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ABSTRACT	

INTERFACING	CONTINUOUS	MEASUREMENT	OF	GLUCOSE	AND	PHYSICAL	
ACTIVITY	TO	PREDICT	GLYCEMIC	CONTROL	IN	INDIVIDUALS	WITH		

TYPE	2	DIABETES		
	

FEBRUARY	2017	
	

JENNIFER	M.	BLANKENSHIP,	B.A.,	UNIVERSITY	OF	MASSACHUSETTS	AMHERST	
	

M.S.,	UNIVERSITY	OF	MASSACHUSETTS	AMHERST	
	

Ph.D.,	UNIVERSITY	OF	MASSACHUSETTS	AMHERST	
	

Directed	by:	Professor	Barry	Braun	
	

Physical	activity	is	a	cornerstone	in	the	management	of	hyperglycemia	and	

risk	of	cardiovascular	disease	in	type	2	diabetes	(T2D).	However,	the	dose	response	

relationship	between	physical	activity	and	glucose	regulation	is	not	well	defined.	

The	overall	goal	of	this	dissertation	was	to	assess	the	magnitude	and	timing	of	

changes	of	daily	glucose	concentrations	in	response	to	continuous	and	intermittent	

light	physical	activity	in	T2D.		Through	utilizing	continuous	glucose	monitors	(CGM)	

and	physical	activity	monitoring	concurrently,	we	were	able	to	assess	the	glycemic	

impact	of	physical	activity	and	sedentary	behavior	in	the	free-living	environment.		

Study	1	aimed	to	examine	the	effect	of	regularly	interrupting	7-h	of	

prolonged	sitting	(SIT)	with	brief	bouts	of	light	walking	(LW)	or	simple	resistance	

activities	(SRA)	on	22-h	glucose	homeostasis	in	adults	with	T2D.	Twenty-four	

individuals	with	T2D	completed	3	conditions	(SIT,	LW	and	SRA)	in	the	laboratory.	A	

CGM	was	worn	during	the	laboratory	conditions	and	in	the	free-living	environment	

through	next	morning.	Compared	to	SIT,	both	LW	and	SRA	reduced	mean	22-h	

glucose	concentrations	(SIT: 11.5±0.3, LW: 8.7±0.3 and SRA: 8.8±0.3 mmol.L-1),	daily	
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duration	of	hyperglycemia	(SIT: 14.7±0.9, LW: 6.3±0.8 and SRA: 6.3±0.9 hours),	and	

mean	glucose	concentrations	through	to	the	next	morning.	

	 Study	2	compared	the	effect	of	increasing	physical	activity	by	breaking	up	

sitting	time	after	meals	(BR)	or	by	a	continuous	bout	of	morning	walking	(EX)	on	

daily	and	postprandial	glucose	(PPG)	concentrations	(measured	by	CGM).	Thirty	

individuals	with	T2D	completed	EX,	BR	and	a	control	condition		(normal	behavior	

[CON])	in	their	free-living	environment	over	1	week.	Participants	increased	their	

total	physical	activity	in	EX	and	BR	by	20,	40	or	60	minutes.	Overall,	EX	was	the	only	

condition	to	significantly	lower	duration	of	postprandial	glycemia	(↓11.4	±	4.0%)	

and	the	40-minute	dose	of	activity	lowered	mean	PPG.	In	a	subset	of	participants	

with	high	postprandial	hyperglycemia	at	CON	(n=9):	(1)	both	EX	and	BR	

significantly	shortened	duration	of	hyperglycemia	and	(2)	the	40	and	60-minute	

doses	of	activity	significantly	lowered	mean	PPG.		

	 Study	3	evaluated	the	sex	differences	in	the	glucose	response	to	the	EX	and	

BR	conditions	described	in	Study	2.	We	found	that	men	had	a	significant	glucose	

lowering	effect	of	EX	and	BR	compared	to	control,	whereas	women’s	level	of	

glycemia	was	unchanged	with	the	activity	conditions.	This	sex	difference	was	driven	

by	higher	levels	of	hyperglycemia	in	men	during	the	CON	condition.		

This	dissertation	utilized	CGM	and	physical	activity	monitors	to	identify	

effective	interventions	to	manage	hyperglycemia	in	T2D.	The	combination	of	studies	

performed	in	the	laboratory	and	free-living	environment	in	this	dissertation	have	

potential	to	better	inform	physical	activity	guidelines	for	the	management	of	T2D.	
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1	

CHAPTER	1 	

INTRODUCTION	

Statement	of	the	Problem	

It	is	well	established	that	physical	activity	is	beneficial	for	the	treatment	and	

prevention	of	type	2	diabetes	(T2D).	Exercise	is	an	effective	strategy	for	managing	

daily	hyperglycemia	(high	blood	glucose)	and	for	improving	long-term	glycemic	

control	in	T2D	(162,	188).	Recently,	breaking	up	sitting	time	with	short	bouts	of	

walking	and	standing	have	been	reported	to	lower	glucose	concentrations	in	

laboratory	settings		(52,	55,	62,	136,	173).	It	is	unknown	whether	the	glucose	

lowering	benefits	of	light	physical	activity	breaks	in	sitting	time	are	comparable	to	

that	of	traditional	exercise.	To	date,	no	study	has	performed	a	direct	comparison	of	

the	glucose	lowering	effects	of	continuous	exercise	and	physical	activity	breaks	in	

sitting	time	in	an	ecological	setting.	Further,	the	dose-response	relationship	

between	physical	activity,	sedentary	behavior	and	glucose	concentrations	is	not	well	

defined.	To	address	these	knowledge	gaps,	laboratory	interventions	must	be	applied	

to	a	free-living	environment	to	understand	the	real	world	impact	of	physical	

activity.	Additionally,	a	range	of	physical	activity	doses	need	to	be	systematically	

compared	to	determine	the	minimum	amount	of	physical	activity	required	to	lower	

blood	glucose	concentrations	in	individuals	with	T2D.		Further,	establishing	a	dose-

response	relationship	would	also	provide	evidence	of	a	true	effect	of	physical	

activity	that	illustrates	systematic	change	in	glucose	outcomes	with	incremental	

exposures.	
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Diabetes	and	Cardiovascular	Disease	Relationships	

The	prevalence	of	diabetes	is	widespread	and	a	major	public	health	concern.	

Currently,	1	in	10	Americans	have	diabetes,	and	it	is	projected	that	by	2050,	1	in	3	

Americans	will	have	diabetes	(29,	40).	The	key	to	treatment	of	diabetes	is	managing	

blood	glucose	in	a	narrow	range.	Deviations	above	normal	glucose	concentrations	

(>5-8	mmol/L)	result	in	negative	health	outcomes	(e.g.	increased	production	of	

oxidative	stress,	activation	of	inflammatory	molecules).	Over	time,	high	glucose	

concentrations	(hyperglycemia)	cause	systemic	damage	to	the	microvasculature.	

The	profound	impact	of	hyperglycemia	on	the	vasculature	partly	explains	why	

cardiovascular	disease	(CVD)	is	the	number	one	cause	of	death	among	individuals	

with	diabetes	(83,	84,	167).	One	large	clinical	trial	(Look	AHEAD)	assessed	the	

impact	of	an	intensive	lifestyle	intervention	on	reducing	the	incidence	of	

cardiovascular	events.	While	the	Look	AHEAD	trial	successfully	induced	weight	loss,	

lowered	HbA1c	and	improved	other	measures	of	cardiovascular	risk	(112),	there	

was	no	reduction	in	the	incidence	of	cardiovascular	events	(113).	While	lowering	

glucose	does	not	result	in	changes	in	cardiovascular	events,	there	is	a	reduction	in	

the	risk	of	complications	in	the	microvasculature	(e.g.	nephropathy,	neuropathy)	

(82).	Therefore,	maintaining	glucose	in	a	narrow	range	and	limiting	episodes	of	

hyperglycemia	is	important	for	the	prevention	of	complications	in	T2D.		

Managing	Cardiovascular	Disease	Risk	in	Diabetes	with	Physical	Activity		

There	is	a	wealth	of	evidence	that	physical	activity	confers	a	multitude	of	

benefits	(79).	Many	studies	have	shown	that	exercise	before	or	after	a	meal	lowers	

postprandial	glucose	concentrations	in	individuals	with	diabetes	(47,	49,	96,	105,	
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132,	133,	139,	153).	These	reductions	in	postprandial	glycemia	have	been	shown	to	

result	in	reduced	risk	of	microvascular	and	macrovascular	complications	in	diabetes	

(114,	167,	177).	Therefore,	the	glucose	lowering	effect	of	physical	activity	is	critical	

managing	the	risk	of	complications	in	T2D	including	neuropathy,	nephropathy,	and	

amputations	(82).	While	exercise	is	an	effective	strategy	to	manage	hyperglycemia,	

most	people	do	not	exercise	(119).	Instead,	the	majority	of	waking	hours	are	spent	

in	sedentary	behaviors	(e.g.	watching	TV,	desk	work)	(120).	Sedentary	behavior	is	

known	to	have	a	detrimental	effect	on	cardiovascular	and	metabolic	

(cardiometabolic)	health	(61,	134).			

Recent	evidence	has	shown	that	breaking	up	prolonged	periods	of	sitting	

time	with	short	bouts	of	light	physical	activity	lowers	the	postprandial	glucose	

response	(62,	106).	The	majority	of	these	studies	have	been	performed	in	the	

laboratory,	or	under	strictly	controlled	conditions,	which	limits	the	translation	of	

these	findings.	Several	studies	have	demonstrated	that	light	walking	and	cycling	

breaks	from	sitting	improve	postprandial	glycemia	compared	to	an	all	sitting	

condition	(10,	52,	55,	62).	In	contrast,	the	glucose	lowering	effects	of	interrupting	

sitting	time	with	standing	are	equivocal	(144,	173).	Therefore,	the	composition	of	a	

break	from	sitting	to	effectively	lower	postprandial	glucose	has	not	been	well	

established.	Additionally,	it	is	unknown	how	long	the	glucose	lowering	effects	of	

breaks	from	sitting	will	last.	The	few	studies	that	have	investigated	the	duration	of	

action	of	breaks	from	sitting	have	been	performed	in	the	laboratory	(52,	106).	It	is	

unclear,	however	whether	results	found	in	the	laboratory	will	translate	to	the	free-

living	environment.		
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Comparing	Exercise	and	Breaks	from	Sitting	

Before	light	physical	activity	breaks	from	sitting	can	be	recommended	as	an	

alternative	behavioral	strategy	to	manage	hyperglycemia	in	T2D,	a	direct	

comparison	to	traditional	exercise	is	required.	Further,	to	maximize	the	translation	

of	these	results,	it	is	necessary	to	compare	effective	laboratory	interventions	(e.g.	

walking	breaks	from	sitting	vs.	single	walking	exercise)	in	a	real	world	setting.	A	

major	challenge	of	performing	physical	activity	research	studies	in	the	free-living	

environment	is	the	variability	in	human	behaviors	(e.g.	dietary	intake,	sleep	

durations).	Without	controlling	for	some	of	these	key	variables,	interpreting	the	

glucose	effects	of	physical	activity	becomes	very	difficult.	Combining	aspects	of	a	

laboratory	study	within	an	ecological	context	allows	for	maximum	generalizability	

to	real	world	scenarios.	This	approach,	which	we	term	ecolabical,	takes	place	in	the	

free-living	environment	and	controls	for	important	confounding	variables	(e.g.	diet)	

essential	to	the	interpretation	of	changes	in	glucose.		

Because	of	its	glucose	lowering	effects,	physical	activity	has	the	potential	to	

be	prescribed	like	a	medication.	Unlike	pharmaceutical	medications,	exercise	is	

economical	and	has	many	systemic	benefits	that	cannot	be	mimicked	with	a	

pharmaceutical	medication	(79,	87).	However,	current	physical	activity	and	health	

guidelines	do	not	have	specific	recommendations	for	individuals	with	T2D.	The	lack	

of	specific	guidelines	is	due	to	the	limited	understanding	of	the	dose-response	

relationship	between	exercise	and	specific	health	outcomes/disease	states	(138).		

Before	pharmaceutical	medications	are	prescribed	to	patients,	dose-response	

studies	must	be	performed	to	determine	the	effectiveness	of	that	medication.	This	
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systematic	approach	to	testing	many	doses	of	a	medication	allows	for	physicians	to	

effectively	prescribe	medications	to	improve	their	patients’	health.	More	dose-

response	studies	between	physical	activity	and	specific	health	outcomes	are	needed	

to	prescribe	exercise	like	a	pharmaceutical	medication.		

By	studying	the	glycemic	impact	of	both	traditional	exercise	and	breaks	from	

sitting,	we	are	uniquely	positioned	to	determine	the	minimum	amount	of	physical	

activity	and	the	type	of	activity	required	to	meaningfully	reduce	blood	glucose.	

Results	from	these	studies	will	add	to	our	understanding	of	the	impact	of	structured	

exercise	and	the	independent	effects	of	daily	physical	activity	and	sedentary	

behavior	on	glucose	control.	This	dissertation	has	the	potential	to	impact	millions	of	

individuals	trying	to	manage	daily	blood	glucose	concentrations	with	exercise.	

Objectives	and	Significance	

The	main	goal	of	this	dissertation	was	to	examine	the	effect	of	physical	

activity	and	sedentary	behavior	on	the	magnitude	and	timing	of	changes	in	daily	

glucose	concentrations.	We	integrated	data	from	continuous	glucose	monitors	with	

physical	activity	monitors	in	a	series	of	3	studies	performed	in	the	laboratory	and	

free-living	environments	to	understand	the	impact	of	physical	activity	and	

sedentary	behavior	on	glucose	responses.		

Study	1	investigated	how	short	breaks	from	sitting	affected	glucose	

responses	over	the	course	of	a	day	in	the	laboratory	and	free-living	

environment.	Participants	performed	either	7	hours	of	either	uninterrupted	sitting	

or	interrupted	sitting	time	with	short	bouts	of	physical	activity	in	the	laboratory.	We	

compared	the	glucose	lowering	effects	of	two	different	types	of	physical	activity	
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breaks	from	sitting	(walking	and	simple	resistance	activities)	and	investigated	

whether	those	benefits	were	sustained	in	a	free-living	environment	through	the	

next	day.		Study	1	provides	important	laboratory	based	evidence	comparing	walking	

and	resistance	breaks	from	sitting	during	and	after	a	laboratory	intervention.		

Study	2	determined	the	comparative	effectiveness	of	a	bout	of	

continuous	morning	walking	and	post-meal	activity	breaks	from	sitting	on	24-

hour	and	postprandial	glycemia	measures.	We	investigated	the	dose-response	

relationship	between	bouts	of	activity	and	postprandial	glucose	regulation.	

Participants	performed	all	experimental	conditions	in	their	own	free-living	

environment.	Physical	activity	was	added	to	their	normal	behavior	in	the	form	of	

either	a	continuous	walk	after	breakfast	or	physical	activity	breaks	within	sitting	

time	periods.	We	compared	the	glycemic	effects	of	these	physical	activity	

interventions	to	participant	normal	physical	activity	behavior.	These	data	provide	

the	first	direct	comparison	of	traditional	exercise	and	breaks	from	sitting	in	a	real	

world	setting.		

Study	3	evaluated	sex	differences	in	the	response	to	a	continuous	

morning	walk	and	post-meal	breaks	from	sitting	on	postprandial	glycemia.	We	

determined	any	sex	differences	in	the	dose	response	to	physical	activity.	This	study	

utilized	the	same	participants	and	methods	as	Study	2.	These	data	add	to	the	limited	

evidence	available	on	sex	differences	in	the	metabolic	response	to	physical	activity.	
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CHAPTER	2 	

REVIEW	OF	LITERATURE	

The	Importance	of	Glycemic	Control	for	Diabetes	and	Cardiovascular	Disease	

Glucose	is	critical	for	normal	body	functioning	and	is	required	to	provide	

energy	for	the	brain	and	central	nervous	system	as	well	as	providing	fuel	for	

exercise	tasks.	Maintaining	glucose	concentrations	in	a	narrow	range	is	essential	to	

avoid	the	harmful	effects	of	hypoglycemia	and	hyperglycemia	on	the	body.	In	a	

healthy	individual,	fasting	blood	glucose	concentration	is	~5mM/L	to	provide	a	

steady	flow	of	glucose	to	the	brain	and	central	nervous	system	(122).	There	are	

many	tissues	that	rely	on	blood	glucose	at	rest	including	the	kidneys,	gut	and	

muscle,	but	these	tissues	consume	a	smaller	proportion	of	glucose	at	rest	than	the	

brain.	If	blood	glucose	concentrations	fall	below	normal	resting	values,	brain	and	

other	tissue	functions	can	become	severely	compromised.	In	healthy	individuals,	a	

reduction	in	blood	glucose	signals	counter-regulatory	hormones	to	increase	glucose	

production	and	release	by	the	liver	that	raise	blood	glucose	concentrations.	If	these	

countermeasures	are	not	functioning	appropriately,	as	occurs	in	diabetes,	

hypoglycemia	can	be	problematic.	Severe	hypoglycemia	results	in	a	lack	of	glucose	

available	for	the	brain	and	can	eventually	cause	comas	and	even	death.		

On	the	other	hand,	hyperglycemia	poses	a	different	set	of	issues	and	strains	

on	the	body.	It	is	impossible	to	eliminate	hyperglycemia	entirely	since	blood	glucose	

rises	in	response	to	a	meal.	The	rise	in	blood	glucose	is	necessary	to	replenish	

glycogen	stores	that	are	depleted	in	efforts	to	maintain	normal	fasting	glucose	

concentrations	or	after	a	bout	of	exercise.	In	type	2	diabetes	(T2D),	individuals	
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cannot	produce	enough	insulin	to	compensate	for	the	prevailing	elevated	blood	

glucose,	which	results	in	prolonged	periods	of	hyperglycemia.	This	hyperglycemia	

causes	damage	to	cells	including	the	vasculature	by	increasing	oxidative	stress	and	

reducing	the	vasodilatory	capacity	of	blood	vessels	(42,	43).	These	effects	of	

hyperglycemia	on	the	vasculature	can	be	observed	during	postprandial	

hyperglycemia.	Over	time,	in	response	to	chronic	hyperglycemia,	blood	vessels	

become	less	compliant	and	vascular	complications	can	result,	including	

nephropathy,	retinopathy	and	CVD.		

Epidemiological	data	clearly	indicates	that	diabetes	and	CVD	are	closely	

related.	Diabetes	doubles	the	likelihood	that	an	individual	will	develop	CVD	(167).	

Further,	the	number	one	cause	of	death	among	individuals	with	diabetes	is	CVD	(83,	

84,	167).	The	negative	effects	of	hyperglycemia	on	the	vasculature	partly	explain	

these	close	connections,	making	glycemic	control	central	to	both	diabetes	and	CVD.	

There	are	many	pharmaceutical	therapies	that	are	used	to	minimize	hyperglycemia	

including	biguanides	(e.g.	metformin),	DPP4	inhibitors,	GLP-1	agonists	and	SGLT-2	

inhibitors	(27).	These	medications	vary	in	their	mechanism	of	action,	but	are	all	

used	to	treat	diabetes	and	reduce	the	prevalence	of	hyperglycemia.	As	with	any	

pharmaceutical	therapy,	these	medications	are	associated	with	a	host	of	side	effects	

(e.g.	weight	loss	or	gain,	hypoglycemia,	gastrointestinal	issues	and	water	retention),	

some	of	which	are	counterproductive	to	the	treatment	of	diabetes.	In	contrast,	

exercise	has	been	shown	to	result	in	reductions	in	blood	glucose	along	with	many	

whole	body	improvements	including	increased	insulin	sensitivity	and	muscle	mass	

and	weight	stability	or	maintenance	of	weight	loss	(36).	With	the	capacity	to	confer	
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multiple	health	benefits	in	a	variety	of	tissues,	exercise	can	be	thought	of	as	a	

medication	to	treat	and	prevent	a	number	of	diseases	including	diabetes	and	CVD.		

Glycemic	Response	to	Exercise	

Measuring	Glycemic	Control	

Many	methods	have	been	used	to	assess	the	effects	of	exercise	on	glycemic	

control.	Traditionally,	glycemic	control	has	been	characterized	using	static	blood	

measures	including	fasting	glucose	and	hemoglobin	A1c	(HbA1c),	however,	neither	

measure	is	very	responsive	to	changes	in	activity	and	do	not	indicate	how	an	

individual	responds	to	a	glucose	challenge	(e.g.	a	meal)	(115).	Postprandial	glycemia	

is	more	predictive	of	future	cardiovascular	events	than	fasting	glucose	or	

hemoglobin	A1c	(HbA1c)		(37,	108)	and	for	this	reason	postprandial	glycemic	

responses	(e.g.	2	hour	glucose,	postprandial	area	under	the	curve)	are	commonly	

used	as	measures	of	glycemic	control.	However,	examining	the	postprandial	glucose	

response	can	be	inadequate	as	a	large	portion	of	the	day	is	unaccounted	for	(e.g.	

time	between	meals).		

Continuous	glucose	monitors	allow	for	the	investigation	of	changes	in	

glucose	over	the	course	of	a	24-hour	period.	Over	the	last	10	years,	use	of	

continuous	glucose	monitors	has	increased	in	research.	The	first	continuous	glucose	

monitor,	GlucoWatch	was	approved	for	use	in	1999.	Since	then,	there	have	been	4	

devices	used	in	both	the	clinical	and	research	environments	(26).	Continuous	

glucose	monitors	measure	interstitial	glucose	using	glucose	oxidase	based	

electrochemical	methods.	Capillary	blood	glucose	is	measured	several	times	over	

the	course	of	the	day	to	calibrate	the	interstitial	glucose	readings	from	the	
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continuous	glucose	monitors.	Mathematical	models	then	integrate	the	interstitial	

glucose	data	and	capillary	blood	glucose	to	provide	estimates	of	blood	glucose	(39).	

Depending	on	whether	the	continuous	glucose	monitor	is	used	for	research	

purposes	or	monitoring	at	home,	these	monitors	can	display	glucose	concentrations	

in	real	time	or	store	the	data	to	be	downloaded	at	a	later	date.		

Continuous	glucose	monitors	measure	interstitial	glucose	concentrations	

every	5	minutes	in	the	free-living	environment	for	up	to	7	consecutive	days.	With	

data	collected	so	frequently,	there	are	many	different	ways	that	glycemic	control	can	

be	characterized	using	continuous	glucose	monitors.	Most	commonly,	researchers	

will	calculate	24-hour	mean	glucose,	total	area	under	the	curve	and	duration	of	

hyperglycemia	(glucose	concentration	>	10	mmol/dL).	Using	a	combination	of	these	

methods,	the	effect	of	exercise,	and	to	a	lesser	extent,	sedentary	behavior,	on	

glycemic	control	have	been	investigated.		

