of target nodes found.

We observe that the performance does not improve significantly for p ≥ 2.5%, either

because the diversity is not increasing in a way that translates into performance improve-

ments or because all gains are offset by the samples wasted when querying nodes at random.

Instead of querying uniformly at random, we could query nodes according to a proba-

bility distribution that concentrates most of the mass on the top k nodes w.r.t. model scores.
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We experimented with several ways of mapping scores to a probability distribution P . In

particular, we considered two classes of distributions:

• truncated geometric distribution (0 < q < 1):

P (v) ∝ (1− q)π(v)−1q, and

• truncated Zeta distribution (r ≥ 1):

P (v) ∝ π(v)−r,

where π(v) is the rank of v based on the scores given by the model to v ∈ B(t). In each

experiment, we set q or r at each step in one of nine ways:

1. Top 10 have x% of the probability mass; for x ∈ {70, 90, 99}.

2. Top 10% nodes have x% of the probability mass; for x ∈ {90, 99, 99.9}.

3. Top k(t) = min{10 × (1 − t/T ), 1} have x% of the probability mass; for x ∈

{70, 90, 99}.

None of the mappings was able to substantially increase the search’s performance. In con-

trast to almost 20% performance improvement seen by SVR under round-robin on CiteSeer

at T = 1500 (Fig. 5.3), mapping scores to a probability distribution increased the number

of targets nodes found by at most 3%.
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APPENDIX I

EVALUATION OF MAB ALGORITHMS APPLIED TO
SELECTIVE HARVESTING

We experiment with representative algorithms of each of the following bandit classes:

Stochastic Bandits – UCB1, Thompson Sampling (TS), ε-greedy; Adversarial Bandits

– Exp3 [7]; Non-stationary stochastic bandits – Dynamic Thompson Sampling (DTS)

[32]; Contextual Bandits – Exp4 [7] and Exp4.P [13]. UCB1 and TS are parameter-

free. For ε-greedy, Exp3 and Exp4.P we set the probability of uniformly random pulls, to

ε ∈ {0.10, 0.20, 0.50}, γ ∈ {0.10, 0.20, 0.50} and Kpmin ∈ {0.01, 0.05, 0.10, 0.20, 0.50}

(respectively). We set parameter γ in Exp4 asKpmin in Exp4.P. For DTS, we set the cap on

the parameter sum C ∈ {5, 10, 20, 50}. Interestingly, for each MAB algorithm, there was

always one parameter value that outperformed all the others in almost all seven datasets. In

Figure I.1 we show three representative plots of the performance comparison between the

best parameterizations of each MAB algorithm. Since Exp4 was slightly outperformed by

Exp4.P, Exp4 is not shown. These results corroborate our expectations (Section 5.5) that

DTS would outperform other bandits in selective harvesting problems.
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Exp3 (Gamma=0.2)
Exp4.P (Gamma=0.01)

Figure I.1. Comparison between the best parameterizations of each MAB algorithm.
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