Comparing	Interstitial	Glucose	with	Blood	Glucose		

It	must	be	made	clear	that	continuous	glucose	monitors	measure	glucose	in	

the	interstitial	fluid	and	not	in	the	blood.	There	are	important	differences	to	note	

between	blood	and	interstitial	glucose.	Interstitial	glucose	concentrations	are	lower	

in	magnitude	than	blood	glucose	but	there	is	a	strong	correlation	between	

interstitial	and	blood	glucose	(r	=	0.77-0.82)	(12,	86).	Glucose	enters	the	interstitial	

fluid	by	simple	diffusion	across	a	concentration	gradient	from	the	capillary	

endothelium	to	the	interstitial	fluid	(39).	Because	there	are	no	active	transporters	

moving	glucose	into	the	interstitial	fluid	there	is	a	lag	time	from	when	glucose	

appears	in	the	blood	to	when	glucose	reaches	the	interstitial	fluid.		
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The	physiological	lag	time	has	been	measured	directly	using	glucose	tracers	

infused	into	the	blood	and	measured	in	the	interstitial	fluid	by	microdialysis.	From	

these	studies,	Basu	et	al.	have	approximated	that	there	is	a	6-10	minute	delay	for	

glucose	to	appear	in	the	interstitial	fluid	after	it	has	reached	the	blood.	Interestingly,	

lag	time	was	inversely	correlated	with	waist	to	hip	ratio	(r	=	-0.31),	a	gross	measure	

of	central	obesity	(19).	While	this	correlation	was	not	significant,	it	suggests	that	

body	fat	may	modulate	the	physiological	lag	time	of	glucose	appearance	in	the	

interstitial	fluid.	These	data	are	corroborated	by	a	recent	study	correlating	percent	

body	fat	(measured	by	bioelectrical	impedance)	and	time	to	peak	glucose	(64).	

Together,	these	studies	indicate	that	controlling	for	body	fat	and	investigating	lag	

time	may	be	important	factors	to	consider	when	investigating	the	dynamics	of	the	

glucose	response	to	a	stimulus	(e.g.	exercise,	meals).			

In	addition	to	the	physiological	lag,	there	is	a	lag	at	the	level	of	the	sensor	

that	accounts	for	a	significant	amount	of	time.	There	is	some	variation	in	the	sensor	

lag	time	between	brands,	but	in	general	the	total	lag	time	from	appearance	of	

glucose	in	the	blood	to	glucose	being	detected	by	the	continuous	glucose	monitor	is	

15-20	minutes	(64,	86).	The	additional	lag	time	added	by	the	sensor	is	due	to	the	

calibration	algorithms	that	run	within	the	device	to	determine	interstitial	glucose	

concentrations	(146,	184).	These	issues	related	to	lag	time	are	only	apparent	when	

glucose	concentrations	are	rapidly	changing	(e.g.	after	a	meal).	Some	researchers	

have	suggested	that	the	lag	times	may	change	depending	on	whether	the	rise	or	fall	

in	glucose	is	being	measured	(5).	The	potential	differences	in	lag	time	on	the	rising	

and	falling	end	of	the	glucose	curve	may	be	related	to	what	glucose	is	used	for	after	
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it	appears	in	the	blood	(e.g.	stored	as	fat	or	taken	up	by	muscle	to	produce	ATP).	

More	studies	are	needed	in	this	this	area	to	understand	the	physiological	

mechanisms	responsible	for	differences	in	lag	time.		

Using	a	combination	of	static	(fasting	glucose,	HbA1c)	and	dynamic	

(postprandial	glucose	responses,	24	hour	glucose	changes)	measures	of	glycemic	

control,	research	investigating	the	relationship	between	physical	activity	and	

changes	in	glucose	responses	is	available.	While	most	researchers	have	used	blood	

glucose	to	characterize	changes	in	glycemic	control	after	exercise,	some	have	

examined	the	prolonged	effects	of	exercise	using	continuous	glucose	monitors.	

Recent	studies	have	been	designed	specifically	to	investigate	the	unique	changes	

that	occur	with	sedentary	behavior.	The	following	section	will	review	the	literature	

demonstrating	the	glycemic	lowering	effects	of	exercise	and	the	deleterious	impact	

of	sedentary	behavior	on	glucose	metabolism.		

Glycemic	Effects	of	Exercise		

Many	researchers	have	investigated	the	effects	of	continuous	exercise	

performed	after	a	meal	or	oral	glucose	load.	Continuous	exercise	ranging	from	light	

to	vigorous	intensity	blunts	the	rise	in	postprandial	glucose	(47,	49,	96,	105,	132,	

133,	139,	153),	reduces	2	hour	postprandial	glucose	concentrations	and	area	under	

the	curve	compared	to	no	exercise	(105,	132,	133,	153).	The	glucose	lowering	effect	

of	continuous	exercise	is	apparent	in	individuals	with	and	without	diabetes	during	

the	immediate	period	following	exercise	(47,	49,	96,	139).	Overall,	exercise	has	a	

glucose	lowering	effect,	but	the	magnitude	of	the	effect	and	the	duration	of	action	

(the	length	of	time	that	the	effect	lasts	for)	are	not	clearly	understood.	
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Intensity	has	a	variable	impact	on	the	magnitude	of	the	glucose	lowering	

effect	of	exercise.	In	a	study	of	18	men	and	women	with	prediabetes,	participants	

performed	either	a	moderate	or	high	intensity	exercise,	matched	for	total	energy	

expenditure	(~200	kcals).	Despite	similar	energy	expenditure,	high	intensity	

exercise	resulted	in	a	greater	reduction	in	postprandial	glucose	concentrations	

during	an	oral	glucose	tolerance	test	than	the	moderate	intensity	exercise	(153).	

These	data	suggest	that	high	intensity	is	better	than	moderate	intensity	exercise	to	

reduce	blood	glucose,	however,	data	from	Manders	and	colleagues	do	not	support	

this	idea.	In	a	group	of	patients	with	T2D,	60	minutes	of	low	intensity	exercise	

reduced	the	24-hour	duration	of	hyperglycemia	by	49.7	±	4.4%,	whereas	the	energy	

expenditure	matched	high	intensity	exercise	bout	only	reduced	hyperglycemia	by	

18.6	±	8.8%	compared	to	a	sedentary	control	(116).		

The	difference	in	responses	between	these	two	studies	may	be	due	the	

population	that	was	studied.	Compared	to	healthy	controls,	patients	with	T2D	

secrete	greater	concentrations	of	glucagon	and	epinephrine	after	high	intensity	

exercise	that	subsequently	results	in	a	period	of	elevated	glucose	(102).	Thus	the	

response	to	a	bout	of	exercise	among	individuals	with	T2D	will	likely	be	different	

than	the	response	to	healthy	individuals	or	people	with	prediabetes.	Additionally,	

the	way	that	the	glucose	response	was	measured	and	the	amount	of	time	it	was	

measured	for	differed	between	studies.	Immediate	changes	in	glycemic	control	may	

not	match	what	happens	over	extended	periods	of	time	(24-48	hours	after	exercise).	

In	both	studies	of	exercise	intensity	and	glycemic	control,	total	energy	expenditure	

was	held	constant,	so	it	is	clear	that	intensity	plays	a	role	in	the	glycemic	response	
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to	exercise,	independent	of	total	energy	expended.	The	discrepancy	between	these	

studies	illustrates	an	important	point:	the	glycemic	effect	of	exercise	may	be	

different	depending	on	the	population	or	the	method	used	to	quantify	the	glucose	

response.			

Some	studies	have	investigated	distributing	activity	over	the	course	of	the	

entire	day,	rather	than	one	concentrated	bout.	DiPietro	et	al.	compared	glycemic	

control	of	one	45-minute	walk	(performed	in	the	morning	or	afternoon)	to	three	15-

minute	bouts	performed	after	every	meal.	Superior	improvements	in	glycemic	

control	measured	by	24-hour	mean	glucose	were	found	when	exercise	was	

distributed	throughout	the	day	compared	to	one	concentrated	bout	of	continuous	

exercise	performed	either	in	the	morning	or	afternoon	(59).	Similar	findings	in	favor	

of	distributing	activity	during	the	day	have	been	shown	with	short	high	intensity	

bouts	of	cycling	in	terms	of	3-hour	postprandial	glycemia	and	average	24-hour	

mean	glucose	(70).	The	glycemic	lowering	effects	of	short	high	intensity	bouts	of	

cycling	were	maintained	the	next	day	whereas	the	continuous	exercise	bout	did	not	

show	any	lasting	reductions	in	24-hour	mean	glucose	the	day	following	exercise.		

Consequences	of	Sedentary	Behavior		

In	modern	day	society,	sedentary	behavior	has	become	a	major	part	of	daily	

life.	Sedentary	behavior,	like	sitting	at	a	computer	or	driving,	require	a	very	low	

amount	of	energy	and	is	performed	in	a	seated	or	reclined	position.	The	MET	levels	

(multiple	of	resting	metabolic	rate)	for	these	activities	range	from	1.0-1.5	METs	and	

have	been	implicated	in	many	negative	health	outcomes.	Since	the	1950s,	sedentary	

behavior	has	been	recognized	as	an	important	determinant	of	cardiovascular	and	
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metabolic	health	(129).	Early	experimental	work	in	the	area	of	sedentary	behavior	

used	extended	periods	of	bed	rest	and	found	that	there	are	significant	declines	in	

insulin	sensitivity	and	exaggerated	postprandial	glucose	responses	(23,	109,	123,	

163,	168).	In	the	free-living	environment,	people	spend	a	lot	of	time	sitting	and	

accumulate	a	significant	amount	of	sedentary	behavior,	but	it	is	uncommon	to	have	

an	individual	completely	bed	bound.	For	this	reason,	bed	rest	is	not	representative	

of	the	way	that	sedentary	behavior	is	accrued	over	the	course	of	the	day.	Recently,	

researchers	have	used	reduced	activity	models	of	sedentary	behavior	that	involve	

regulating	parameters	of	activity	(e.g.	reducing	daily	steps,	increasing	total	time	

sitting)	to	determine	the	cardiometabolic	effects	of	sedentary	behavior.	Mikus	and	

colleagues	reduced	daily	stepping	time	of	young	healthy	adults	from	10,000	to	

approximately	5,000	steps	per	day.	They	found	that	when	participants	decreased	

daily	stepping	time,	there	was	a	reduction	in	glycemic	control,	indicated	by	higher	

rate	of	change	in	peak	postprandial	glycemia	(124).	Even	though,	sitting	time	was	

not	specifically	measured,	it	is	likely	that	the	stepping	time	was	replaced	with	

increased	sitting	time,	suggesting	that	sedentary	behaviors	led	to	poorer	glycemic	

control.	Other	researchers	have	shown	that	prolonged	sitting	exaggerates	

postprandial	glucose	responses	(62,	136)	which	has	led	to	an	area	of	research	

focused	on	countering	the	deleterious	effects	of	sedentary	behavior.			

In	2008,	Healy	et	al.	showed	that	breaks	from	sedentary	time	were	

associated	with	lower	2-hour	postprandial	glucose	concentrations	and	smaller	waist	

circumferences	(89).	Many	other	epidemiological	studies	have	showed	similar	

positive	associations	with	breaks	in	sitting	time	and	positive	cardiometabolic	health	
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outcomes	(15,	51,	90).	As	a	result	of	epidemiological	evidence,	there	has	been	an	

emphasis	on	investigating	the	metabolic	effects	of	breaking	up	long	periods	of	

sedentary	behavior	with	short	(<	5	minutes)	light	intensity	bouts	of	activity.	

Experimental	evidence	that	link	breaks	from	sitting	with	improvements	in	

cardiometabolic	health	is	limited.	Some	of	the	first	experimental	evidence	came	

from	Dunstan	and	colleagues	who	showed	that	short	(3	minutes)	light	walking	

bouts	reduced	postprandial	glucose	and	insulin	compared	to	a	sedentary	control	in	

overweight	to	obese	adults	(62).	These	data	emphasize	the	need	for	activity	during	

the	postprandial	period	to	reduce	postprandial	glucose	concentrations.		

Other	researchers	have	built	on	the	work	of	Dunstan	et	al.	to	determine	how	

taking	short	activity	breaks	throughout	the	day	compares	with	a	structured	bout	of	

exercise.	Studies	in	this	area	focus	on	decreasing	prolonged	and	overall	sitting	time	

by	systematically	distributing	short	bouts	of	low	to	moderate	intensity	activity	

throughout	the	day.	Similar	to	the	findings	of	DiPietro	et	al.,	performing	activity	

regularly	during	the	day	and	breaking	up	prolonged	sitting	time	resulted	in	

improvements	that	were	at	least	as	good	and	sometimes	better	than	an	energy-

matched	bout	of	continuous	exercise	(63,	95,	104).	It	is	important	to	note	the	

activity	accrued	throughout	the	day	in	these	studies	was	less	than	the	physical	

activity	guidelines	recommend	as	each	bout	of	physical	activity	was	less	than	10	

minutes	long.	These	data	indicate	that	improvements	in	glycemic	control	can	be	

achieved	without	actually	meeting	the	physical	activity	and	health	guidelines.	While	

the	mechanisms	of	action	are	still	being	investigated,	improvements	in	glycemic	

control	due	to	distributing	activity	over	time	may	be	related	to	frequent	muscle	
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activation	and	contraction	mediated	glucose	uptake	that	persists	throughout	the	day	

(22).	Alternatively,	changes	in	posture	and	subsequently	increases	in	blood	flow	

repeatedly	over	the	day	may	also	result	in	improved	glycemic	control.	Collectively,	

these	data	demonstrate	that	activity	and	sedentary	behavior	have	distinct	effects	on	

glycemic	control	and	the	way	that	activity	is	accumulated	can	modulate	the	changes	

in	daily	glucose	profiles.		

	 It	is	essential	to	understand	the	timing	of	the	changes	in	glucose	in	order	to	

fully	comprehend	the	glycemic	lowering	effect	of	exercise.	Physicians	prescribe	

medications	with	the	knowledge	of	the	duration	of	action	(how	long	one	dose	of	a	

medication	will	last).	This	information	is	essential	to	effectively	prescribe	

medications	to	treat	patients	with	elevated	glucose.	In	order	to	determine	the	

duration	of	action	of	a	bout	of	physical	activity,	changes	in	blood	glucose	need	to	be	

tracked	for	many	hours	and	days	after	exercise.	van	Dijk	et	al.	performed	a	study	

aimed	to	determine	whether	daily	exercise	was	required	to	maintain	the	glucose	

lowering	effects	of	a	bout	of	exercise.	To	do	this,	glucose	was	measured	

continuously	for	2	days	to	determine	daily	prevalence	of	hyperglycemia	(glucose	

concentrations	>	10	mmol/dL)	in	response	to	2	different	exercise	protocols.	

Patients	with	T2D	performed	either	daily	exercise	(30	minutes	of	moderate	

exercise)	or	every	other	day	exercise	(60	minutes	of	moderate	exercise	performed	

only	on	the	first	day).	They	found	that	both	daily	and	every	other	day	exercise	

reduced	the	prevalence	of	hyperglycemia	on	both	monitored	days	by	approximately	

30%	(181).	These	data	suggest	that	there	is	a	volume	of	exercise	required	to	reduce	



	

18	

hyperglycemia	and	if	the	volume	of	exercise	is	large	enough,	the	effect	can	be	

maintained	over	a	24-hour	period.		

While	examining	24-hour	glucose	concentrations	is	a	good	place	to	start	to	

understand	the	timing	of	the	glucose	lowering	response,	using	a	summary	value	of	

the	entire	day	does	not	indicate	when	the	effects	of	exercise	on	blood	glucose	peak	

and	dissipate.	Some	studies	have	measured	the	glycemic	response	to	several	meals	

after	a	bout	of	exercise.	For	example,	Holmstrup	et	al.	compared	the	time	course	of	

changes	in	glucose	after	one	continuous	bout	of	morning	exercise	or	intermittent	

exercise	distributed	over	the	course	of	the	entire	day.	Participants	consumed	6	

equally	spaced	meal	replacement	beverages	(239	kcals	each)	over	12	hours.	

Postprandial	glucose	responses	were	summarized	as	2-hour	area	under	the	curve	

and	were	determined	for	each	of	the	meals.	There	were	no	significant	differences	

between	the	continuous	or	intermittent	exercise	in	the	response	to	any	of	the	meals	

at	any	of	the	time	points.	Overall,	however,	there	was	a	glucose	lowering	effect	as	

evidenced	by	significantly	lower	12-hour	glucose	incremental	area	under	the	curve	

in	the	intermittent	exercise	group	compared	to	the	morning	exercise	and	sedentary	

control	condition.	The	small	meals	consumed,	however,	may	have	limited	the	ability	

to	detect	a	large	glucose	lowering	effect.	While	there	were	no	significant	reductions	

to	glucose	responses	within	any	particular	meal,	these	data	support	distributing	

small	amounts	of	exercise	over	the	day	to	reduce	overall	daily	glucose	

concentrations	(95).		

	 In	a	similarly	designed	study,	Oberlin	et	al.	tracked	the	timing	of	the	changes	

in	glucose	over	a	48-hour	period	after	60	minutes	of	moderate	intensity	morning	
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exercise	(133).	Instead	of	6	small	meals,	sedentary	individuals	with	T2D	were	fed	3	

meals	per	day	matched	on	total	energy	intake	and	macronutrient	composition.	

Using	continuous	glucose	monitors,	the	glycemic	response	was	characterized	using	

the	postprandial	glucose	responses	to	each	meal	for	48	hours.	Average	glucose	was	

lowered	in	the	first	24	hours	after	exercise,	but	significant	postprandial	glucose	

reductions	were	only	evident	at	the	lunchtime	meal	(the	second	meal	consumed	

after	the	exercise).	The	glucose	lowering	effect	was	not	sustained	the	following	day.	

The	volume	of	exercise	in	this	study	was	equivalent	to	that	of	the	study	by	van	Dijk	

et	al.	(181),	but	there	were	no	lasting	improvements	in	glycemic	control	on	the	

second	day	as	observed	by	van	Dijk.	The	lack	of	a	sustained	effect	may	have	been	

due	to	a	difference	in		glycemic	control	of	the	patients	in	the	different	studies.	

Participants	in	the	van	Dijk	et	al.	study	had	an	average	HbA1c	of	7.0	±	0.2%	and	a	

fasting	glucose	of	8.4	±	0.5	mmol/L	while	the	Oberlin	et	al.	study	participants'	

HbA1c	was	6.3	±	0.2%	and	fasting	glucose	was	6.5	±	0.6	mmol/L.	Since	participants	

in	the	van	Dijk	study	started	with	a	higher	baseline	level	of	glycemia,	they	may	have	

had	a	larger	and	more	prolonged	effect	of	a	single	bout	of	exercise.	The	conflicting	

data	in	this	area	emphasize	the	need	for	more	research	to	determine	the	time	course	

of	changes	in	glucose	in	response	to	structured	bouts	of	physical	activity.		

	 As	discussed,	there	are	many	ways	that	the	glycemic	response	to	exercise	can	

be	represented.	Many	studies	simplify	the	effects	of	exercise	to	the	response	of	just	

one	meal	consumed	either	before	or	after	exercise.	As	seen	in	the	study	by	Oberlin	

et	al.,	the	glycemic	response	to	the	second	meal	eaten	6	hours	after	the	exercise,	was	

significantly	reduced	by	15%,	whereas	the	meal	eaten	immediately	after	exercise	
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was	not	significantly	lower	than	the	control	(no	exercise)	condition	(133).	Since	the	

glycemic	lowering	effects	may	not	become	apparent	until	several	hours	after	

exercise,	it	is	important	to	track	meal	responses	for	multiple	meals	after	exercise.	As	

illustrated	in	Table	2.1,	the	way	studies	define	the	glycemic	response	(e.g.	area	

under	the	curve,	peak	postprandial	glucose)	is	not	consistent	within	the	literature.	

The	lack	of	consistency	may	partly	explain	contradicting	findings	regarding	the	

glycemic	lowering	effects	of	similar	exercise	doses.	One	way	to	deal	with	this	

shortcoming	of	previously	published	data	is	to	collect	glucose	data	frequently	for	an	

extended	period	of	time	after	exercise	so	that	the	immediate	and	prolonged	

glycemic	effects	of	exercise	can	be	captured.	By	collecting	data	more	frequently,	the	

glycemic	response	of	meals	after	exercise	can	be	described	in	greater	detail	to	better	

understand	the	effects	of	exercise	on	glucose	outcomes.	

	 One	novel	aspect	of	glycemic	control	that	has	been	investigated	using	

continuous	glucose	monitoring	is	glycemic	variability.	It	has	been	suggested	

recently	that	daily	patterns	of	glucose	impact	cardiometabolic	health.	The	

investigations	into	glycemic	variability	and	cardiometabolic	health	are	based	on	the	

findings	of	a	study	by	Ceriello	et	al.	in	2008.	In	this	study,	blood	glucose	

concentrations	were	manipulated	by	infusing	glucose	intravenously	in	different	

patterns	to	better	understand	the	vascular	implications.	Blood	glucose	was	either	

sustained	at	10	mmol/L	for	24	hours	or	was	oscillated	between	5	mmol/L	and	15	

mmol/L	every	6	hours	for	24	hours.	Mean	blood	glucose	in	both	conditions	was	10	

mmol/L.	Endothelial	function	was	measured	every	6	hours	using	flow	mediated	

dilation,	which	is	a	well-accepted	measure	of	vascular	function	(172).	Interestingly,	
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endothelial	function	was	significantly	compromised	in	the	oscillating	glucose	

condition	compared	to	the	sustained	hyperglycemia	condition	even	though	the	

mean	glucose	in	both	conditions	was	the	same	(42).	This	compromised	endothelial	

function	was	coupled	with	a	significant	increase	in	nitrotyrosine	(a	measure	of	

oxidative	stress).	Other	researchers	have	shown	similar	effects	of	higher	oxidative	

stress	with	oscillating	glycemia	compared	to	sustained	hyperglycemia	in	in	vitro	

models	(77,	156,	157)	and	in	patients	with	T2D	(41,	128).		

Using	Continuous	Glucose	Monitors	to	Investigate	Variability	of	Daily	Glucose	

	 There	are	many	different	ways	that	glycemic	variability	can	be	calculated.	

Continuous	glucose	monitors	provide	frequently	measured	glucose	data	that	can	be	

used	to	examine	different	indices	of	glycemic	variability.	Standard	deviation	is	a	

popular	gross	measure	of	variability	but	other	researchers	have	developed	different	

indices	of	variability	that	can	be	calculated	with	continuous	glucose	monitor	data.	

MAGE,	mean	amplitude	of	glycemic	excursions,	calculates	the	mean	of	the	glucose	

excursions	greater	than	1	standard	deviation	above	mean	glucose	(160).	One	

limitation	of	MAGE	is	that	it	excludes	glucose	excursions	that	are	not	above	a	

specified	threshold.	These	smaller	excursions	may	be	just	as	important	to	consider	

for	vascular	health,	but	are	excluded	in	the	calculation.	Others	have	used	

McDonnell’s	CONGA	calculation	to	describe	the	glycemic	variability	of	an	individual	

(121).	CONGA,	continuous	overlapping	net	glucose	action,	calculates	the	difference	

between	glucose	values	at	set	intervals	(e.g.	1	hour,	2	hours,	4	hours)	and	then	

applies	those	differences	to	the	CONGA	formula.	McDonnell	et	al.	developed	CONGA	

specifically	for	continuous	glucose	monitor	data	and	it	has	been	used	as	an	index	of	
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variability	in	many	published	studies	(25,	58,	155).	There	are	many	other	indices	of	

glycemic	variability	that	can	be	calculated	and	have	been	reviewed	elsewhere	(94).	

Automated	algorithms	to	calculate	glycemic	variability	have	made	it	easy	to	

summarize	continuous	glucose	monitor	data	(13,	94),	however,	the	clinical	

significance	and	value	of	these	measures	is	still	unclear.	

	 A	recent	systematic	review	examined	whether	glycemic	variability	has	a	real	

impact	on	CVD	risk	among	individuals	with	T2D	(130).	Among	the	10	studies	

reviewed,	9	showed	a	positive	association	between	glycemic	variability	and	

negative	cardiovascular	outcomes,	including	diabetic	retinopathy,	myocardial	

infarction	and	cardiovascular	mortality.	Initial	findings	suggest	that	glycemic	

variability	is	related	to	cardiovascular	health	and	that	efforts	should	be	made	to	

minimize	variability	of	glucose	in	the	treatment	of	T2D.	More	long	term	studies	are	

needed	that	intervene	to	change	these	indices	of	variability	and	measure	clinical	

outcomes	to	understand	the	value	in	calculating	glycemic	variability.	

	 Continuous	glucose	monitoring	allows	researchers	to	examine	aspects	of	

glucose	regulation	throughout	the	day	and	night,	but	very	few	studies	even	report	

nocturnal	glycemia	(25,	52,	116).	There	is	much	potential	for	new	analyses	and	

novel	techniques	to	analyze	continuous	glucose	monitor	datasets,	but	researchers	

have	yet	to	utilize	these	data	to	their	full	capacity.	There	have	been	many	studies	

that	have	used	continuous	glucose	monitors	to	investigate	the	effect	of	activity	and	

sedentary	behavior	on	glycemic	control	(59,	70,	78,	95,	101,	104,	110,	111,	116,	124,	

133,	141,	181),	however	the	majority	of	research	condenses	these	rich	datasets	into	

simple	summary	statistics	(e.g.	area	under	the	curve,	time	spent	above	or	below	a	
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cut-point,	change	in	postprandial	glucose).	It	should	be	noted	that	our	knowledge	of	

the	impact	of	changing	glycemic	variability	on	actual	cardiovascular	function	and	

cardiometabolic	disease	risk	is	limited.	However,	it	is	clear	that	reducing	blood	

glucose	concentrations	is	beneficial	for	cardiometabolic	health.		

Exercise	Prescription		

Exercise	is	widely	recommended	to	a	variety	of	populations	to	improve	

health	and	prevent	disease.	The	US	Department	of	Health	and	Human	Services	

released	the	first	set	of	evidence-based	physical	activity	guidelines	to	the	public	in	

2008.	In	these	guidelines,	it	is	recommended	that	adults	accumulate	at	least	150	

minutes	of	moderate	or	75	minutes	of	vigorous	physical	activity	in	bouts	greater	

than	10	minutes	per	day	on	most	days	of	the	week.	While	there	are	no	specific	

recommendations	for	glycemic	control,	a	joint	position	statement	from	the	

American	College	of	Sports	Medicine	and	the	American	Diabetes	Association	

supports	these	recommendations.	The	joint	position	statement	specifies	that	

individuals	with	diabetes	should	not	allow	more	than	2	consecutive	days	between	

bouts	of	physical	activity	(48).		

Because	of	the	limited	evidence	available,	there	are	no	recommendations	for	

sedentary	time	or	breaking	up	sitting	time	with	light	physical	activity	for	glycemic	

control.	It	is	clear	that	sedentary	behavior	is	detrimental	for	metabolic	health	and	

glycemic	control.	Preliminary	evidence	suggests	that	interrupting	prolonged	periods	

of	sedentary	behavior	with	light	physical	activity	may	be	an	effective	alternative	to	

traditional	exercise	to	manage	hyperglycemia	in	T2D.	Direct	comparisons	of	

breaking	up	sitting	time	with	exercises	known	to	reduce	blood	glucose	
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concentrations	(e.g.	continuous	walking)	are	necessary	to	determine	whether	using	

breaks	from	sitting	to	reduce	hyperglycemia	is	an	acceptable	alternative	to	

traditional	exercise.		

The	lack	of	disease-specific	physical	guidelines	limits	the	specificity	of	

exercise	prescriptions.	When	a	physician	prescribes	a	medication	for	a	condition	

there	is	a	very	specific	dose	and	instructions	on	how	that	medicine	should	be	taken	

(e.g.	with	a	meal,	before	breakfast).	Physical	activity	prescriptions	are	not	treated	

the	same	way	in	practice.	Even	when	government	guidelines	are	followed,	the	

prescriptions	are	quite	loose	with	no	discussion	of	exercising	around	meal	times	or	

frequency	of	exercise.	If	pharmaceutical	medications	were	prescribed	the	same	way	

that	physical	activity	is	prescribed,	patients	would	be	instructed	to	take	“some”	

medication	most	days	of	the	week.		

Before	physical	activity	prescriptions	specific	for	glycemic	control	can	be	

made,	there	are	2	important	pieces	of	information	that	must	be	understood.	First,	

the	dose-response	relationship	between	an	acute	bout	of	activity	and	the	time	

course,	magnitude	and	direction	of	change	in	glucose	must	be	clearly	determined.	As	

discussed	previously,	some	studies	have	described	the	glycemic	effects	of	exercise,	

but	there	has	yet	to	be	a	study	that	systematically	tests	the	glycemic	effects	of	

varying	doses	of	a	specific	physical	activity	to	understand	the	dose-response	

relationship.	Subsequently,	it	must	be	determined	whether	the	acute	changes	in	

glycemic	control	result	in	an	improvement	of	CVD	risk	factors.	Research	in	this	area	

has	been	limited	to	large	epidemiological	studies	investigating	the	relationship	

between	simple	measures	of	glycemic	control	including	HbA1c,	fasting	glucose	or	2-
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hour	postprandial	glucose.	HbA1c	is	a	measure	of	the	average	blood	glucose	

concentrations	over	the	last	3	months	and	is	an	indicator	of	long-term	glycemic	

control	(74).	In	large	epidemiological	studies,	it	has	been	shown	that	HbA1c	is	

positively	correlated	with	risk	of	CVD	(7,	28,	60,	114).	It	is	important	to	note	that	

HbA1c	consolidates	both	fasting	and	postprandial	glucose	concentrations	into	one	

value.	Just	examining	HbA1c	is	insufficient	to	determine	whether	changes	in	fasting	

or	postprandial	glucose	are	driving	the	increased	risk	of	CVD.	Studies	have	shown	

that	postprandial	glucose	concentrations	are	more	predictive	of	future	

cardiovascular	events	than	fasting	glucose	or	HbA1c	(17,	18,	37,	38,	54,	73).	While	

the	impact	of	reducing	the	prevalence	of	hyperglycemia	or	mean	24-hour	glucose	on	

cardiovascular	outcomes	are	not	yet	clear,	current	research	indicates	that	reducing	

glucose	exposure	reduces	the	prevalence	of	microvascular	complications	(e.g.	

amputations,	retinopathy	and	neuropathies)	in	T2D	(82).			

Translating	Prescription	to	Practice	

According	to	the	National	Health	Interview	Survey,	in	2010,	32.4%	of	adults	

who	had	seen	a	medical	professional	were	recommended	to	participate	in	more	

physical	activity.	In	10	years,	there	has	been	a	10%	increase	in	the	number	of	

physicians	recommending	exercise	to	their	patients	(16).	While	this	is	a	step	in	the	

right	direction,	the	majority	of	Americans	still	do	not	participate	in	regular	exercise.	

The	most	common	reason	cited	for	not	exercising	is	lack	of	time.	In	response	to	this,	

work	must	be	done	to	determine	the	minimum	physical	activity	required	to	gain	

health	benefits	and	to	investigate	alternatives	to	traditional	exercise	that	result	in	

similar	health	improvements.	Optimizing	physical	activity	to	specific	health	
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outcomes	is	essential	to	gain	the	greatest	benefits	from	a	single	bout	of	activity.	In	

order	to	get	to	the	point	that	clinicians	can	prescribe	specific	exercises	to	improve	

glycemic	control,	the	dose-response	relationship	between	physical	activity	and	

glucose	needs	to	be	better	characterized.	Understanding	the	characteristics	of	

physical	activity	(e.g.	duration,	frequency	performed,	intensity)	that	yield	a	lasting	

glycemic	lowering	effect	and	those	activities	that	work	best	to	immediately	lower	

glucose	quickly	will	be	helpful	in	developing	personally	tailored	exercise	

prescriptions	to	match	the	needs	of	the	individual.	

Physical	activity	monitors		

It	is	clear	that	physical	activity	and	sedentary	behavior	play	an	important	

role	in	glucose	regulation.	Both	of	these	human	behaviors	can	be	captured	using	

small	wearable	monitors.	There	is	a	great	potential	for	continuous	glucose	monitor	

data	to	be	integrated	with	physical	activity	and	sedentary	behavior	data	collected	

with	one	activity	monitor.	Using	physical	activity	monitors	in	conjunction	with	

continuous	glucose	monitors	is	the	next	step	required	to	define	the	dose-response	

relationship	between	activity	and	glucose.		

A	major	advantage	to	using	physical	activity	monitors	is	that	human	behavior	

can	be	estimated	in	the	free-living	enviroment.	Like	continuous	glucose	monitors,	

physical	activity	monitors	collect	time-stamped	data	on	a	very	frequent	basis	(as	

often	as	every	second)	and	can	be	used	to	examine	patterns	of	physical	activity	and	

sedentary	behavior	throughout	the	course	of	the	day.	Physical	activity	monitors	are	

relatively	inexpensive	and	do	not	pose	significant	participant	burden,	which	make	

them	the	optimal	tool	to	assess	physical	activity	in	the	free-living	environment.		
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There	are	many	different	types	of	physical	activity	monitors.	The	majority	of	

these	monitors	estimate	physical	activity	using	acclerometers.	Acceleration	is	

measured	in	1,	2	or	3	axes,	depending	on	the	monitor.	Acceleration	signals	are	then	

converted	to	counts	by	the	accelerometer	using	proprietary	algorithms.	Researchers	

can	use	counts	to	estimate	measures	of	physical	activity	(e.g.	energy	expenditure,	

absolute	activity	intensity)	that	can	be	related	to	health	outcomes.	The	ActiGraph	is	

an	example	of	a	commonly	used	accelerometer	worn	on	the	hip	or	wrist	that	

measures	accelerations	in	3	axes.	These	tools	are	very	useful	in	quantifying	physical	

activity,	but	have	some	limitations.	There	are	some	physical	activities	that	are	not	

accurately	measured	using	hip	mounted	devices.	Activities	that	rely	on	upper	body	

movement	or	do	not	involve	much	movement	at	the	hip,	like	bicycling,	or	weight	

lifting,	are	not	accurately	characterized	using	hip	mouted	accelerometers.	Some	

researchers	have	tried	to	address	this	issue	by	moving	the	monitor	to	the	ankle	or	

wrist,	however,	many	of	the	prediction	models	used	to	convert	counts	to	meaningful	

measures	of	physical	activity,	were	developed	using	hip	mounted	accelerometers.	

As	a	result,	prediction	models	validated	for	use	on	the	hip	have	limitations	when	

acclerometers	are	worn	on	a	different	part	of	the	body.			

Another	major	limitation	of	accelerometers	is	the	ability	to	assess	sedentary	

behavior.	As	illustrated	by	the	wealth	of	knowledge	implicating	sedentary	behavior	

with	poor	cardiometabolic	health,	measuring	sedentary	behavior	is	very	important	

in	physical	activity	research.	Acceleration	signals	that	come	from	standing	and	

sedentary	behaviors	(e.g.	sitting/lying)	are	very	similar,	which	makes	hip	mounted	

accelerometers	not	ideal	for	estimating	sedentary	behaviors.	The	activPAL	is	a	
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different	kind	of	physical	activity	monitor	specifically	desgined	to	assess	sedentary	

behavior.	With	a	built	in	inclinometer,	the	activPAL	detects	changes	in	posture.	It	is	

worn	on	the	front	side	of	the	thigh	that	can	distinguish	from	seated	and	standing	

positions.	Studies	have	shown	that	the	activPAL	is	a	valid	and	precise	tool	to	

measure	sedentary	behavior	in	the	free-living	enviroment	(81,	103).	Given	the	

importance	of	understanding	the	distinct	impact	of	physical	activity	and	sedentary	

behavior	on	cardiometabolic	health,	several	studies	have	implemented	a	

combination	of	accelerometers	and	inclinometers	to	assess	physical	activity	and	

sedentary	behavior.		

	 Some	studies	have	used	physical	activity	monitors	in	conjunction	with	

continuous	glucose	monitors.	Within	these	studies,	physical	activity	monitors	are	

generally	used	to	quantify	total	physical	activity	(31,	63,	124,	133).	In	these	studies,	

physical	activity	is	measured	to	account	for	total	energy	expenditure	as	a	potential	

confounding	variable,	and	as	a	result	an	entire	day’s	worth	of	physical	activity	data	

is	condensed	into	a	single	value.	Rather	than	summarizing	total	sitting	time	in	a	day,	

future	studies	can	examine	the	effect	of	one,	or	multiple,	bouts	of	sitting	on	

measures	of	health,	more	specifically	glucose	concentrations.		

Influence	of	Other	Factors	on	Glycemic	Control	

Dietary	Considerations	

It	is	established	that	physical	activity	has	a	major	impact	on	glucose	

concentrations,	however,	there	are	many	other	key	factors	that	modulate	blood	

glucose	throughout	the	day.	One	of	the	most	influential	factors	is	energy	intake.	

There	are	many	characteristics	of	energy	intake	that	must	be	considered	including	
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total	carbohydrate	intake,	composition	of	meals	and	distribution	of	carbohydrates.	

These	dietary	characteristics	are	briefly	reviewed	below.		

	 The	composition	and	timing	of	meals	consumed	within	the	day	has	a	major	

impact	on	the	glucose	responses.	Total	carbohydrate	content	influences	blood	

glucose	concentrations.	Nutritionists	encourage	their	patients	with	diabetes	to	

count	the	grams	of	carbohydrate	they	consume	to	minimize	blood	glucose	

excursions.	It	is	clear	that	as	the	total	amount	of	carbohydrate	in	a	meal	increases,	

the	blood	glucose	response	becomes	exaggerated,	but	other	nutrients	that	are	eaten	

with	carbohydrate	can	change	the	meal	response	dramatically	(99,	140).	When	

protein	is	consumed	with	carbohydrate,	more	insulin	is	secreted	compared	to	

carbohydrate	alone,	resulting	in	an	overall	lower	glucose	response	(76).	While	fat	

slows	the	emptying	of	food	from	the	stomach,	it	does	not	alter	the	glucose	response	

to	carbohydrate	intake	significantly	(66,	75).	Fiber	has	a	dramatic	impact	on	

postprandial	glucose	concentrations	and	causes	a	slower	rise	and	lower	peak	in	

postprandial	blood	glucose	(150).	Fiber	is	especially	important	because	the	amount	

of	fiber	in	dietary	carbohydrate	generally	dictates	whether	it	is	a	high	or	low	

glycemic	index	food.	There	is	evidence	that	low	glycemic	index	diets	are	beneficial	

for	minimizing	glucose	excursions	and	overnight	glycemia	in	overweight	and	obese	

non-diabetic	individuals	(30,	33).		

	 When	evaluating	blood	glucose	responses,	it	is	critical	to	consider	the	

distribution	of	carbohydrate	over	the	course	of	the	day.	Pearce	et	al.	found	that	

when	carbohydrate	consumption	was	loaded	in	the	middle	of	the	day	at	lunchtime,	

duration	of	hyperglycemia	(glucose	concentrations	>	12	mmol/L),	max	glucose	
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concentrations,	and	total	glucose	area	under	the	curve	were	significantly	lower	

compared	to	evenly	distributing	carbohydrates	over	breakfast,	lunch	and	dinner	

(135).	It	is	important	to	note	that	in	this	study,	the	total	amount	of	carbohydrate	

was	the	same	on	both	days,	but	the	distribution	was	different.	These	data	indicate	

that	the	timing	of	carbohydrate	consumption	has	a	large	impact	on	blood	glucose	

regulation	and	should	be	a	factor	that	is	not	ignored.	

Sleep	and	Glucose	Metabolism	

	 Recently,	sleep	duration	and	quality	have	become	important	factors	to	

consider	in	the	context	of	glycemic	control.	Several	epidemiological	studies	have	

demonstrated	a	U-shaped	relationship	between	sleep	duration	and	glycemic	control	

(measured	by	HbA1c	and	fasting	glucose)	indicating	that	very	low	and	high	amounts	

of	sleep	are	associated	with	high	glucose	concentrations	and	greater	risk	of	T2D	(35,	

161).	A	causative	role	has	been	established	through	some	experimental	studies	in	

which	sleep	was	restricted	to	4-5	hours	per	night	for	several	days	up	to	2	weeks.	In	

these	studies,	after	sleep	restriction,	insulin	sensitivity	is	reduced	and	postprandial	

glucose	concentrations	are	increased	(131,	158).	Interestingly,	the	onset	of	

abnormal	glucose	metabolism	occurs	rapidly,	making	it	an	important	factor	to	

consider	when	investigating	glucose	regulation.	

Sex	Differences		

	 There	have	not	been	many	studies	that	have	specifically	investigated	sex	

differences	in	the	metabolic	effects	of	exercise.	More	studies	need	to	consider	the	

potential	for	sex	differences	because	women	with	diabetes	have	a	significantly	

higher	incidence	of	CVD	than	men	with	diabetes	(6,	117,	125).	There	are	many	
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factors	that	could	be	driving	the	sex	differences	among	individuals	with	diabetes.	In	

general,	individuals	with	diabetes	do	not	exercise	regularly	but	women	tend	to	

participate	in	significantly	less	physical	activity	than	men	(125).	It	has	been	shown	

that	the	impairment	in	exercise	capacity	that	occurs	with	diabetes	is	significantly	

greater	in	women	compared	to	men	(147,	149).	Additionally,	in	a	secondary	analysis	

of	participants	in	the	US	Diabetes	Prevention	Program,	men	had	greater	reductions	

in	2-hour	glucose	and	insulin	concentrations	and	greater	improvements	in	insulin	

sensitivity	compared	to	women	(137).	These	differences	indicate	that	+men	and	

women	exposed	to	the	same	physical	activity	intervention	may	have	different	

metabolic	improvements.	Finally,	there	is	evidence	that	women	may	need	a	greater	

volume	of	exercise	to	attain	the	same	benefits	as	men.	A	large	observational	study	of	

walking	behavior	and	CVD	mortality	in	diabetes,	Sadarangani	and	colleagues	(154)	

compared	dose-response	relationships	between	men	and	women.	In	this	study,	men	

showed	a	consistent	dose-response	pattern	between	walking	and	risk	of	all-cause	

mortality,	however	only	women	who	walked	above	the	median	walking	group	had	a	

significant	reduction	in	risk	of	mortality.	Understanding	whether	women	require	a	

larger	dose	of	activity	to	gain	the	same	benefits	for	glycemic	control	would	have	

significant	public	health	implications.	Therefore,	investigating	potential	sex	

differences	in	the	glycemic	lowering	effects	of	exercise	is	an	important	area	of	

research.		
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Summary	and	Future	Directions		

	 Understanding	the	role	of	physical	activity	in	glucose	control	is	a	challenging	

task.	While	a	structured	bout	of	exercise	lowers	blood	glucose	concentrations,	the	

other	habitual	activities	that		

.0occur	throughout	the	day	can	modulate	the	magnitude	of	that	effect.	Sitting	time	

and	interruptions	in	sedentary	behavior	have	been	shown	to	have	a	measurable	

impact	on	blood	glucose	in	the	laboratory	but	the	duration	of	action	of	breaks	from	

sitting	is	not	well	defined.	Study	1	evaluated	the	impact	of	a	interrupting	sitting	

time	with	light	physical	activity	in	the	laboratory	on	free-living	glycemia	in	the	

evening	and	morning	after	the	intervention.	

Interruptions	in	sitting	time	may	be	an	effective	alternative	to	manage	

hyperglycemia	in	T2D,	but	the	effects	must	be	compared	to	established	treatment	

options	(e.g.	continuous	exercise).	Study	2	compared	the	effect	of	increasing	

daily	physical	activity	through	a	continuous	morning	walk	or	post-meal	

breaks	from	sitting	on	daily	glycemic	control	in	the	free-living	environment.	

Controlling	the	dietary	intake	allowed	us	to	compare	different	activity	interventions	

in	a	more	ecologically	relevant	environment.		

Finally,	considering	different	factors	that	may	modulate	the	response	to	a	

physical	activity	intervention	is	critical	in	moving	towards	individually	tailored	

physical	activity	recommendations.	There	is	evidence	that	men	and	women	may	

have	different	cardiometabolic	responses	to	a	bout	of	physical	activity,	but	the	

research	in	this	area	is	limited.	Study	3	investigated	sex	differences	in	response	

to	adding	physical	activity	in	the	form	of	continuous	walking	or	post-meal	
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breaks	from	sitting.	Before	specific	exercise	prescriptions	can	be	developed,	many	

studies	investigating	sex	differences	in	are	necessary.		

	Specific	Aims	

To	address	the	gaps	in	knowledge	highlighted	by	this	literature	review,	we	

proposed	the	following	3	specific	aims:		

Study	1	

To	determine	how	2	different	types	of	breaks	from	sitting	(walking	vs.	simple	

resistance	activities)	affect	glucose	responses	during	and	after	a	laboratory	

intervention.		

• We	compared	daily	and	postprandial	glucose	responses	during	the	breaks	

from	sitting	conditions	to	an	all	sedentary	control	condition.		

Study	2	

To	compare	the	effect	of	a	bout	of	continuous	morning	walking	and	post-meal	

breaks	from	sitting	on	glucose	responses	in	the	free-living	adults	with	T2D.	

• We	compared	daily	and	postprandial	glucose	measures	in	the	active	

conditions	to	participants’	normal	sedentary	behavior	

• We	assessed	the	dose-response	relationship	between	3	different	durations	of	

activity	(20,	40	and	60	minutes)		

Study	3	

To	evaluate	sex	differences	in	the	glucose	response	to	continuous	morning	walking	

and	post-meal	breaks	from	sitting	in	free-living	adults	with	T2D.		

• We	compared	the	effect	of	conditions	and	the	dose	response	relationships	

investigated	in	Study	2	between	men	and	women.	
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Tables	

Table	2.1:	Timing	of	Exercise	and	Subsequent	Measurement	of	Glucose	

ê:	0-9%;	êê:	10-19%;	êêê:	20-40%	
	
	

Reference	 Timing	of	
Exercise	(relative	
to	meal)	

Timing	of	Glucose	
Measurement	

Glycemic	Effects	

Rynders	et	al.,	
2014		

1h	pre-meal	 3h	after	exercise	
recovery	

ê	3h	glucose	AUC	

Oberlin	et	al.,	2014		 Pre-meal	
(morning)	

0-48h	post	exercise	 ê	24h	mean	glucose	

êê	2h	glucose	at	all	
meals	

Colberg	et	al.,	2009		 Immediately	
pre/post-meal	

During/2h	post	
exercise	

êêê	Glucose	90m	
post-meal	

Hostmark	et	al.,	
2006		

Immediately	
post-meal	

During/2h	post	
exercise	

êêê	Peak	glucose	
Blunted	rise	in	glucose	

Nygaard	et	al.,	
2009		

Immediately	
post-meal	

During/2h	post	
exercise	

ê	Peak	glucose	
ê	2h	AUC		

Poirier	et	al.,	2001		 Immediately	
post-meal		

During/90m	post	
exercise		

êêê	60-90m	glucose	
(vs.	fasted	EX)	

Colberg	et	al.,	2014		 30	min	post-
meal	

During/2.5h	post	
exercise		

êêê	90m	post-meal	

Larsen	et	al.,	1997		 45	min	post-
meal	

During/4h	post	
exercise	and	after	2nd	
meal	

êê	4h	AUC	and	blunted	
rise	in	glucose	
No	effect	of	2nd	meal	
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CHAPTER	3 	

INTERRUPTING	PROLONGED	SITTING	IN	TYPE	2	DIABETES:	NOCTURNAL	

PERSISTENCE	OF	IMPROVED	GLYCEMIA	

Dempsey	PC,	Blankenship	JM,	Larsen	RN,	Sacre	JW,	Sethi	P,	Straznicky	NE,	Cohen	ND,	
Cerin	 E,	 Lambert	 GW,	 Owen	 N,	 Kingwell	 BA,	 Dunstan	 DW.	 Interrupting	 prolonged	
sitting	 in	 type	2	diabetes:	nocturnal	persistence	of	 improved	glycemia.	 [Submitted	 to	
Diabtetologia]	
	

Introduction	

Postprandial	hyperglycemia	is	linked	to	an	increased	risk	of	micro-	and	

macro-vascular	complications,	particularly	in	individuals	with	type	2	diabetes	(T2D)	

(2,	37).	Even	with	anti-hyperglycemic	medications,	adults	with	T2D	can	spend	

between	25	and	40%	of	the	day,	and	approximately	2-h	on	average	nocturnally,	in	a	

state	of	hyperglycemia	(blood	glucose	>10	mmol/l)	(179).	Further,	the	frequency	

and	magnitude	of	glucose	fluctuations	and	oscillations	throughout	the	day	(glycemic	

variability)	may	also	increase	the	risk	of	diabetic	and	cardiovascular	complications	

independently	of	overall	glycemia	(42,	58,	128).	Therefore,	identifying	safe	and	

effective	ways	to	manage	postprandial	glucose	homeostasis	is	imperative	within	

T2D	management.	

	 Lifestyle	modification,	including	physical	activity,	remains	a	key	cornerstone	

in	T2D	management.	A	30-60	min	continuous	bout	of	exercise	has	been	shown	to	

significantly	improve	glycemic	control	and	insulin	sensitivity	for	up	to	72-h	post-

exercise	bout	(175,	182).	Current	T2D	guidelines	recommend	that	individuals	

engage	in	a	minimum	of	150	min	of	moderate-vigorous	physical	activity	a	week,	in	

bouts	of	at	least	10	min	(46).	However,	despite	the	multitude	of	benefits,	many	

adults	with	T2D	do	not	meet	physical	activity	recommendations	(189).	Indeed,	
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population	studies	demonstrate	that	adults	can	spend	over	65%	of	their	waking	

hours	in	sedentary	behaviors	(involving	prolonged	sitting),	while	only	~5%	of	

waking	hours	are	spent	in	moderate-vigorous	physical	activity	(56,	120).	These	

large	volumes	of	sedentary	time	are	associated	with	higher	T2D	risk,	even	after	

controlling	for	leisure-time	moderate-vigorous	physical	activity	(24,	185).	

	 Recent	experimental	evidence	suggests	that	reducing	and	interrupting	

prolonged	sitting	with	brief	bouts	(<5	min)	of	standing	or	light	ambulation	has	acute	

beneficial	effects	on	postprandial	glucose	and	insulin	concentrations	in	healthy,	

overweight/obese	adults	and	in	those	with	prediabetes	(44,	57,	92).	We	recently	

expanded	upon	these	findings,	providing	the	first	laboratory	evidence	in	patients	

with	T2D	that	regular	brief	interruptions	to	high	amounts	of	prolonged	sitting	(7-h)	

with	light-activities	(3	min	bouts	every	30	min)	significantly	improved	concurrent	

postprandial	glucose,	insulin	and	C-peptide	responses	following	standardized	

mixed-meals	(166).	Further,	in	healthy-active	young	adults,	a	day	of	light-intensity	

physical	activity	and	minimal	sitting	(<6	hours)	improved	whole	body	insulin	action	

the	following	morning,	compared	to	a	day	of	prolonged	(16	hours)	sitting	(55).	

Altogether,	these	studies	highlight	the	detrimental	effects	of	prolonged	sitting	and	

benefits	of	interrupting	and	reducing	overall	sitting	time.	However,	it	remains	

unclear	whether	benefits	in	T2D	patients:	1)	persist	beyond	the	immediate	7-h	

intervention	period	(i.e.	nocturnally	through	until	waking	the	subsequent	morning);	

and	2)	extend	to	reductions	in	glycaemic	variability.		

	 Utilizing	continuous	glucose	monitoring	(CGM)	technology	to	better	

understand	meal-to-meal	and	temporal	glucose	homeostasis,	glycaemic	variability	
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and	potential	carryover	effects	beyond	the	controlled	laboratory	setting	(55),	we	

compared	the	impact	of	7-h	prolonged	sitting	to	sitting	interrupted	with	brief	bouts	

of	light-intensity	walking	(LW)	or	simple	resistance	activities	(SRA)	on	22-h	glucose	

homeostasis	in	adults	with	T2D.	We	hypothesized	that	7-h	of	interrupting	prolonged	

sitting	time	would	lower	postprandial	glucose	responses,	22-h	hyperglycaemia	and	

glycaemic	variability,	and	that	improvements	in	glycaemic	control	would	be	

sustained	nocturnally	through	to	the	morning	following	the	intervention.		

Methods	

Participants	

As	previously	reported,	non-smoking	men	and	women	[body	mass	index	

(BMI)	25-40	kg/m2)]	aged	35-75	years	with	T2D	[diet	or	Metformin-controlled,	≥3	

months	duration,	based	on	American	Diabetes	Association	diagnostic	criteria	(11)]	

were	recruited.	Participants	were	excluded	if	they	self-reported	sitting	<5h/day	

and/or	were	meeting	physical	activity	guidelines	(≥150	min/week	of	moderate-

intensity	exercise).	The	study	was	approved	by	the	Institutional	Human	Research	

Ethics	Committee	and	all	participants	provided	written	informed	consent.		

Study	design	

This	randomized	crossover	trial	was	undertaken	at	the	Baker	IDI	Heart	&	

Diabetes	Institute	between	October	2013	and	November	2014.	Detailed	screening	

and	testing	procedures	have	been	described	previously	(55).	In	brief,	participants	

attended	the	laboratory	on	five	separate	occasions:	1)	medical	screening	visit;	2)	

familiarization	visit;	and	3-5)	three	acute	8-h	trial	condition	visits	in	a	randomized	
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order,	each	separated	by	6-14	days.	Trial	condition	order	was	randomized	by	a	third	

party	(block-randomization	and	balanced	block	sizes)	and	stratified	by	sex.		

Experimental	protocol	and	laboratory	conditions	

On	trial	condition	days,	participants	arrived	at	the	laboratory	at	~0715h	

after	a	12h	fast.	For	48h	prior	to	condition	days,	participants	were	asked	to	abstain	

from	caffeine,	alcohol,	and	structured	moderate-vigorous	physical	activities	(i.e.,	no	

physical	activity	beyond	activities	of	daily	living).	Each	laboratory	condition	was	8-h	

total	duration	(~0800-1600h;	see	Figure	3.1)	and	commenced	with	a	60	min	

‘steady-state’	period	(-1h	to	0h),	after	which	participants	consumed	standardized	

breakfast	(0h)	and	lunch	(3.5h)	meals,	with	the	time	taken	to	consume	(<20	min	per	

meal)	replicated	in	subsequent	conditions.	Participants	began	the	following	

experimental	protocols	after	the	breakfast	meal:	A)	SIT:	uninterrupted	sitting;	B)	

LW:	sitting	interrupted	with	3	min	bouts	of	light-intensity	walking	(3.2	km.h-1)	every	

30	min;	and,	C)	SRA:	sitting	interrupted	with	3	min	bouts	of	simple	resistance	

activities	every	30	min	(comprising	20	s	body	weight	half-squats,	20	s	calf	raises,	20	

s	gluteal	contractions	and	knee	raises;	repeated	3	times	in	sequential	order	while	

mimicking	a	standardized	video	recording).		

	 Participants	sat	upright	in	a	comfortable	chair	throughout	each	8-h	

laboratory	condition	and	were	instructed	to	minimize	excessive	movement,	only	

rising	from	the	chair	to	void.	Standardized	lavatory	visits	incorporated	into	the	

protocol	minimized	unscheduled	physical	activity;	however,	additional	lavatory	

visits	were	permitted.	Participants	complied	with	the	respective	laboratory	8-h	

condition	protocols	under	direct	supervision	from	research	staff.		
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	 At	the	end	of	each	8-h	laboratory	visit	(~1600h),	participants	returned	home	

and	were	asked	to	consume	their	standardized	evening	meal	between	1900-2000h	

that	evening	and	sleep	at	their	usual	time,	keeping	these	timings	as	consistent	as	

possible	for	subsequent	conditions.	Participants	were	asked	to	keep	this	timing	as	

consistent	as	possible	between	trial	conditions.	As	per	the	48h	lead-in	to	each	trial	

condition,	participants	were	asked	to	abstain	from	caffeine	and	alcohol.		

Standardization	of	diet,	medications	and	physical	activity		

To	minimize	any	potential	diet-induced	variability	during	testing	periods,	

meals	were	standardized	between	conditions	and	were	individualized	to	meet	33%	

of	daily	estimated	energy	requirements	using	the	Schofield	equation	and	a	physical	

activity	factor	of	1.5	(159).	The	target	macronutrient	profile	was	12-15%	energy	

from	protein,	55-58%	from	carbohydrate	and	29-31%	from	fat.	Evening	meal	packs	

were	provided	for	participants	to	consume	(between	1900-	2000h)	at	home	on	the	

evening	of,	and	prior	to,	each	experimental	condition.	Prescribed	medications	were	

continued	throughout	the	study.		

	 Participants	were	instructed	to	maintain	their	normal	physical	activities	after	

leaving	the	laboratory,	but	refrain	from	any	structured	moderate-vigorous	physical	

activity	until	after	the	removal	of	the	CGM	the	following	morning.	To	objectively	

measure	any	possible	postural	compensatory	behaviour	during	the	evening	of	the	

test	day	that	may	have	occurred	as	a	result	of	the	trial	condition,	an	activPAL3TM	

tri-axial	physical	activity	monitor	(PAL-technologies	Ltd,	Glasgow,	Scotland)	was	

worn	on	the	right	thigh	during	each	condition	for	22-h	for	objective	measurements	

of	time	spent	sitting,	standing,	and	stepping	while	both	inside	and	outside	the	
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laboratory	(81).	As	previously	described	(55),	anthropometric,	biochemical,	dietary	

and	accelerometer-derived	physical	activity	data	48h	before	each	of	the	respective	

trial	conditions	were	not	significantly	different.	

Continuous	glucose	monitoring		

A	continuous	glucose	monitor	[iPro2	CGM	with	Enlite®	sensors	(Medtronic,	

Northridge,	CA,	USA)]	was	inserted	immediately	upon	arrival	at	the	laboratory	

(0700-0715h)	by	trained	research	personnel	into	the	subcutaneous	fat	in	the	

lumbar	region	and	secured	using	a	thin	clear	film	according	to	the	manufacturer’s	

instructions.	Once	inserted,	the	CGM	recorded	interstitial	fluid	glucose	

concentrations	every	5	min	for	22-h	(data	collection	period	from	9am	on	trial	day	

until	7am	the	following	morning).	For	subsequent	conditions,	new	sensors	were	

inserted	within	approximately	two	centimeters	of	the	initial	insertion	site.	To	

calibrate	the	CGM,	capillary	(finger-stick)	blood	glucose	samples	were	collected	at	

six	standardized	times	across	the	22-h	period	(three	in	the	laboratory	and	three	at	

home)	according	to	the	manufacturer’s	instructions	using	a	commercial,	time-

stamped	glucometer	(Abbott	Freestyle	Optium,	Witney,	OX,	UK).	Participants	were	

provided	with	verbal	and	written	instructions	on	how	to	collect	the	three	capillary	

measurements	at	home,	the	times	of	which	were	later	confirmed	in	the	laboratory	

using	the	glucometers	stored	memory	function.	Validation	studies	have	

demonstrated	good	agreement	between	individual	glucose	measurements	derived	

via	Enlite®	sensors	and	venous	blood	(14,	53),	along	with	test-retest	reliability	

(171).	
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Physical	Activity	Monitors	Data	Handling	

Physical	activity	monitor	data	(activPAL	events	files)	were	processed	in	SAS	

9.4	(SAS	Institute	Inc.,	Cary	NC)	to	generate	time	spent	sitting,	standing,	and	

stepping	for	both	the	trial	condition	(laboratory)	and	the	post-trial-condition	until	

bedtime	(evening)	periods.	A	modified	algorithm	was	used	to	identify	participant	

sleep	time	as	20+	minutes	of	continuous	sitting/lying	occurring	at	or	following	self-

reported	bedtime	(91).	Invalid/non-wear	days	were	identified	as	containing	<10h	of	

waking	wear,	≥95%	of	waking	wear	time	spent	in	any	one	activity	or	<500	steps	

(65).		

Continuous	Glucose	Monitor	Data	Handling	

	 CGM	data	were	analyzed	using	R-statistical	software	package,	version	3.1.2	

(R-Foundation	for	Statistical	Computing,	Vienna,	Austria).	Data	were	summarized	

into	3	different	time	periods:	overall	(waking	and	nocturnal	hours	over	22-h),	meal	

times	and	nocturnal.	To	summarize	the	overall	CGM	data,	we	calculated	22-h	mean	

glucose	and	total	area	under	the	curve	(AUCtotal)	using	the	trapezoidal	method	from	

a	baseline	concentration	of	zero.	Time	in	hyperglycemia	was	quantified	as	time	

spent	with	glucose	>10	mmol/l.	Glycaemic	variability	over	22	h	was	calculated	using	

the	following	indices:	percent	coefficient	of	variance	(%CV),	standard	deviation	of	

glucose	(SDglucose),	mean	amplitude	of	glycaemic	excursion	(MAGE)	and	

continuous	overall	net	glycaemic	action	(CONGA).	An	automated	algorithm	in	R	

developed	by	Baghurst	and	colleagues	(13)	was	used	to	calculate	SDglucose,	MAGE	

and	CONGA1.	Finally,	we	determined	%CV	by	dividing	the	SDglucose	by	mean	22	h	

glucose.		
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Meal	times	for	breakfast,	lunch	and	dinner	were	defined	as	15	min	before	the	

meal	through	to	3-h	after	the	end	of	the	meal.	The	time	that	participants	were	eating	

the	meal	was	excluded.	We	calculated	the	baseline	glucose	concentration	before	

each	meal	(mean	of	glucose	during	the	15	min	before	meal).	To	summarize	each	

meal	response	we	calculated	the	net	incremental	area	under	the	curve	(iAUC)	

because	it	has	been	shown	to	be	more	reflective	of	the	glucose	response	to	a	meal	

than	AUCtotal	(9).	Net	iAUC	was	calculated	for	each	meal	as	all	incremental	area	

below	the	curve,	subtracting	the	area	below	each	pre-meal	baseline	glucose	

concentration	from	that	above.	Finally,	time	in	hyperglycemia	was	calculated	for	all	

meal	periods.		

	 Nocturnal	glycemia	was	defined	as	the	period	beginning	with	activPAL-

derived	sleep	time	through	to	self-reported	wake	time	the	next	day.	Nocturnal	

glycemia	was	quantified	by	mean	glucose,	AUCtotal	and	time	in	hyperglycemia.	

Waking	glucose	was	defined	as	the	average	of	the	final	15	min	of	the	22-h	CGM	

period	for	all	participants.	

	 Generalized	linear	mixed-models	with	random	intercepts	were	used	to	

evaluate	the	differential	effects	of	the	experimental	conditions	on	all	summary	

outcome	variables	using	Stata	12	(StataCorp	LP).	Residuals	were	examined	for	serial	

correlation,	heteroscedasticity	and	normality.	Substantial	departures	from	model	

assumptions	were	not	observed.	A	two-tail	probability	level	of	0.05	was	adopted.	

Data	are	expressed	as	mean±SEM	in	text	unless	otherwise	stated.	All	models	were	

adjusted	for	potential	covariates	explaining	residual	outcome	variance	(age,	BMI	

and	sex),	including	pre-prandial	values	and	period	effects	(treatment	order)	for	
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glucose	outcomes.	Glycemic	variability	measures	were	additionally	adjusted	for	

mean	glucose	concentrations.	Meal-by-condition,	sex-by-condition	and	BMI-by-

condition	interaction	tests	were	also	performed	for	mean	glucose,	iAUC	and	time	in	

hyperglycemia.		

Results	

Participant	characteristics	

Twenty-four	participants	were	randomized	and	completed	all	trial	

conditions	(see	Table	3.1).	Aside	from	BMI	(men	31.5	versus	women	35.2	kg.m-2,	

p=0.005),	there	were	no	significant	differences	in	sex-related	baseline	parameters	

or	medications	(55).	

Postural	allocation	and	meal/sleep	periods	

Data	from	the	activPAL	are	shown	in	Table	3.2.	By	design,	the	LW	and	SRA	

conditions	saw	greater	proportions	of	the	laboratory	period	spent	standing	or	

stepping	(versus	SIT).	In	turn,	LW	and	SRA	were	characterized	by	greater	

allocations	of	time	to	stepping	and	standing,	respectively.	During	the	evening	

period,	there	were	no	significant	differences	in	time	spent	seated,	standing	or	

stepping	between	trial	conditions.		

	 Recorded	dinner,	bedtime	and	waking	times	were	between	1815-2030h	

(mean=1915h),	2038-0221h	(mean=2228h)	and	0545-0920h	(mean=0701h)	

respectively.	Mean	(±SD)	within-participant	differences	in	dinnertime	(23±20	min),	

bedtime	(48±32	min)	and	waking	time	(24±16	min)	were	not	significantly	different	

between	trial	conditions,	nor	were	mean	sleep	durations	(SIT:	8h	12	min±55	min,	

LW:	7h	55	min±57	min,	SRA:	8h	13	min±56	min)	(all	p>0.1).	
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22-h	glucose	homeostasis	and	glycemic	variability	

An	overview	of	the	22-h	glycemic	profiles	is	presented	in	Figure	3.1.	Over	the	

entire	22-h	period,	mean	glucose	concentrations,	cumulative	AUCtotal	and	time	spent	

in	hyperglycemia	(>10	mmol/l)	were	all	significantly	reduced	during	the	LW	and	

SRA	conditions	compared	to	SIT	(Table	3.3).	Measures	of	glycemic	variability	

(MAGE,	CONGA1	and	SDglucose	glycemia)	were	significantly	reduced	for	the	LW	and	

SRA	conditions	compared	to	SIT	when	adjusting	for	baseline	glucose	levels	and	

other	covariates,	but	not	after	additionally	adjusting	for	mean	22-h	glucose	levels	

(Table	3.4).	Similarly,	%CV	was	not	significantly	different	between	conditions.	No	

significant	differences	were	observed	between	LW	and	SRA	for	any	glycemic	

outcomes.	No	hypoglycemic	episodes	(i.e.	glucose	<3.9	mmol/l)	were	observed	

during	any	of	the	trial	conditions.		

Postprandial	glycemic	control		

Mean	glucose,	iAUC,	and	time	spent	in	hyperglycemia	were	all	significantly	

lower	for	the	LW	and	SRA	conditions	compared	to	SIT	for	each	meal	(see	Figure	3.2	

and	Table	3.3).	A	significant	meal-by-condition	interaction	effect	was	observed	for	

mean	glucose	and	glucose	iAUC	responses	(Figure	3.2a	and	3.2b),	but	not	time	in	

hyperglycemia	(Figure	3.2c).	Both	LW	and	SRA	reduced	glucose	concentrations	for	

each	meal	period	compared	to	SIT.	The	largest	reductions	in	mean	glucose	and	

glucose	iAUC	were	observed	during	breakfast	compared	to	both	lunch	and	dinner	

(Figure	2a	and	2b;	p<0.05).	Further,	mean	glucose	and	iAUC	reductions,	following	

the	dinner	meal,	were	significantly	greater	for	the	SRA	condition	compared	to	both	
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LW	and	SIT	(Figure	3.2a	and	3.2b;	p<0.05).	No	significant	sex-by-condition	or	BMI-

by-condition	interaction	effects	were	observed	for	any	of	the	glycemic	variables.		

Nocturnal	glycemic	control	

Mean	glucose	concentrations,	AUCtotal	and	time	spent	in	hyperglycemia	were	

all	significantly	reduced	during	the	sleeping	period	(see	Table	3.3).	Mean	glucose	

concentrations	were	significantly	lower	the	morning	following	the	intervention	for	

both	LW	and	SRA	(both	-2.7±0.4	mmol/l;	p<0.001)	compared	to	SIT	(Table	3.3).	No	

significant	differences	were	observed	between	LW	and	SRA.	

Discussion	

The	novel	finding	in	this	study	is	that	interrupting	high	levels	of	prolonged	

sitting	(7-h)	with	brief	bouts	of	LW	and	SRA	(3	min	every	30	min)	significantly	

lowered	22-h	hyperglycemia,	including	nocturnal	hyperglycemia,	in	inactive	

overweight/obese	adults	with	T2D.	Importantly,	while	reductions	in	postprandial	

glucose	were	observed	during	the	7-h	controlled	laboratory	period,	improved	

glycemic	control	persisted	into	the	subsequent	free-living	evening	and	sleeping	

periods	until	the	following	morning.	An	average	waking	glucose	reduction	of	2.7	

mmol/l	was	observed	for	both	the	LW	and	SRA	conditions	compared	to	prolonged	

sitting.		

	 These	findings	provide	unique	insights	beyond	our	primary	experimental	

observations	in	the	controlled	laboratory	setting	(55)	and	those	of	others	(116,	133,	

141,	180,	183)	in	T2D	patients,	demonstrating	that	brief	bouts	of	LW	and	SRA	

compared	to	prolonged	sitting	over	7-h	elicit	persistent	and	clinically	meaningful	

improvements	in	postprandial	hyperglycemia	over	22-h.	Our	results	are	supportive	
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of	the	broader	hypotheses	postulated	in	epidemiological	studies	(89,	91),	and	

emerging	experimental	evidence	(20),	suggesting	that	reducing	and	frequently	

interrupting	very	high	levels	of	prolonged	sitting	time	may	represent	important	

clinical	and	public	health	interventions	in	T2D	management.		

	 The	use	of	CGM	facilitated	the	tracking	of	glucose	homeostasis	both	within	

the	laboratory	conditions	and	during	subsequent	free-living	and	nocturnal	periods	

outside	the	laboratory.	Exposure	to	postprandial	hyperglycemia	(>10	mmol/l)	was	

highly	prevalent	during	the	observed	22-h	period.	Indeed,	for	the	prolonged	sitting	

condition,	participants	spent	57%	more	time	in	hyperglycemia	over	the	22-h	

compared	to	both	active	conditions.	For	perspective,	this	duration	of	time	in	

hyperglycemia	equates	to	approximately	twice	that	previously	reported	in	

individuals	with	T2D	on	standardized	diets	while	observed	in	a	free-living	

environment	(142,	179,	180).	In	addition,	time	spent	in	nocturnal	hyperglycemia	

was	more	than	60%	longer	for	prolonged	sitting	compared	to	the	activity	

conditions.		

	 These	differences	in	glycemic	control	observed	between	the	prolonged	

sitting	and	activity	interruption	conditions	highlight	both	the	persistent	and	

detrimental	nature	of	very	high	levels	(i.e.	7-h)	of	prolonged	sitting	in	T2D	patients,	

but	also	the	beneficial	effects	of	regular	brief	interruptions	in	prolonged	sitting.	

Recent	studies	have	reported	similar	reductions	in	24-h	time	in	hyperglycemia	with	

a	single	bout	of	aerobic	or	resistance	exercise	compared	to	a	non-exercise	condition	

(180,	183),	and	interruptions	in	prolonged	sitting	more	effectively	reduced	

nocturnal	glycemia	compared	to	a	30	min	bout	of	pre-lunch	moderate-intensity	
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walking	in	overweight/obese	adults	(25).	Whether	the	improvements	in	glycemic	

control	induced	by	interruptions	in	sitting	time	intervention	are	similar	to	that	of	a	

continuous	30-45	min	bout	of	exercise	in	T2D	remains	to	be	determined.			

	 The	most	marked	reductions	in	postprandial	glucose	responses	were	

observed	following	breakfast,	likely	due	to	overall	glucose	responses	being	highest	

for	this	meal.	Glucose	responses	across	all	conditions	were	lower	following	the	

lunch	and	dinner	meals	compared	to	breakfast,	which	is	concordant	with	the	

second-meal	phenomenon	(98).	The	reduction	in	time	spent	in	hyperglycemia	was	

slightly	lower	for	the	dinner	meal	(though	not	statistically	significant)	compared	to	

breakfast	and	lunch,	which	could	be	a	consequence	of	the	breakfast	and	lunch	meals	

being	closer	together	than	lunch	and	dinner,	allowing	less	time	for	glucose	

clearance.	Interestingly,	while	postprandial	glucose	excursions	were	improved	with	

both	LW	and	SRA	compared	to	SIT	for	each	of	the	three	post-meal	periods,	the	

postprandial	glucose	responses	following	the	dinner	meal	were	significantly	lower	

for	SRA	compared	to	LW.	While	the	reasons	for	this	are	unknown,	it	could	be	related	

to	the	nature	of	the	activity-break	intervention	(55)	and/or	differential	effects	on	

hepatic	glucose	output	or	peripheral	insulin	sensitivity	(151,	175).	However,	such	

factors	would	not	fully	explain	why	glucose	concentrations	were	generally	similar	

between	LW	and	SRA	during	both	the	laboratory	and	sleeping	periods.							

	 This	is	the	first	study	to	report	data	on	glycemic	variability	when	comparing	

a	bout	of	prolonged	sitting	to	sitting	frequently	interrupted	with	brief	bouts	of	

activity	in	T2D.	Although	the	prognostic	value	of	glycemic	variability	in	T2D	remains	

controversial	(126),	largely	due	to	the	relatively	recent	advent	of	CGM	technology	
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and	a	lack	of	prospective	data,	there	is	evidence	to	suggest	that	greater	glycemic	

variability	is	adversely	associated	with	endothelial	dysfunction,	oxidative	stress	and	

diabetic	complications	(42,	58,	128).	In	the	absence	of	a	gold-standard	measure	to	

assess	glycemic	variability,	we	computed	a	range	of	commonly	used	variability	

measures.	While	significant	reductions	in	MAGE,	CONGA1	and	SDglucose	were	

observed	with	LW	and	SRA	compared	to	SIT,	these	effects	were	not	apparent	

following	statistical	adjustment	for	mean	glucose	levels.	These	findings	–	together	

with	the	lack	of	between-condition	differences	in	%CV	(which	directly	normalizes	

for	mean	glucose)	–	point	to	a	similar	relative	magnitude	of	glucose	fluctuations	

around	its	lower	“set	point”	in	the	LW	and	SRA	conditions,	rather	than	less	

instability	per	se.	

	 The	measures	used	in	this	study	do	not	permit	conclusions	on	the	putative	

mechanisms	responsible	for	the	improvements	in	glycemic	control.	However,	in	the	

same	participants,	we	previously	reported	concurrent	attenuations	in	both	venous	

glucose,	insulin	and	C-peptide	during	the	LW	and	SRA	conditions	relative	to	the	

prolonged	sitting	condition	(55).	The	lower	C-peptide	supports	reduced	endogenous	

insulin	secretion	–	suggesting	either	enhanced	insulin	sensitivity	or	a	greater	

reliance	on	insulin-independent	contraction	mediated	glucose	disposal,	or	both		(22,	

175).	Indeed,	recent	investigations	suggest	that	the	skeletal	muscle	contraction-

mediated	glucose	uptake	pathway	may	be	particularly	important	during	acute	one	

day	interventions	examining	frequent	ambulatory	interruptions	in	sitting	time	(22).	

	 A	key	strength	of	this	study	is	the	randomized	cross-over	design,	which	

incorporated	both	controlled-laboratory,	free-living	and	nocturnal	elements.	
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Participants	were	their	own	controls,	which	enhanced	both	the	internal	validity	and	

reliability	of	our	data	and	permitted	a	smaller	sample	size.	The	laboratory	trial	and	

subsequent	free-living	phases	were	examined	with	the	use	of	objective,	posture-

discriminating	devices,	while	participants	consumed	a	standardized,	ecologically	

valid,	Western-type	diet	(3).	The	continuous	activity	measurements,	alongside	CGM,	

enabled	us	to	account	for	these	key	activity	and	dietary	behaviors,	thereby	

increasing	the	experimental	rigor	of	our	findings.		

	 We	acknowledge	that	both	the	prescribed	activity/sedentary	behaviour	

during	the	laboratory	phase	and	the	dietary	profiles	(e.g.	macronutrient	profile,	

glycaemic	index,	meal	frequency	and	size)	may	not	reflect	habitual	behaviours	in	

sedentary	individuals	in	real-world	settings	and	could	have	exaggerated	the	

glycaemic	differences	we	observed	between	trial	conditions.	Although	it	was	

important	to	first	establish	‘proof-of-concept’	in	a	controlled	laboratory	setting	and	

to	accurately	describe	dose-response	parameters,	7-h	prolonged	sitting	with	only	1-

2	toilet	breaks	–	while	plausible	under	some	circumstances	(e.g.	extended	

automobile/plane	journeys	or	those	who	may	be	required	to	carry	out	

uninterrupted	desk	work	to	meet	deadlines)	–	is	likely	to	be	an	extreme	scenario	for	

much	of	the	population.		

It	will	be	important	to	establish	the	efficacy	of	these	interventions	in	T2D	

patients	with	more	advanced	disease,	particularly	as	such	patients	are	more	likely	

to	have	poorer	glycemic	control,	are	more	likely	to	experience	hypoglycemic	

episodes,	and	may	be	less	responsive	to	exercise-mediated	glucose-lowering	(164).	

Nevertheless,	our	findings	have	relevance	to	a	majority	of	those	with	T2D	(~80-
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85%),	who	are	not	treated	with	insulin	or	insulin	combined	with	other	oral	

hypoglycaemic	agents	(40).	Further,	it	was	also	encouraging	that	no	hypoglycaemic	

events	were	observed	despite	marked	reductions	in	postprandial	hyperglycaemia	

during	our	sitting-breaks	conditions.		

	 Future	studies	should	consider	examining	the	glycemic	effects	of	interrupting	

prolonged	sitting	interventions	in	more	ecologically	relevant,	free-living	and	

workplace	environments	that	are	more	reflective	of	habitual	sitting	patterns.	It	will	

also	be	important	to	determine	the	effects	over	longer	time-periods	(i.e.	multiple	

days	or	weeks)	and	the	specific	mechanisms	by	which	different	light-intensity	

activities	improve	glycemic	control.	In	the	interest	of	optimizing	24-h	and	

postprandial	glycemia	for	T2D	management,	it	would	be	relevant	to	compare	and	

combine	strategically	placed	frequent	interruptions	in	sitting	with	a	structured	bout	

of	exercise	to	determine	whether	or	not	timing	and/or	dose-dependent	(additive)	

relationships	exist.	In	these	contexts,	a	further	consideration	will	be	the	impact	of	

energy	balance,	which	was	not	strictly	controlled	in	the	current	study.			

	 In	conclusion,	this	study	demonstrates	that	interrupting	high	levels	of	

prolonged	sitting	with	brief	light	walking	or	simple	resistance	activity	bouts	over	7-

h	reduces	sequential	postprandial	glucose	responses	in	adults	with	T2D,	with	

glycaemic	improvements	persisting	until	the	next	morning.	Although	longer	term	

efficacy,	practicality	and	suitability	for	the	workplace	and	home	environment	still	

need	to	be	established,	there	is	the	potential	for	interrupting	prolonged	sitting	time	

to	be	an	effective	intervention	for	relatively	well-	controlled	T2D	patients	living	or	

working	in	environments	that	demand	or	encourage	high	levels	of	prolonged	sitting	
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time.	This	strategy,	in	parallel	with	a	whole-day	approach	to	increasing	

unstructured	physical	activities,	may	be	a	particularly	helpful	adjunct	in	T2D	

management	for	those	who	are	sedentary,	de-conditioned,	or	unable	or	

unmotivated	to	engage	in	structured	moderate-vigorous	exercise.		
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Figures	

	

	
Figure	3.1:	22-h	glucose	profiles	over	22	hours	during	experimental	condition	
and	free-living	environment	
Mean	±	SEM	glucose	profiles	over	22-h	during	and	following	each	trial	condition.	
SIT,	Uninterrupted	sitting.	LW,	sitting	+	light-intensity	walking	bouts.	SRA,	sitting	+	
simple	resistance	activity	bouts.	The	shaded	area	(prior	to	0900	h)	denotes	the	1-h	
sitting	steady-state	prior	to	commencing	each	trial	condition.	Intervals	for	the	3	min	
activity	bouts	every	30	min	during	the	LW	and	SRA	interventions	are	illustrated	by	
the	arrows.	As	denoted	by	the	grey	vertical	dashed	lines,	standardized	meals	in	the	
laboratory	were	consumed	at	0900	h	and	1230	h,	while	mean	dinnertime	and	
bedtimes	were	at	1915	h	and	2228	h	respectively.	The	thick	black	vertical	dashed	
line	denotes	when	participants	left	the	laboratory	at	~1600	h.	The	continuous	grey	
horizontal	line	at	10	mmol/L	represents	the	hyperglycemic	threshold.	See	text	and	
Table	3.2	for	further	details	and	statistical	comparisons	of	glycemic	measures.		
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Figure	3.2:	Change	in	Postprandial	Glycemia	from	Control	Condition	
Difference	relative	to	uninterrupted	sitting	in	(a)	mean	glucose,	(b)	glucose	net	
incremental	area	under	the	curve	(iAUC),	and	(c)	time	in	hyperglycemia	by	meal	for	
light-	intensity	walking	bouts	(black	circles;	LW-SIT)	and	simple	resistance	activity	
bouts	(white	squares;	SRA-SIT).	*Differences	in	LW-SIT	and	SRA-SIT	significantly	
larger	for	breakfast	meal	compared	to	lunch	and	dinner	meals	(P<0.001).	†SRA-SIT	
significantly	different	from	LW-SIT	(P<0.05).	Data	are	expressed	as	mean	(95%	CI).		
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Tables	

Table	3.1:	Participant	Characteristics	
	
Demographics	 		

	
Sex	(male/female)	 14/10	

	
Age	(y)	 62	±	6	

	
BMI	(kg/m2)	 33.0	±	3.4	

	
Waist	circumference	(cm)	 112.6	±	9.7	

	
Diabetes	duration	(y)	 6.8	±	5.1	

	
Ethnicity	

	
	 	

European	 20	(83%)	

	 	
Asian	 4	(17%)	

Medications,	n	(%)	
	

	
Metformin	 23	(96%)	

	
Statin	 15	(63%)	

	
Anti-hypertensive	 16	(67%)	

Metabolic	and	cardiovascular	risk	factors	
	

	
HbA1c	(%)b	 7.2	±	0.7	

	
HbA1c	(mmol/mol)b	 55.1	±	8.0	

	
eGFR	(ml.min-1.1.73m-2)b	 86.7	±	8.1	

	
Fasting	glucose	(mmol/l)a	 8.2	±	1.4	

	
Fasting	insulin	(pmol/l)a	 85.9	±	54.7	

	
Fasting	triacylglycerol	(mmol.l)a	 1.9	±	1.0	

	
Fasting	total	cholesterol	(mmol/l)a	 4.4	±	0.8	

	
Fasting	LDL-cholesterol	(mmol/l)a	 2.5	±	0.8	

	
Fasting	HDL-cholesterol	(mmol/l)a	 1.1	±	0.3	

	
Systolic	blood	pressure	(mmHg)b	 123	±	14	

		 Diastolic	blood	pressure	(mmHg)b	 77	±	9	
	
Data	are	expressed	as	mean	±	SD	or	number	(%)	where	specified.	a	Measured	at	the	
screening	visit.	b	Measured	at	the	beginning	of	the	first	trial	condition.	
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Table	3.2:	Physical	Activity	During	the	Laboratory	Condition	and	Evening	
Period	after	Condition	
	

	
Total	time	(min)	 SIT	 LW	 SRA	

	Laboratory	

Wear	time		 504	±	3	 504	±	3	 502	±	3	
Sitting		 499	±	3	 449	±	3*	 453	±	3*	
Standing		 4	±	1	 9	±	1*	 30	±	1*†	
Stepping		 2	±	1	 46	±	1*	 19	±	1*†	

	Evening	

Wear	time		 417	±	24	 418	±	25	 375	±	24	
Sitting	 279	±	11	 265	±	11	 262	±	11	
Standing		 108	±	21	 119	±	22	 79	±	21	
Stepping		 30	±	2	 34.6	±	3	 35	±	2	

	
Laboratory+Evening	

Wear	time		 919	±	29	 900	±	30	 839	±	30*	
Sitting	 777	±	17	 700	±	18*	 682	±	17*	
Standing		 110	±	21	 123	±	22	 105	±	21	
Stepping		 32	±	3	 79	±	3*	 52	±	3*†	

Data	are	expressed	as	mean	±	SEM.	SIT,	Uninterrupted	 sitting.	 LW,	 sitting	+	 light-
intensity	walking	bouts.	SRA,	sitting	+	simple	resistance	activity	bouts.	*significantly	
different	from	SIT	(p<0.05);	†significantly	different	from	LW	(p<0.05).	

	
Table	3.3:	Glycemic	Control	Over	22-h	and	Nocturnal	Glycemia	

	 	
SIT	 LW	 SRA	

22-h	
Mean	glucose	(mmol.L-1)	 11.6	±	0.3	 8.9	±	0.3*	 8.7	±	0.3*	

AUCtotal	(mmol.h.L-1)	 254.9	±	6.7	 194.7	±	6.6*	 191.5	±	6.6*	
Time	in	hyperglycemia	(h)	 14.7	±	0.9		 6.3	±	0.8*	 6.3	±	0.9*	

Sleeping	

Mean	glucose	(mmol.L-1)	 10.6	±	0.4	 8.1	±	0.4*	 8.3	±	0.4*	

AUCtotal	(mmol.h.L-1)	 86.9	±	3.7	 64.6	±	3.6*	 68.0	±	3.7*	
Time	in	hyperglycemia	(h)	 4.7	±	0.4	 1.4	±	0.4*	 1.8	±	0.4*	
Waking	glucose	(mmol.L-1)	 10.3	±	0.3		 7.6	±	0.3*	 7.7	±	0.3*	

Data	 are	 expressed	 as	 mean±SEM.	 SIT,	 Uninterrupted	 sitting.	 LW,	 sitting	 +	 light-
intensity	walking	bouts.	 SRA,	 sitting	+	 simple	 resistance	activity	bouts.	 Sleeping	 is	
the	time-period	from	bedtime	until	end	of	the	22-h	period.	AUCtotal,	total	area	under	
the	curve.	*significantly	different	from	SIT	(p<0.05).	
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Table	3.4:	Glycemic	Variability	Over	22-h	

	 	
SIT	 LW	 SRA	

MODEL	1	

%	CV	 19.8	±	1.2	 21.8	±	1.2	 20.7	±	1.2	
SDglucose	(mmol/L)	 2.3	±	0.1	 1.9	±	0.1*	 1.8	±	0.1*	
MAGE	(mmol/L)	 5.9	±	0.3	 4.6	±	0.3*	 4.3	±	0.3*		
CONGA1	(mmol/L)	 2.0	±	0.1	 1.6	±	0.1*	 1.5	±	0.1*	

MODEL	2	
SDglucose	(mmol/L)	 2.1	±	0.1	 2.0	±	0.1	 1.8	±	0.1	
MAGE	(mmol/L)	 5.2	±	0.4	 5.0	±	0.3	 4.7	±	0.3	
CONGA1	(mmol/L)	 1.7	±	0.1	 1.7	±	0.1	 1.6	±	0.1	

Data	are	expressed	as	mean	±	SEM.		
Model	1:	adjusted	for	baseline	glucose,	treatment	order,	BMI,	age	and	sex.		
Model	2:	additional	adjustment	for	22-h	mean	glucose	concentrations.			
SIT,	uninterrupted	sitting.	LW,	sitting	+	light	intensity	walking	bouts.	SRA,	sitting	+	
simple	resistance	bouts.	*significantly	different	from	SIT	(p<0.05).	
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CHAPTER	4 	

MANAGING	FREE-LIVING	HYPERGLYCEMIA	WITH	EXERCISE	OR	INTERRUPTED	

SITTING	IN	TYPE	2	DIABETES:	AN	ECOLABICAL	APPROACH	

Introduction	

Type	2	diabetes	(T2D)	has	become	an	epidemic	worldwide.	Since	1980,	the	

World	Health	Organization	estimated	that	the	prevalence	of	diabetes	has	

quadrupled,	affecting	422	million	adults	worldwide	(4).	Characterized	by	high	

circulating	blood	glucose	(hyperglycemia),	T2D	is	associated	with	a	number	of	

comorbidities	including	obesity,	hypertension,	and	dyslipidemia	(97).	Further,	

diabetes	increases	the	risk	of	cardiovascular	disease	(CVD)	by	up	to	4	times	

compared	to	normoglycemic	individuals	(69,	100).	The	causes	of	the	increased	CVD	

risk	in	diabetes	are	multifaceted	and	include	hyperglycemia,	insulin	resistance,	

inflammation	and	oxidative	stress	(118).	The	variability	in	glucose	values	

throughout	the	day	may	also	represent	a	particular	risk	for	CVD	(43).		

Several	large	epidemiological	studies	have	shown	strong	associations	

between	glucose	concentrations	after	a	meal	(postprandial)	and	CVD	mortality	in	

diabetes	(37,	38).	Carefully	controlled	studies	in	humans	have	shown	that	

postprandial	glycemia	interferes	with	the	blood	vessels	ability	to	vasodilate	(41,	

42).	The	exact	mechanisms	responsible	for	the	interaction	between	high	blood	

glucose	and	vascular	function	have	not	been	well	defined	but	likely	include	

oxidative	stress	or	inflammation	caused	by	high	postprandial	glucose	(118).	

Regardless	of	the	mechanism,	postprandial	glucose	concentrations	are	central	to	the	

strong	relationship	between	diabetes	and	CVD.	Most	individuals	with	T2D	spend	25-
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40%	of	each	day	in	hyperglycemia	(glucose	>10	mmol/L),	(179,	180).	Further,	

postprandial	hyperglycemia	is	the	major	contributor	to	the	overall	level	of	

hyperglycemia	among	individuals	with	an	HbA1c	<	7.3	(127).	Since	postprandial	

hyperglycemia	is	the	major	driver	of	total	hyperglycemia	in	mild	to	moderate	

diabetes,	managing	glucose	after	meals	in	T2D	is	a	top	priority	among	health	care	

providers.	

Sedentary	behavior,	like	prolonged	sitting,	has	been	associated	with	high	

blood	glucose	2	hours	after	a	meal	(88,	93).	Fritschi	and	colleagues	(72)	objectively	

measured	sedentary	behavior	and	free-living	glucose	concentrations	in	a	large	

group	of	adults	with	T2D.	Not	only	did	participants	in	this	study	accumulate	a	large	

amount	of	sedentary	time	during	waking	hours	(>	8	hours/day)	but	sedentary	time	

was	significantly	associated	with	the	total	time	in	hyperglycemia	(glucose	>10	

mmol/L).	Adults	spend	more	than	60%	of	waking	time	engaged	in	sedentary	

behaviors	(120,	176,	178)	and	less	than	5%	of	waking	hours	in	moderate	to	

vigorous	physical	activity	(119).	Further,	there	is	evidence	that	individuals	with	T2D	

are	even	more	sedentary	than	people	without	diabetes	(45).	Because	sedentary	time	

dominates	most	waking	hours	and	is	strongly	related	to	hyperglycemia	in	T2D,	

reducing	sedentary	behavior	might	be	an	effective	strategy	to	lower	overall	

hyperglycemia.	

There	is	a	wealth	of	evidence	documenting	the	glucose	lowering	effects	of	

continuous	and	intermittent	physical	activity	at	a	range	of	intensities	in	people	with	

diabetes	(47,	49,	96,	105,	132,	133,	139,	153).	While	broad	concepts	are	known,	the	

exact	dose-response	relationship	and	timing	of	activity	induced	changes	in	glucose	
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remain	less	clear.	A	single	bout	of	exercise	results	in	immediate	reductions	in	daily	

glucose	(116,	180)	and,	after	several	months	of	exercise	training,	improves	long	

term	glycemic	control	(48,	71,	115).	For	example,	van	Dijk	and	colleagues	

demonstrated	that	a	single	bout	of	aerobic	or	resistance	exercise	lowers	the	daily	

duration	of	hyperglycemia	by	35%	(180).	Despite	the	well-recognized	benefits	of	

exercise	for	managing	hyperglycemia	in	T2D,	the	majority	of	adults	do	not	exercise	

(119).	Short	light	physical	activity	interruptions	in	sitting	time	minimize	the	

exaggerated	glucose	responses	caused	by	prolonged	sitting.	Several	groups	have	

observed	lower	postprandial	glucose	concentrations	and	a	shorter	duration	of	

hyperglycemia	when	sitting	time	is	interrupted	with	light	physical	activity	(55,	62).	

Because	most	adults	don’t	exercise,	performing	light	physical	activity	might	be	

beneficial	to	lower	blood	glucose	and	may	represent	a	clinically	important	strategy	

to	manage	hyperglycemia	in	T2D.		

In	free-living	settings,	normal	behavior	dictates	that	people	get	up	from	their	

chairs	and	take	breaks	from	sitting	throughout	the	day	(e.g.	to	prepare	meals,	use	

the	bathroom).	While	important	from	a	laboratory	control	perspective,	having	

people	sit	continuously	for	8-15	hours	is	not	representative	of	normal	human	

behavior	(62,	136,	166).	Performing	a	study	in	a	real	world	relevant	(ecological)	

setting	has	high	generalizability	but	there	are	many	sources	of	variability	(diet,	

sleep).	Without	controlling	some	of	these	key	sources	of	variability,	namely	diet,	

interpretation	of	blood	glucose	data	is	almost	impossible.	To	improve	upon	

ecological	models,	we’ve	created	a	hybrid	approach	which	we	call	ecolabical	that	
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provides	the	benefits	of	the	real	world	setting	while	retaining	control	of	specific	

experimental	variables.		

It	is	unknown	whether	it	is	better	to	deliver	physical	activity	as	one	

continuous	bout	versus	an	equivalent	dose	delivered	in	smaller	amounts	for	

hyperglycemia	in	diabetes.	Using	our	ecolabical	approach,	the	primary	aim	of	this	

study	was	to	assess	the	comparative	effectiveness	of	increasing	total	physical	

activity	through	continuous	walking	after	breakfast	(EX)	or	light	physical	activity	

breaks	in	sedentary	time	after	meals	(BR)	on	postprandial	glycemic	control	during	a	

day.	Targeting	post-meal	periods,	when	glucose	is	high,	as	a	time	to	insert	breaks	

from	sitting	may	be	a	more	acceptable	alternative	to	taking	regular	breaks	during	

every	waking	hour	of	the	day	(62).	We	hypothesized	that	by	performing	EX	after	

breakfast,	EX	would	result	in	lower	postprandial	glucose	compared	to	BR	following	

breakfast.	BR	would	result	in	better	overall	postprandial	glycemic	because	of	

regular	muscle	contractions	and	postprandial	glucose	uptake	throughout	the	day.	

Since	the	assigned	doses	of	physical	activity	(20,	40	or	60	minutes	of	additional	

physical	activity)	were	the	same	between	EX	and	BR,	we	hypothesized	that	24-hour	

glycemic	control	would	be	equivalent	in	the	active	conditions	(EX	and	BR)	and	both	

would	be	better	when	compared	with	a	sedentary	condition	(CON).		

A	secondary	aim	of	this	study	was	to	compare	three	volumes	of	activity	to	

determine	whether	a	dose-response	relationship	exists	between	postprandial	

physical	activity	and	postprandial	glycemic	control.	Participants	in	the	BR	and	EX	

conditions	were	assigned	to	perform	an	additional	20,	40	or	60	minutes	of	physical	

activity	during	the	day.	Because	there	will	be	more	muscle	contractions	in	the	
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highest	activity	dose,	the	greatest	improvement	in	postprandial	glycemic	control	

was	predicted	to	be	seen	with	60	minutes	of	physical	activity,	followed	by	40	

minutes	and	then	20	minutes.		

Finally,	as	an	exploratory	aim,	we	determined	the	impact	of	reallocating	

sedentary	and	physical	activity	behaviors	on	glycemic	control	throughout	the	day.	

We	used	isotemporal	substitution	analysis,	which	takes	into	account	that	time	is	not	

infinite.	If	an	individual	decreases	time	in	sedentary	behavior,	time	spent	in	an	

active	behavior	(e.g.	standing,	stepping)	must	increase.	Isotemporal	substitution	

analysis	has	been	used	previously	in	cross-sectional	studies	investigating	the	health	

effects	of	substituting	sedentary	behavior	for	moderate	to	vigorous	physical	activity	

(32,	186).	To	date,	these	analyses	have	not	been	applied	to	physical	activity	and	

continuous	glucose	monitoring	data.	We	sought	to	investigate	the	utility	of	applying	

this	statistical	method	to	continuously	measured	physical	activity	and	glucose	data.		

Methods		

Participants		

Thirty	sedentary	individuals	with	T2D	(BMI	range:	22.4-41.9	kg/m2)	

participated	in	this	study.	Participants	were	between	the	ages	of	39-74	years	old	

and	had	diabetes	diagnosed	by	a	physician	for	at	least	6	months	and	were	not	taking	

insulin	to	manage	their	diabetes.	Individuals	taking	insulin	were	excluded	from	the	

study	to	minimize	the	risk	of	exercise	induced	hypoglycemia.	Other	medications	not	

known	to	interfere	with	blood	glucose	control	(e.g.	blood	pressure,	cholesterol	

lowering	medication)	were	permitted	in	the	study.	At	the	time	of	enrollment,	

participants	self-reported	that	they	were	not	meeting	the	physical	activity	and	
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health	guidelines	of	at	least	150	minutes	moderate	to	vigorous	physical	activity	per	

week.	The	Institutional	Review	Board	at	the	University	of	Massachusetts	approved	

this	study	protocol.	All	participants	gave	written	and	verbal	informed	consent	

before	beginning	the	study.		

Experimental	Design		

	 This	study	included	4	visits	to	the	Energy	Metabolism	laboratory	and	a	1-

week	free-living	environment	period.	An	overall	schematic	of	the	study	design	is	

found	in	Figure	4.1.	During	the	first	visit,	participants	completed	a	health	history	

questionnaire	to	assess	factors	related	to	their	health	(e.g.	duration	of	diabetes	

diagnosis,	list	of	medications).	Afterwards,	resting	metabolic	rate	and	body	

composition	were	measured	in	each	participant.	Participants	then	returned	to	the	

laboratory	on	a	separate	visit	to	pick	up	their	physical	activity	monitor	(activPAL,	

PAL	Technologies	Ltd,	Glasgow,	Scotland),	and	food	for	the	free-living	environment	

period.	During	this	visit,	a	trained	researcher	inserted	a	continuous	glucose	monitor	

(iPro2,	Medtronic,	Northridge,	CA,	USA)	into	the	subcutaneous	fat	of	the	

participant’s	abdomen.	Participants	were	instructed	to	wear	the	activPAL	and	

continuous	glucose	monitor	during	the	entire	week.		

During	the	free-living	environment	period,	participants	performed	3	

experimental	conditions:	morning	walk	after	breakfast	(EX),	post-meal	breaks	from	

sitting	(BR),	and	sedentary	control	(CON).	Each	condition	was	separated	by	one	

washout	day	of	normal	activity	and	was	performed	in	a	counter-balanced	order.	To	

minimize	the	impact	of	diet	variability	on	daily	glycemic	control,	meals	were	

provided	to	participants	during	each	condition.	Depending	on	the	activity	volume	
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group	they	were	assigned	to	(low,	moderate,	high),	participants	were	instructed	to	

increase	their	physical	activity	in	the	EX	and	BR	conditions	by	20	minutes	(low	

activity	volume	group),	40	minutes	(moderate	activity	volume	group)	or	60	minutes	

(high	activity	volume	group).	In	the	EX	condition,	participants	went	on	a	brisk	walk	

after	breakfast	for	their	designated	amount	of	time	within	30	to	60	minutes	after	

breakfast.	During	the	BR	condition,	participants	performed	short	physical	activity	

breaks	every	30	minutes	for	2	hours	after	breakfast,	lunch	and	dinner	(12	total	

bouts	of	activity	spread	across	3	postprandial	periods).	The	duration	of	each	break	

from	sitting	was	1.67,	3.33	or	5	minutes	long	to	correspond	to	a	total	20,	40	or	60	

minutes	of	added	daily	physical	activity.	A	description	of	conditions	is	depicted	in	

Table	4.1.		The	goal	was	to	match	the	duration	of	total	physical	activity	in	the	BR	

condition	to	the	EX	condition.	In	the	CON	condition,	participants	followed	the	same	

dietary	control	and	were	asked	to	maintain	their	habitual	physical	activity	

behaviors.		

	 After	the	free-living	environment	period	was	over,	participants	returned	to	

the	laboratory	for	the	final	visit	and	returned	the	physical	activity	monitors.	The	

continuous	glucose	monitor	was	removed	by	a	trained	researcher	and	all	data	were	

downloaded	from	the	monitors.	

Resting	Metabolic	Rate		

Resting	metabolic	rate	was	measured	using	open	circuit	spirometry	

(TrueMax2400	Metabolic	Measurement	System,	Parvomedics,	Salt	Lake	City,	UT).	

Participants	entered	the	laboratory	fasted	for	at	least	12	hours	and	laid	supine	for	a	

period	of	10	minutes.	Afterwards,	resting	energy	expenditure	was	measured	for	15	
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minutes.	Resting	metabolic	rate	was	calculated	by	taking	the	average	of	the	last	10	

minutes	of	energy	expenditure	data.		

Body	Composition	

To	assess	body	composition	(fat	free	mass	and	fat	mass),	dual	energy	x-ray	

absorptiometry,	DEXA,	(Lunar,	Madison,	WI)	was	used.	Participants	laid	on	a	bed	

and	a	moveable	arm	passed	over	them	while	emitting	low	level	x-rays	of	two	

different	photon	energies.	The	x-ray	beams	pass	through	the	body	and	are	absorbed	

by	the	bones,	fat	tissue	and	lean	tissue.	The	DEXA	machine	measured	energy	from	

the	x-ray	beams	that	was	not	absorbed	by	the	body.	Based	on	known	x-ray	

absorption	rates	of	bone,	fat	tissue	and	lean	tissue,	a	report	was	generated,	

quantifying	bone	density	and	total	fat	free	mass	and	fat	mass	(21).	

Dietary	and	Medication	Control		

Participants	were	provided	all	food	for	each	of	the	conditions.	Resting	

metabolic	rate	was	multiplied	by	an	activity	factor	of	1.4	to	determine	daily	caloric	

needs	for	a	sedentary	individual	and	to	ensure	that	participants	were	approximately	

in	energy	balance	during	all	conditions	(8,	68).	A	combination	of	solid	foods	and	

non-caffeinated	beverages	were	given	to	participants	to	consume	in	3	discrete	

meals.	Each	meal	was	designed	to	contain	the	same	number	of	total	calories	to	have	

the	same	relative	contribution	from	fat,	carbohydrate	and	protein	(Table	4.2).		

Participants	were	instructed	to	consume	each	meal	within	30	minutes	and	to	

separate	meals	by	at	least	4	hours.	The	timing	of	the	meals	was	chosen	by	

participants	and	recorded	in	a	meal	timing	log.	Participants	used	the	meal	timing	log	
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to	replicate	meal	times	during	each	condition.	During	the	washout	days,	participants	

recorded	their	energy	intake	using	food	logs.		

Throughout	the	study,	participants	recorded	any	medications	or	

supplements	that	they	took	on	the	provided	medication	log.		

Continuous	Glucose	Monitoring		

We	used	an	iPro2	continuous	glucose	monitor	(Medtronic,	Northridge,	CA,	

USA)	to	measure	interstitial	glucose	concentrations.	A	trained	researcher	inserted	a	

small	disposable	glucose	sensor	into	the	participant’s	subcutaneous	fat	of	the	

abdominal	area	using	sterile	techniques.	The	glucose	sensor	measured	glucose	

concentrations	in	the	interstitial	fluid	using	glucose	oxidase	based	electrochemical	

methods	(39).	Participants	were	instructed	to	measure	capillary	glucose	

concentrations	3-4	times	per	day	around	meal	times	and	before	going	to	bed	to	

calibrate	the	interstitial	glucose	signal	to	blood	glucose	concentrations.			

At	the	end	of	the	free-living	environment	period,	data	were	downloaded	from	

the	monitor	using	the	web-based	iPro	Carelink	Software.	Before	analyzing	data	from	

continuous	glucose	monitors,	the	data	were	examined	for	completeness.	

Participants	with	less	than	75%	of	24	hour	CGM	data	during	a	condition	were	

excluded	from	final	analysis	(n=4).		

The	daily	glucose	response	was	characterized	by	the	following	measures:		

• Daily	mean	glucose	concentrations:	mean	glucose	of	24-hour	data	

• Total	area	under	the	curve:	trapezoidal	area	under	the	curve	of	24-hour	data	



	

66	

• Mean	amplitude	of	glycemic	action	(MAGE):	index	of	glycemic	variability	

calculated	using	automated	algorithms	published	by	Baghurst	and	colleagues	

(13)		

• Continuous	overlapping	net	glycemic	action	(CONGA4):	index	of	glycemic	

calculated	using	automated	algorithms	published	by	Baghurst	and	colleagues	

(13)	

• Standard	deviation	(SD):	standard	deviation	of	24-hour	glucose	data	

• Daily	duration	of	hyperglycemia:	daily	duration	of	time	glucose	>	10	mmol/L			

Using	the	meal	logs,	continuous	glucose	monitor	data	was	separated	by	

postprandial	periods.	A	postprandial	period	was	defined	as	the	3	hours	after	the	end	

of	a	meal.	During	this	time,	the	postprandial	response	was	characterized	by	the	

following	measures:		

• Pre-meal	glucose	concentration:	mean	glucose	of	the	15	minute	interval	

prior	to	beginning	of	the	meal	

• Incremental	area	under	the	curve	(iAUC):	trapezoidal	area	under	the	curve	

minus	area	under	pre-meal	glucose	concentration	

• Peak	postprandial	glucose	(PPG):	peak	glucose		

• Time	to	peak	glucose:	duration	to	peak	glucose	concentration		

• Rate	of	change	to	PPG:	peak	glucose	concentration	divided	by	time	to	

peak	glucose	

• Rate	of	decline	to	150	minutes:	rate	of	change	from	peak	glucose	to	

glucose	concentration	at	150	minutes		
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• Postprandial	duration	of	hyperglycemia:	duration	of	time	glucose	

>10mmol/L	

All	CGM	data	were	examined	for	completeness.	We	excluded	CGM	data	that	

was	less	than	75%	complete	for	each	period	of	interest	(24	hour	and	postprandial	

periods).	The	percent	of	complete	CGM	data	are	reported	for	each	condition	in	Table	

4.3.	

Physical	Activity	Monitoring		

Participants	wore	an	activPAL	on	the	midline	of	the	right	thigh	to	assess	

physical	activity	and	sedentary	behavior.	The	activPAL	uses	accelerometer-derived	

information	about	thigh	position	to	estimate	time	spent	in	different	body	positions	

(i.e.,	sitting/lying,	standing	&	stepping)	with	high	level	of	accuracy	(80,	103,	145,	

169).	Non-wear	time	was	eliminated	prior	to	analysis	of	the	activPAL	data.	The	

activPAL	generated	event	and	15	second	epoch	files	were	processed	using	SAS	9.4	

(SAS	Institute	Inc.,	Cary	NC).	Physical	activity	and	sedentary	behavior	was	

characterized	using	the	following	measures:		

• Time	spent	sitting	(total	minutes	and	%	of	wear	time)		

• Time	spent	standing	(total	minutes	and	%	of	wear	time)		

• Time	spent	stepping	(total	minutes	and	%	of	wear	time)		

• Duration	of	prolonged	sitting	(time	spent	sitting	in	bouts	of	>30	minutes)	

• Number	of	breaks	from	sitting	(transition	from	sitting	to	standing)		

Daily	physical	activity	and	sedentary	behavior	was	quantified	for	the	entire	

day	during	each	of	the	conditions	(EX,	BR	and	CON)	beginning	with	the	self-reported	

wake	time	on	the	day	of	the	condition	and	lasting	through	the	self-reported	wake	
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time	the	following	morning.	We	also	quantified	physical	activity	and	sedentary	

behavior	during	the	non-study	days	(normal	activity	day).	Data	with	less	than	10	

hours	per	day	were	considered	invalid	and	were	eliminated	from	the	dataset.	

Participants	had	a	range	of	1-4	valid	days	during	non-study	days	(mean:	2.8,	SD:	

0.8).	The	average	of	the	valid	days	was	determined	to	represent	their	normal	levels	

of	physical	activity	and	sedentary	behavior.		

Physical	activity	and	sedentary	behavior	was	also	characterized	during	each	

meal	period	(start	time	of	meal	through	3	hours	after	end	of	meal)	using	the	same	

measures	described	above.	This	process	was	repeated	for	all	meals	consumed	

during	each	of	the	study	days.	

Statistical	Analysis	

All	statistical	analyses	were	performed	using	the	statistics	package	and	

computing	language,	R	(R	Foundation	for	Statistical	Computing,	Vienna,	Austria,	

2008;	www.R-project.org).	Significance	for	all	statistical	tests	was	set	at	p	<	0.05.	All	

data	are	expressed	as	mean	±	standard	deviation	(SD)	unless	otherwise	noted.		

Differences	in	participant	characteristics	between	men	and	women	were	assessed	

by	analysis	of	variance	(ANOVA)	and	Tukey	HSD	post	hoc	testing.		Linear	mixed	

models	were	used	to	evaluate	differences	between	conditions	for	measures	of	

physical	activity,	sedentary	behavior	and	glucose	control	(24-hour	and	

postprandial).	Interactions	between	postprandial	glucose	control	and	meals	were	

also	performed.	In	a	subgroup	analysis	we	determined	the	effect	of	EX	and	BR	

among	individuals	with	high	postprandial	glucose	at	CON	(greater	than	50%	of	meal	

spent	in	hyperglycemia).		
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To	assess	the	dose-response	relationship	between	glycemia	and	physical	

activity,	we	subset	the	glucose	data	to	only	include	the	active	conditions	(EX	and	

BR).	Linear	mixed	models	were	then	used	to	assess	whether	there	were	differences	

in	glycemia	(24-hour	and	postprandial)	by	volume	of	activity	of	activity	performed.	

Volume	of	activity	was	quantified	as	the	activity	volume	group	participants	were	

assigned	to	(low,	moderate,	high)	and	by	the	percent	of	time	spent	stepping.	

Separate	linear	mixed	models	were	run	with	either	the	categorical	variable	(activity	

volume	group)	as	the	dependent	variable	or	the	continuous	variable	(percent	time	

spent	stepping).	In	all	models,	fit	linear	regression	models	to	evaluate	the	

relationship	between	change	in	physical	activity	and	change	in	glycemia.	

Additionally,	we	tested	for	an	interaction	between	condition	(EX	and	BR)	and	

volume	of	activity.	We	performed	the	same	subgroup	analysis	to	determine	the	dose	

response	relationship	among	individuals	with	high	levels	of	hyperglycemia	at	CON.				

Finally,	we	used	isotemporal	substitution	modeling	to	assess	the	impact	of	

substituting	sedentary	behavior	for	active	behaviors	(e.g.	standing	and	stepping)	on	

24-hour	and	postprandial	glucose	control.	Because	there	was	not	a	wide	range	of	

stepping	and	standing	in	this	study,	we	combined	standing	and	stepping	to	

represent	active	behaviors.	Each	model	contained	1	of	the	2	behaviors	(sitting,	

active	behavior)	as	independent	variables	and	one	of	the	indices	of	glucose	control.	

Isotemporal	substitution	models	were	performed	for	each	of	the	measures	of	

glucose	control	(e.g.	mean,	duration	hyperglycemia).			
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Results	

Participant	Characteristics		

Thirty	individuals	(14	men	and	16	women)	participated	in	this	study.	There	

were	no	significant	differences	between	men	and	women	for	age,	body	mass	index		

or	years	since	diabetes	diagnosis.	Men	had	significantly	higher	RMR	(p<0.01),	TDEE	

(p<0.001),	and	percent	body	fat	(p<0.0001)	compared	to	women	(Table	4.4).	All	

women	enrolled	were	postmenopausal.	

There	were	no	significant	differences	in	any	of	the	participant	characteristics	

between	the	assigned	activity	volume	groups	(Table	4.5).		Fat	mass	was	significantly	

higher	in	men	compared	to	women	in	the	moderate	activity	volume	group	

(p<0.0001).		

Medications	

Participants	took	a	variety	of	glucose	lowering	medications.	There	were	15	

individuals	who	only	took	biguanides	(metformin).	Eight	participants	took	

biguanides	in	combinations	with	other	glucose	lowering	agents.	Nine	individuals	

were	taking	sulfonylureas	either	exclusively	(n=2)	or	in	combination	with	other	

glucose	lowering	agents.	The	full	medication	breakdown	is	illustrated	in	Figure	4.2.		

Physical	Activity		

Mean	wear	time	during	condition	days	was	not	significantly	different	

between	any	of	the	conditions	(overall	mean:	906.9	±	137.6	minutes).	None	of	the	

physical	activity	summary	measures	were	different	between	CON	and	normal	

activity	days.		
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Total	stepping	time	was	significantly	higher	in	EX	and	BR	compared	to	

control	(Figure	4.3,	Figure	4.4),	and	there	were	no	differences	in	stepping	time	or	

step	count	between	EX	and	BR	(Table	4.6).	Number	of	breaks	from	sitting	(sit	to	

stand	transitions)	were	significantly	lower	in	EX	compared	to	CON.	While	

participants	did	not	increase	breaks	from	sitting	in	BR,	the	duration	of	prolonged	

sitting	was	significantly	lower	in	BR	compared	to	CON.	During	physical	activity	

conditions	(EX	and	BR),	sitting	and	standing	time	were	not	different	from	CON.	

Differences	in	Glycemia	During	Conditions		

24-hour	Glucose	Control		

Baseline	glucose	was	significantly	lower	in	BR	compared	to	CON	by	12.9	

mg/dL	(p=0.02).	Mean	and	peak	glucose	were	normalized	to	baseline	glucose	

concentrations.	Using	the	baseline	adjusted	glucose	measures,	there	were	no	

significant	differences	in	mean	glucose,	peak	glucose	or	area	under	the	curve	

between	any	of	the	conditions.	Daily	duration	of	hyperglycemia	was	lower	by	1.8	

hours	in	EX	compared	to	CON	(p=	0.06),	but	EX	was	not	significantly	different	from	

BR.			

Postprandial	Glycemic	Control		

Mean	continuous	postprandial	glucose	is	depicted	in	Figure	4.5.	Postprandial	

glucose	was	significantly	lower	in	EX	vs.	CON	for	the	following	summary	measures:	

duration	of	hyperglycemia	(reduced	by	11.4	±	4.0%,	p=0.005)	and	rate	of	decline	

from	peak	glucose	to	150-minute	glucose	(p=0.04).	There	were	no	significant	

differences	between	EX	vs.	CON	for	the	following	measures:	baseline	adjusted	mean,	
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peak	and	150-minute	glucose,	incremental	area	under	the	curve,	and	rate	of	

increase	from	baseline	to	peak	glucose.		

Postprandial	duration	of	hyperglycemia	was	lower	in	BR	and	CON	(reduced	

by	7.5	±	4.1%	p>0.1)	but	there	were	no	significant	differences	in	any	of	the	

postprandial	glucose	measures	between	BR	compared	to	CON.	There	were	also	no	

significant	differences	between	EX	compared	to	BR.		

In	contrast,	individuals	with	a	high	postprandial	hyperglycemia	at	CON	had	a	

significantly	shorter	duration	of	hyperglycemia	in	both	EX	and	BR	and	there	were	

no	differences	between	the	two	active	conditions	(Figure	4.6).	Duration	of	

hyperglycemia	was	not	different	between	CON,	EX	or	BR	among	individuals	with	

low	postprandial	hyperglycemia	at	CON.	

Meal	Specific	Effects		

There	was	no	interaction	between	condition	and	meal	for	any	of	the	

postprandial	glycemia	measures.	Overall,	compared	to	breakfast,	baseline	adjusted	

mean	glucose	and	peak	was	lower	and	daily	duration	of	hyperglycemia	was	shorter	

at	lunch	during	all	conditions	(p<0.01).	The	rate	of	increase	to	peak	glucose	was	

highest	at	dinner	(significantly	different	from	breakfast,	p<	0.0001)	and	was	lowest	

at	lunch	(significantly	different	from	breakfast	and	dinner	p<0.05).	Finally,	the	rate	

of	decline	from	peak	glucose	to	150-minute	glucose	was	significantly	higher	in	lunch	

and	dinner	compared	to	breakfast	(p<0.05).		

Dose-Responses	within	Physical	Activity	Conditions	

There	was	no	significant	interaction	between	condition	and	activity	volume	

for	either	the	24-hour	glucose	control	or	postprandial	glucose	summary	measures.	
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Because	there	was	no	interaction,	the	data	from	EX	and	BR	were	combined	to	

investigate	differences	across	activity	volume	groups	(low,	moderate	and	high).	We	

only	included	data	from	the	active	conditions	(EX	and	BR)	to	assess	the	dose	

response	relationship	between	activity	volume	and	glycemic	control.			

24-hour	Glucose	Control	

There	were	no	significant	differences	in	24-hour	glucose	control	between	

activity	volume	groups.	Additionally,	there	was	no	significant	associations	between	

change	in	stepping	time	and	change	in	any	measure	of	24-hour	glucose	control.		

Postprandial	Glucose	Control		

Baseline	adjusted	mean	(Figure	4.7),	150-minute	glucose	and	incremental	

area	under	the	curve	were	significantly	lower	in	the	moderate	compared	to	the	low	

activity	volume	group	(p<0.05).	Postprandial	duration	of	hyperglycemia,	baseline	

adjusted	peak	glucose,	and	the	rate	of	increase	or	decrease	were	lower	but	not	

significantly	different	between	the	moderate	and	low	activity	volume	group.	Overall,	

the	measures	of	postprandial	glycemia	in	the	high	activity	volume	group	were	lower	

than	the	low	activity	volume	group,	but	these	differences	were	also	not	statistically	

significant.	Finally,	there	were	no	differences	between	the	moderate	and	high	

activity	volume	groups	for	any	of	the	postprandial	glucose	measures.		

A	similar	dose	response	relationship	was	found	among	individuals	with	a	

high	duration	of	hyperglycemia	at	CON.	People	with	a	high	duration	of	

hyperglycemia	at	CON	had	significantly	lower	mean	postprandial	glucose	in	the	

moderate	and	high	activity	volume	group	compared	to	the	low	activity	volume	

group	(Figure	4.8).	We	did	not	observe	any	significant	differences	between	the	



	

74	

moderate	and	high	activity	volume	groups.	Finally,	there	were	no	significant	

differences	between	any	of	the	activity	volume	groups	among	individuals	with	low	

postprandial	glycemia	during	CON.		

Finally,	there	was	no	significant	association	between	change	in	daily	steps	

and	change	in	postprandial	glucose	(Figure	4.9)	or	any	of	the	postprandial	glucose	

control	measures.		

Reallocating	Physical	Activity	and	Sedentary	Behaviors	

	 There	was	no	significant	effect	of	reallocating	sitting	with	standing	or	

stepping	on	any	of	the	measures	of	24-hour	glucose	control.		

	 The	isotemporal	substitution	models	yielded	3	significant	results	for	

postprandial	glucose	control.	Reallocating	30	minutes	of	sitting	with	an	additional	

30	minutes	of	non-sitting	behaviors	(e.g.	standing	or	stepping)	was	associated	with	

a	reduction	in	postprandial	incremental	area	under	the	curve	(14.1%	difference	

(CI:-1.0-29.2);	p=0.06)	and	a	reduction	in	3	hour	postprandial	glucose		(40.6%	

difference	(CI:	1.8-79.4);	p=0.04).	Additionally,	this	substitution	was	also	associated	

with	a	higher	rate	of	increase	to	peak	glucose	(14.0%	difference	(CI:	2.8-25.2);	

p=0.02).	

Discussion		

The	primary	purpose	of	this	study	was	to	determine	the	comparative	

effectiveness	of	increasing	physical	activity	by	continuous	walking	(EX)	or	by	

breaking	up	sitting	time	after	meals	(BR)	on	daily	and	postprandial	glucose	control	

in	a	free-living	environment.	While	we	found	that	there	were	no	significant	

differences	between	EX	and	BR,	EX	was	the	only	condition	to	significantly	shorten	
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daily	and	postprandial	duration	of	hyperglycemia	for	all	volumes	of	activity.	We	also	

sought	to	determine	the	dose-response	relationship	between	physical	activity	and	

glycemic	control	and	found	that	the	moderate	dose	of	activity	(40	minutes)	resulted	

in	the	most	favorable	postprandial	glucose	responses	for	the	EX	and	BR	conditions.	

Interestingly,	in	our	subgroup	analysis,	both	EX	and	BR	significantly	lowered	

duration	of	hyperglycemia	in	individuals	with	a	high	duration	of	postprandial	

duration	of	hyperglycemia.	Additionally,	the	moderate	and	high	dose	of	activity	

lowered	mean	postprandial	glucose	concentrations	in	these	individuals.		

An	essential	element	to	the	design	of	this	study	was	participant	compliance	

to	study	conditions.	According	to	our	objectively	monitored	data,	the	study	

conditions	were	executed	well	by	participants	without	researcher	supervision.	

Steps	were	increased	in	the	EX	and	BR	conditions	compared	to	CON	and	were	not	

significantly	different	from	each	other,	indicating	that	participants	increased	their	

total	physical	activity	similarly	in	both	active	conditions.	Prolonged	sitting	(duration	

of	sitting	in	bouts	greater	than	30	minutes)	was	lower	in	the	BR	condition,	but	

participants	did	not	increase	their	daily	frequency	of	breaks	from	sitting	in	a	day.	It	

is	likely	that	participants	performed	their	physical	activity	breaks	from	sitting	at	the	

same	time	as	their	activities	of	daily	living	(doing	laundry,	meal	preparation,	

bathroom	breaks).	Importantly,	because	physical	activity	in	CON	was	not	

significantly	different	from	the	normal	activity	days,	we	can	be	confident	that	the	

control	condition	is	representative	of	our	participant’s	habitual	behavior.	Since	we	

carefully	controlled	dietary	intake	during	the	study	days,	we	are	confident	that	the	
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changes	in	glycemic	control	are	due	to	differences	in	physical	activity	and	sedentary	

behavior	in	our	participants.	

Effects	of	Physical	Activity	

Overall,	we	observed	modest	reductions	in	postprandial	glycemic	control	in	

the	EX	condition.	Because	the	magnitude	of	the	effect	during	exercise	was	so	small,	

we	were	unable	to	detect	differences	between	the	EX	and	BR.	While	there	were	no	

significant	differences	between	EX	and	BR,	BR	was	not	significantly	lower	than	the	

CON	condition.	There	are	2	major	reasons	that	may	explain	the	modest	effects	of	the	

current	intervention:	total	and	prolonged	sitting	had	a	greater	negative	impact	on	

glycemic	control	and	exercise/physical	activity	stimulus	was	not	high	enough.		

This	study	was	designed	to	decrease	the	amount	of	prolonged	sitting	

(defined	as	>	30	minutes).	While	our	participants	had	a	shorter	duration	of	daily	

prolonged	sitting,	the	intervention	did	not	change	total	daily	sitting	or	increase	the	

frequency	of	breaks	from	sitting.	Previous	studies	that	have	found	significant	

glucose	lowering	effect	of	taking	breaks	from	sitting	either:	(1)	increased	the	

number	of	breaks	from	sitting	time	relative	to	control	(56,	62,	136)	or	(2)	

dramatically	decreased	total	sitting	time	(63,	166,	173).	It	is	well	established	that	

sitting	time	has	a	negative	impact	on	glucose	regulation	and	insulin	sensitivity	

(166).	Regularly	interrupting	sitting	time	has	been	proposed	to	negate	some	of	the	

hazards	of	prolonged	sitting	time	(57).	However,	based	on	our	results	in	the	BR	

condition,	simply	reducing	the	total	duration	of	prolonged	sitting	is	not	enough	to	

make	a	meaningful	impact	on	postprandial	glycemia	in	the	free-living	environment.	
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It	is	not	clear	whether	increasing	the	total	number	of	breaks	from	sitting	per	day	

would	significantly	impact	glycemia.		

On	the	other	hand,	the	increased	prolonged	sitting	in	the	EX	condition	may	

have	counteracted	some	of	the	benefits	of	continuous	exercise.	The	negative	impact	

of	sitting	could	potentially	explain	our	observation	of	a	modest	benefit	of	walking	

after	breakfast.	Our	previously	published	work	(25)	as	well	as	others	(63)	have	

shown	that	high	amounts	of	sitting	during	a	day	with	a	bout	of	exercise	can	

minimize	the	benefits	of	that	exercise	bout	on	glucose	and	insulin.	Duvivier	et	al.	

have	also	shown	that	replacing	1	hour	of	sitting	with	vigorous	exercise	was	not	

enough	to	overcome	the	insulin	resistance	induced	by	sitting	(63).	Taken	together,	

the	negative	effects	of	long	durations	of	sitting	in	our	subjects	may	have	trumped	

the	glucose	lowering	benefits	of	light	physical	activity	and	also	minified	the	glucose	

benefits	of	continuous	exercise.	

The	characteristics	of	our	exercise	and	physical	activity	bouts	(e.g.	intensity	

and	duration)	may	also	explain	the	modest	benefits	we	observed	in	daily	and	

postprandial	duration	of	hyperglycemia.	In	contrast	to	previous	studies,	we	did	not	

observe	any	differences	in	daily	mean	glucose	or	24-hour	area	under	the	curve	with	

an	exercise	bout.	Van	Dijk	and	colleagues	(180)	found	that	a	45-minute	bout	of	

either	aerobic	or	resistance	exercise	reduced	mean	daily	glucose	from	9.6	to	8.6	

mmol/L.	Additionally,	duration	of	hyperglycemia	was	reduced	by	33±11%	and		

35±7%,	respectively.	Our	intervention	shortened	the	duration	of	hyperglycemia	

only	by	11.4	±	4.0%	and	did	not	affect	mean	glycemia.	Participants	in	our	study	

were	unsupervised	whereas	the	exercise	bout	in	the	above	mentioned	study	was	
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performed	in	a	laboratory	at	a	set	intensity	(50%	of	max	watts).	To	simulate	a	real	

world	environment,	our	participants	were	given	general	instructions	on	the	

intensity	of	their	exercise	(e.g.	“walk	at	a	brisk	pace”	“you	should	be	able	to	easily	

carry	on	a	conversation	with	someone	else	as	you	walk”).	Because	we	did	not	give	

strict	exercise	intensity	limits,	the	exercise	intensity	was	likely	not	very	high	and	as	

a	result,	we	may	have	only	observed	modest	reductions	in	daily	and	postprandial	

glucose.	

In	our	subgroup	analysis,	we	found	that	the	glucose	lowering	effect	of	EX	and	

BR	were	both	significant	in	the	individuals	with	high	glycemia	in	the	CON	condition.	

Terada	et	al.	demonstrated	that	the	strongest	predictor	of	the	capillary	blood	

glucose	in	response	to	exercise	is	the	pre-exercise	blood	glucose	concentration	

(170).		Our	findings	support	the	idea	that	largest	glucose	lowering	benefits	occur	

among	individuals	with	the	highest	initial	glucose	concentrations	in	the	CON	

condition.	Further,	among	these	individuals,	a	continuous	bout	of	exercise	or	

purposeful	physical	activity	breaks	from	sitting	are	equally	effective	to	lower	

postprandial	glucose	concentrations.	Thus,	whether	a	continuous	bout	of	exercise	or	

light	physical	activity	breaks	from	sitting	is	recommended	to	manage	postprandial	

glycemia	may	depend	on	the	baseline	levels	of	postprandial	glycemia.	

Unexpected	Dose-Response	Relationships	

Our	secondary	aim	was	to	determine	whether	a	dose-response	relationship	

exists	between	postprandial	physical	activity	and	postprandial	glycemic	control.	

After	analyzing	the	dose	of	activity	by	the	assigned	activity	volume	group	we	

identified	that	the	moderate	dose	resulted	in	the	greatest	reductions	in	postprandial	
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glycemia.	Surprisingly,	the	highest	dose	(60	minutes	of	additional	physical	activity)	

did	not	significantly	lower	postprandial	glucose	compared	to	the	low	group	(20	

minutes)	and	it	was	not	significantly	different	compared	to	the	moderate	dose	

either.	Only	in	our	subgroup	of	individuals	with	high	levels	of	postprandial	

hyperglycemia	at	CON	were	the	moderate	and	high	activity	volume	group	both	

significantly	lower	than	the	low	volume	group.	Individuals	with	low	durations	of	

hyperglycemia	showed	no	significant	lowering	of	postprandial	hyperglycemia	

between	any	of	the	activity	volume	groups.	Previous	studies	have	shown	significant	

reductions	in	postprandial	glycemia	with	60	minutes	of	continuous	exercise	(181).	

Based	on	the	data	from	the	activPAL,	participants	complied	to	study	conditions.	

While	it	is	puzzling	that	60	minutes	did	not	improve	glycemia	in	all	of	our	

participants,	it	is	encouraging	that	60	minutes	of	physical	activity	did	improve	the	

individuals	with	high	levels	of	hyperglycemia.		

We	did	not	find	a	significant	association	between	daily	steps	and	

postprandial	glucose	concentrations.	Since	the	activPAL	does	not	reliably	

discriminate	between	activity	intensities	(34),	we	were	unable	to	determine	

whether	there	were	significant	differences	in	activity	intensity	between	the	3	

volume	groups	which	may	have	masked	a	relationship.	More	likely,	expecting	that	

one	metric	of	physical	activity,	change	in	daily	stepping	time,	will	predict	changes	in	

glucose	may	be	an	overly	simplistic	view.	The	impact	of	stepping	may	depend	on	the	

behavior	being	replaced.	For	example,	replacing	30	minutes	of	standing	with	30	

minutes	of	stepping	may	have	a	different	health	impact	than	replacing	30	minutes	of	

sitting	with	stepping.		
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To	better	evaluate	different	combinations	of	behaviors	on	24-hour	and	

postprandial	glycemic	control	we	used	the	statistical	method	of	isotemporal	

substitution	modeling.	Our	simple	isotemporal	substitution	models	showed	that	

replacing	sitting	time	with	active	behaviors	(e.g.	standing	and/or	stepping)	was	

associated	with	lower	incremental	area	under	the	curve	as	well	as	3-hour	glucose	

concentrations.	This	result	would	be	expected	given	the	benefits	of	physical	activity	

for	lowering	postprandial	glucose.	Based	on	the	simple	isotemporal	model,	

replacing	sitting	time	with	active	behaviors	was	associated	with	a	higher	rate	of	

increase	to	peak	glucose.	We	would	have	predicted	that	physical	activity	would	

decrease	the	rate	of	change	to	peak	glucose	due	to	the	contraction	mediated	glucose	

uptake	during	the	time	that	glucose	is	rising.	Reducing	the	rate	of	change	to	peak	

glucose	is	thought	to	also	be	beneficial	for	lowering	the	risk	of	CVD	(43)	because	

high	rates	of	change	are	associated	with	increased	production	of	oxidative	stress	

and	lower	endothelial	function.	It	is	perplexing	that	replacing	sitting	time	with	

active	behaviors	was	associated	with	an	increase	in	the	rate	of	change	to	peak	

glucose.	These	contradictory	findings	may	be	a	result	of	the	variable	nature	of	an	

ecolabical	environment.	However,	because	the	clinical	relevance	of	the	rate	of	

change	of	glucose	concentrations	is	unknown,	these	results	should	be	interpreted	

with	caution.		

Applying	isotemporal	substitution	modeling	to	continuously	measured	

physical	activity	and	glucose	data	has	the	potential	to	inform	physical	activity	

recommendations	for	individuals	with	T2D.	This	type	of	analysis	can	be	very	useful	

not	only	in	identifying	behaviors	to	improve	glycemia,	but	also	to	avoid	promoting	
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ineffective	behaviors.	Future	research	should	work	to	generate	larger	datasets	with	

diverse	samples	of	individuals	with	a	range	of	physical	activity	and	sedentary	

behaviors.	Promoting	and	supporting	collaborations	in	this	area	will	be	critical	in	

developing	science	driven	and	individually	tailored	physical	activity	

recommendation	to	the	public	on	a	large	scale.		

Although	our	focus	in	the	present	study	was	glycemic	control,	it	would	be	

interesting	to	know	the	impact	of	these	interventions	on	insulin	sensitivity.	It	is	

possible	that	even	though	the	BR	condition	did	not	improve	glycemic	control	in	all	

participants,	there	was	a	benefit	in	improved	insulin	sensitivity.	In	a	previous	study	

in	our	laboratory,	we	improved	insulin	sensitivity	without	a	change	in	glycemia	

during	an	all	standing	day	compared	to	an	energy	balance	matched	all	sitting	day	in	

healthy	young	volunteers	(166).	Therefore	future	studies	investigating	both	

glycemic	control	and	insulin	sensitivity	would	yield	a	more	complete	picture	of	the	

health	effects	of	exercise	compared	to	breaks	from	sitting	interventions.		

This	was	the	first	study	to	investigate	the	glycemic	impact	of	manipulating	

physical	activity	and	sedentary	behavior	in	the	free-living	environment	in	a	

clinically	relevant	population.	A	major	strength	of	this	study	was	using	participants’	

normal	behavior	as	the	control	condition.	Previous	studies	in	this	area	have	

compared	physical	activity	interventions	to	extreme	sedentary	control	conditions	

(63,	183).	While	these	study	designs	are	valuable	in	investigating	mechanisms	and	

informing	future	research,	the	generalizability	to	everyday	life	is	limited.	Future	

work	investigating	the	health	effects	of	breaks	in	sitting	time	interventions	should	

consider	adopting	more	ecologically	relevant	control	conditions.		
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The	results	from	the	present	study	have	major	public	health	ramifications.	

We	have	shown	that	distributing	20-60	minutes	of	physical	activity	as	light	activity	

breaks	from	sitting	after	meals	only	results	in	a	significant	reduction	in	daily	

glycemic	control	among	individuals	with	high	levels	of	postprandial	hyperglycemia.	

For	the	individuals	in	this	study	who	had	a	less	robust	response,	the	dose	of	physical	

activity	breaks	in	sitting	may	need	to	be	much	higher	than	it	was	in	the	present	

study.	Others	who	have	shown	reductions	in	postprandial	glycemia	with	breaks	

from	sitting	either	dramatically	reduce	daily	sitting	time	or	increases	in	

standing/stepping	time.	These	strategies	are	difficult	to	implement	in	the	real	

world.		Light	physical	activity	has	been	used	effectively	in	the	free-living	to	lower	

glucose	concentrations	in	individuals	with	impaired	glucose	tolerance	(59)	and	T2D	

(183).	The	common	thread	between	these	studies	is	that	the	light	physical	activity	is	

performed	as	a	continuous	short	bout	(15	minutes)	after	meals.	Based	on	current	

data	available,	using	breaks	from	sitting	as	a	means	to	manage	high	glucose	

concentrations	is	likely	only	effective	for	individuals	who	already	have	high	

postprandial	glucose	concentration	and	should	be	recommended	after	an	

assessment	of	free-living	duration	of	hyperglycemia.	Future	studies	investigating	

the	benefits	and	effect	of	regular	short	walks	(“exercise	snacks"	(136))	after	meals	

as	a	means	to	manage	postprandial	hyperglycemia	in	diabetes	may	have	a	large	

public	health	impact.		

In	summary,	we	showed	that	a	continuous	bout	of	walking	after	breakfast	

confers	a	modest	improvement	in	postprandial	glycemia	in	the	free-living	

environment.	The	differential	glucose	lowering	impact	of	physical	activity	breaks	
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from	sitting	in	the	present	study	highlights	the	importance	of	applying	interventions	

performed	into	the	laboratory	in	the	free-living	environment.	Future	research	

studies	should	consider	utilizing	this	ecolabical	approach	to	determine	the	real	

world	impact	of	these	interventions	on	the	health	of	individuals.		
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Figures	

	

	
Figure	4.1:	Overall	Study	Design	
Participants	performed	the	conditions	(CON,	EX	and	BR)	on	Study	Day	1,	2	and	3.	
DEXA=	dual	energy	x-ray	absorptiometry,	CGM=	continuous	glucose	monitor		
	

	
Figure	4.2:	Hypoglycemic	medications	combinations	in	participants	
Biguanides:	Metformin;	Sulfonyureas:	Glipazide,	Glimepiride,	Glyburide;	
Thiazolidinediones:	Pioglitazone;	DPP4-inhibitors:	Lingaliptin,	Sitagliptin;	SGLT2-
inhibitors:	Canagliflozin;	Bile	Acid	Sequestrants:	Colesevelam	
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Figure	4.3:	Daily	Physical	Activity	During	Experimental	Conditions	
Time	spent	sitting,	standing	and	stepping	expressed	as	a	percent	of	total	wear	time	
in	experimental	conditions.	Data	are	presented	as	mean	±	95%	confidence	interval.	
#	compared	to	low	volume	CON	condition	p=0.03;	*	compared	to	low	volume	CON	
condition	p=0.10	
	

	
Figure	4.4:	Stepping	Time	after	Breakfast	
Time	spent	stepping	in	minutes	after	breakfast	in	all	participants	separated	by	
activity	volume	group.	Individual	data	points	are	plotted	as	filled	grey	circles	and	
lines.	Mean	stepping	for	each	activity	volume	group	by	condition	is	shown	by	black	
triangles.	
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Figure	4.5:	Postprandial	Continuous	Glucose	Monitor	Data	
Top:	Continuous	tracings	of	mean	interstitial	glucose	separated	by	meal	and	activity	
volume	group	(low,	moderate,	high).	CON	(red	circles),	EX	(green	triangles),	BR	
(blue	squares).		
Bottom:	Continuous	tracings	of	mean	interstitial	glucose	±	standard	error	of	the	
mean	(SEM)	separated	by	meal	and	activity	volume	group.	CON	(red	circles),	EX	
(green	triangles),	BR	(blue	squares).	
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Figure	4.6:	Postprandial	Duration	of	Hyperglycemia	in	People	with	High	
Duration	Hyperglycemia	at	Control	
Postprandial	duration	of	hyperglycemia	during	CON,	EX	and	BR	in	people	who	spent	
more	than	50%	of	meal	in	hyperglycemia	(black	circles).	Individuals	who	spent	less	
than	50%	of	meal	in	hyperglycemia	(black	triangles).	Data	are	presented	as	mean	±	
SEM.	*	significantly	different	from	control	(p	<	0.05).	
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Figure	4.7:	Beta	Coefficients	from	Mixed	Model	Regressions	
Beta	estimates	with	95%	confidence	intervals	from	mixed	model	regression	plotted	
relative	to	intercept	(low	activity	volume	group).	Actual	estimated	means	for	
Moderate	and	High	can	be	determined	by	adding	the	estimate	from	Low	to	the	
estimated	mean	for	the	respective	group.	*	significantly	different	from	low	activity	
volume	group	p	<	0.05.	
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Figure	4.8:	Dose	Response	for	People	with	High	and	Low	Glucose	at	Control	
Beta	estimates	with	95%	confidence	intervals	from	mixed	model	regression	plotted	
relative	to	intercept	(low	activity	volume	group).	Actual	estimated	means	for	
Moderate	and	High	can	be	determined	by	adding	the	estimate	from	Low	to	the	
estimated	mean	for	the	respective	group.		
a) Results	from	linear	mixed	model	including	individuals	with	high	duration	of	

hyperglycemia	at	control	*	significantly	different	from	low	activity	volume	group	
(p<0.001);	#	significantly	different	from	moderate	volume	group	(p=0.01),	
compared	to	low	(p=0.07)	

b) Results	from	linear	mixed	model	including	individuals	with	low	duration	of	
hyperglycemia	at	control.		
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Figure	4.9:	Dose-Response	Between	Change	in	Steps	and	Change	in	
Postprandial	Glucose	
Association	between	difference	in	change	in	daily	steps	and	change	in	mean	
postprandial	glucose	from	control	(CON).	Individual	data	points	plotted	from	BR	
(black	circles)	and	EX	(grey	triangles)	conditions.		
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Tables	

Table	4.1:	Description	of	Experimental	Conditions	within	each	Activity	Volume	
Group	

	 	 Activity	Volume	Group	
	 	 Low	 Moderate	 High	

Co
nd
it
io
n	

CON	 No	additional	activity		 No	additional	activity	 No	additional	activity	

EX	 1	bout	of	20	minutes	
after	breakfast	

1	bout	of	40	minutes	
after	breakfast	

1	bout	of	60	minutes	
after	breakfast	

BR	

4	bouts	of	1.67	minutes	
over	2	hours	after	
breakfast,	lunch	and	
dinner	

4	bouts	of	3.33	minutes	
over	2	hours	after	
breakfast,	lunch	and	
dinner	

4	bouts	of	5	minutes	
over	2	hours	after	
breakfast,	lunch	and	
dinner	

	
Table	4.2:	Relative	Macronutrient	Composition	by	Meal	(mean	±	SD)	
	 Carbohydrate	(%)	 Fat	(%)	 Protein	(%)	
Breakfast	 55.8	 30.0	 15.4	
Lunch	 54.7	 28.4	 16.6	
Dinner	 55.9	 29.2	 15.4	
	
Table	4.3:	Percent	of	Complete	Continuous	Glucose	Monitor	Data	
	 24-hour		 Breakfast	 Lunch	 Dinner	
CON	 80%	(n=24)	 77%	(n=	23)	 77%	(n=23)	 87%	(n=26)	
EX	 93%	(n=28)	 73%	(n=22)	 87%	(n=26)	 93%	(n=28)	
BR	 90%	(n=27)	 67%	(n=	20)	 83%	(n=25)	 93%	(n=28)	
Percent	of	individuals	with	>75%	continuous	glucose	monitor	data	for	each	defined	
period.	
	
Table	4.4:	Participant	Characteristics	(mean	±	SD)	
Men/Women	 14/16	
Age	 64	±	8.2	
Weight	(kg)	 197.2	±	36.9	
BMI	(kg/m2)	 31.7	±	5.4	
Years	since	menopause	(women	only)	 13.3	±	8.7	
Years	since	diabetes	 10.0	±	7.8	
RMR	 1766.9	±	388.9		
TDEE	 2425.9	±	561.7	
Body	fat	(%)	 38.6	±	10.0	
HbA1c	(%)	 7.4	±	1.1		
HbA1c=	Hemoglobin	A1c,	BMI=	Body	Mass	Index	
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Table	4.5:	Participant	Characteristics:	Activity	Volume	Group	(mean	±	SD)	
	
	 Low	(n=11)	 Mod	(n=10)	 High	(n=9)	
Age	(yrs)	 67.9	±	5.8	 61.2	±	9.8	 62.3	±	7.7	
Weight	(kg)	 89.4	±	17.2	 95.16	±	16.2	 83.75	±	16.2	
BMI	(kg/m2)	 32.1	±	4.6	 32.9	±	5.8	 30.1	±	6.1	
Years	since	menopause	 15.3	±	10.8	 9.3	±	6.2	 14.2	±	8.1	
Years	since	diabetes	 10.7	±	6.0	 7.7	±	5.1	 12.0	±	12.0	
RMR	 1593.1	±	337.8	 1970.8	±	412.9	 1751	±	340	
TDEE	 2253.8	±	460.8		 2606.8	±	705.8	 2436.5	±	474.1	
Body	fat	(%)	 41.7	±	6.9	 37.3	±	12.2	 36.3	±	10.6	
HbA1c	(%)	 7.5	±	1.3	 6.9	±	0.5	 7.7	±	1.2	
HbA1c=	Hemoglobin	A1c,	BMI=	Body	Mass	Index	
	
Table	4.6:	Total	Daily	Physical	Activity	(mean	±	SD)	
	
	 Control	 Exercise	 Breaks	 Normal	Activity	
Sitting	time	(min)	 591.0	±	144.8	 586.5	±	121.3	 566.8	±	114.5	 582.7	±	151.0	
Standing	time(min)	 225.4	±	130.0	 201.5	±	98.2	 230.3	±	122	 252.8	±	105.1	
Stepping	time	(min)	 85.4	±	42.6		 114.1	±	46.1*	 103.7	±	48.4*	 97.1	±	54.3	
Number	of	steps		 3157	±	1597.0	 4810	±	2125.7*	 4055	±	2431.2*	 3657	±	2317.4	
Sit	to	stand	transitions	 52.7	±	24.5		 43.8	±	12.5*	 53.8	±	18.3	 50.0	±	20.4	
Duration	of	prolonged	
sitting	(>30	min)	 316.1	±	183.2	 357.0	±	132.4		 233.7	±	129.5*	 317.0	±	182.3	

Wear	Time	(minutes)	 901.7	±	68.2	 902.1	±	91.3	 900.8	±	76.6		 932.6	±	95.7	
*	significantly	different	from	control	(p<0.05)	
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CHAPTER	5 	

SEX	DIFFERENCES	IN	POSTPRANDIAL	GLUCOSE	RESPONSES	TO	PHYSICAL	

ACTIVITY	AFTER	MEALS	

Introduction	

The	prevalence	of	diabetes	is	widespread	and	affects	15.5	million	men	and	

13.1	million	women	in	the	United	States	(143).	Despite	roughly	equal	prevalence	of	

diabetes,	the	risk	of	cardiovascular	disease	(CVD)	events	in	women	with	diabetes	is	

significantly	higher	compared	to	men	(148).	While	not	well	understood,	the	causes	

of	this	health	disparity	are	multifactorial,	including	sex	differences	in	the	underlying	

physiology	of	women	(e.g.	impact	of	hormones)	and	management	of	CVD	risk	factors	

(125,	148).	Previous	studies	have	shown	that	men	and	women	can	respond	

differently	to	therapies	that	reduce	CVD	risk,	such	as	aspirin.	Women	taking	low	

dose	aspirin	have	a	reduced	risk	of	stroke	but	no	change	in	the	risk	of	myocardial	

infarction	(152).	Men,	however,	have	the	exact	opposite	response.	Aspirin	reduces	

the	risk	of	myocardial	infarction	and	has	no	effect	on	the	occurrence	of	stroke	in	

men	(1).	This	comparison	highlights	the	existence	of	sex	differences	in	treatments	to	

reduce	the	risk	of	CVD	in	diabetes.	It	is	critical	to	investigate	sex	differences	in	other	

treatments	for	diabetes	to	effectively	manage	CVD	risk	in	women.	Exercise	is	used	

as	a	primary	treatment	strategy	in	the	prevention	of	CVD	in	diabetes,	but	men	and	

women	may	respond	differently	to	a	given	bout	of	physical	activity.		

There	are	very	few	studies	that	have	investigated	sex	differences	in	the	

metabolic	response	to	physical	activity.	Coon	and	colleagues	performed	a	meta-

analysis	of	self-management	strategies	for	people	with	type	2	diabetes	(T2D)	(50).	
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Interestingly,	women	who	exercised	were	less	likely	to	show	improvements	in	

Hemoglobin	A1c	(HbA1c)	than	exercising	men.	The	authors	speculated	that	women	

exercise	for	shorter	durations	or	at	lower	intensities.	While	women	do	tend	to	

participate	in	less	moderate	to	vigorous	physical	activity	than	men	(67),	there	is	

some	evidence	that	the	metabolic	effects	of	exercise	are	blunted	in	women	(137,	

154).	In	a	secondary	analysis	of	the	US	Diabetes	Prevention	Program,	men	had	

greater	reductions	in	2-hour	glucose	and	insulin	concentrations	as	well	as	

significantly	improved	insulin	sensitivity	compared	to	women	(137).	Both	men	and	

women	had	the	same	relative	weight	loss,	but	the	metabolic	health	benefits	were	

not	comparable.	Further,	others	have	shown	that	women	with	diabetes	may	need	to	

walk	more	than	men	to	gain	the	same	reductions	in	all-cause	mortality	risk	(154).	

Therefore,	the	activity	stimulus	required	to	induce	metabolic	health	benefits	may	be	

larger	for	women	compared	to	men.			

Numerous	studies	have	demonstrated	the	cardiovascular	and	metabolic	

(cardiometabolic)	consequences	of	sedentary	behavior	(e.g.	higher	postprandial	

glycemia,	reduced	insulin	sensitivity)	(61,	62,	166).		Overall,	individuals	with	T2D	

are	more	sedentary	than	individuals	without	diabetes	(45).	While	women	tend	be	

more	sedentary	than	men	from	adolescence	through	adulthood,	older	women	sit	

less	than	older	men	(120).	Few	studies	have	investigated	the	sex	specific	effects	of	

sitting	time	and	cardiometabolic	health.	Staiano	and	colleagues	(165)	showed	that	

sitting	time	was	significantly	associated	with	fasting	triglycerides	and	2-hour	

glucose	in	men	but	not	in	women.	In	contrast,	a	study	of	British	adults	found	a	

significant	association	between	self-reported	daily	sitting	time	and	fasting	insulin	
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only	in	women	(187).	Taken	together,	these	two	studies	suggest	that	there	may	be	

sex	differences	in	the	response	to	sedentary	behavior,	but	the	exact	relationships	

are	unclear	at	this	point.	

Recent	experimental	evidence	has	shown	that	interrupting	sitting	time	with	

light	physical	activity	reduces	postprandial	(after	a	meal)	glucose	and	insulin	

concentrations.	Postprandial	glycemia	is	strongly	associated	with	CVD	risk	and	

mortality	in	men	and	women	with	T2D	(37,	38).	Therefore,	lowering	glucose	

concentrations	after	meals	is	vital	in	managing	the	risk	of	CVD.	Little	attention	has	

been	given	to	investigating	sex	differences	in	the	response	to	interrupting	sedentary	

time	with	physical	activity.	Given	the	sex	differences	in	the	cardiometabolic	

responses	to	physical	activity	and	other	treatments	to	reduce	CVD	risk,	it	is	

plausible	to	expect	there	will	be	sex	differences	in	the	response	to	light	physical	

activity	interruptions	in	sedentary	time.	If	women	do	have	a	blunted	metabolic	

response	to	physical	activity	compared	to	men,	there	could	be	significant	

implications	for	managing	CVD	risk	factors	with	physical	activity.	Therefore,	the	

purpose	of	this	study	was	to	explore	sex	differences	in	the	glucose	response	to	

adding	physical	activity	in	the	form	of	a	continuous	bout	of	morning	walking	or	

short	bouts	of	activity	after	meals.	We	compared	the	glucose	response	to	equal	

volumes	of	physical	activity	across	sexes	to	determine	if	there	were	differences	in	

the	postprandial	glycemic	effect	of	activity	when	time	in	physical	activity	is	matched	

between	men	and	women.	Further,	we	investigated	the	dose-response	relationship	

between	physical	activity	and	postprandial	glycemia	in	men	and	women.		
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Methods	

The	methods	for	this	study	have	been	previously	described	in	Chapter	IV.	

Briefly,	we	collected	data	on	30	sedentary	individuals	with	T2D	(14	men,	16	

women).	Glucose	lowering	medications,	with	the	exception	of	insulin,	were	

permitted	in	this	study.	The	Institutional	Review	Board	at	the	University	of	

Massachusetts	Amherst	approved	this	study.	Prior	to	performing	any	study	

procedures,	participants	gave	their	verbal	and	written	informed	consent.		

This	study	took	place	in	both	the	laboratory	and	free-living	environment.	

Participants	visited	the	Energy	Metabolism	Laboratory	in	the	beginning	of	the	study	

to	have	their	resting	metabolic	rate	(RMR)	and	body	composition	measured	(by	dual	

energy	x-ray	absorptiometry,	DEXA).	Participants	returned	to	the	laboratory	on	a	

separate	occasion	to	pick	up	their	physical	activity	monitor	(activPAL,	PAL	

Technologies	Ldt,	Glasgow,	Scotland)	and	continuous	glucose	monitor	(iPro2,	

Medtronic,	Northridge,	CA,	USA).	Both	monitors	were	worn	for	one	week	in	their	

free-living	environment	where	they	were	asked	to	perform	3	experimental	

conditions:	CON,	EX	and	BR.	During	CON,	participants	maintained	their	normal	

physical	activity	behaviors.	In	the	EX	condition,	participants	were	asked	to	go	on	a	

morning	walk	after	breakfast	and	otherwise,	maintain	their	normal	behavior.	The	

BR	condition	asked	participants	to	perform	4	short	bouts	of	physical	activity	during	

the	2-hour	postprandial	period	after	each	meal.	Participants	were	asked	to	increase	

the	total	duration	of	physical	activity	in	EX	and	BR	by	a	low	(20	minutes),	moderate	

(40	minutes)	or	high	(60	minutes)	volume.	The	active	conditions	(EX	and	BR)	were	

designed	to	be	matched	on	total	time	within	each	activity	volume	group	(low,	
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moderate,	high).	At	the	conclusion	of	the	1-week	free-living	environment	period,	

participants	returned	the	physical	activity	monitor	and	continuous	glucose	monitor.		

Dietary	intake	was	strictly	controlled	during	all	experimental	condition	days	

(CON,	EX,	BR).	Resting	metabolic	rate	was	multiplied	by	an	activity	factor	of	1.4	to	

determine	total	daily	energy	intake	for	all	participants.	We	attempted	to	keep	

participants	energy	balance	to	avoid	the	confounding	variables	of	energy	

deficit/surplus	(8,	68,	85,	166).		

Continuous	Glucose	Monitor	Data		

Throughout	the	experimental	conditions,	participants	kept	a	log	of	the	timing	

of	breakfast,	lunch	and	dinner.	Using	a	customized	program	in	R	(R	Foundation	for	

Statistical	Computing,	Vienna,	Austria,	2008;	www.R-project.org),	we	separated	the	

continuous	glucose	monitor	data	by	postprandial	periods.	Each	postprandial	period	

was	defined	as	3	hours	after	the	self-reported	end	time	of	that	meal.	Postprandial	

periods	with	less	than	75%	of	data	were	excluded.	We	calculated	several	summary	

measures	of	postprandial	glycemia:	

• Pre-meal	glucose	concentration:	mean	glucose	of	the	15-minute	

interval	prior	to	beginning	of	the	meal	

• Incremental	area	under	the	curve	(iAUC):	trapezoidal	area	under	the	

curve	minus	area	under	pre-meal	glucose	concentration	

• Peak	postprandial	glucose	(PPG):	peak	glucose	concentration	

• Time	to	peak	glucose:	duration	to	peak	glucose	concentration		

• Rate	of	change	to	PPG:	peak	glucose	concentration	divided	by	time	to	

peak	glucose	
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• Rate	of	decline	to	150	minutes:	rate	of	change	from	peak	glucose	to	

glucose	concentration	at	150	minutes		

• Postprandial	duration	of	hyperglycemia	(DH):	duration	glucose	

>10mmol/L	

To	compare	postprandial	glucose	responses	between	EX	and	BR,	we	

calculated	the	daily	postprandial	glucose	responses	for	each	of	the	glucose	summary	

measures.	We	calculated	the	mean	of	each	postprandial	glucose	response	measure	

(e.g.	iAUC,	duration	of	hyperglycemia)	of	all	of	the	meals	within	a	condition.	

Physical	Activity	Data	

Using	the	activPAL,	we	were	able	to	assess	free-living	physical	activity	and	

sedentary	behavior	with	a	high	degree	of	accuracy	(80,	103,	145,	169).	The	activPAL	

data	were	processed	using	SAS	9.4	(SAS	Institute	Inc.,	Cary	NC).	We	eliminated	non-

wear	time	prior	to	analyzing	the	activPAL	data.	The	activPAL	generated	event	and	

15-second	epoch	files	were	used	to	determine	the	following	summary	measures	of	

physical	activity	and	sedentary	behavior:	

• Time	spent	sitting	(total	minutes	and	%	of	wear	time)		

• Time	spent	standing	(total	minutes	and	%	of	wear	time)		

• Time	spent	stepping	(total	minutes	and	%	of	wear	time)		

• Duration	of	prolonged	sitting	(time	spent	sitting	in	bouts	of	>30	

minutes)	

• Number	of	breaks	from	sitting	(transition	from	sitting	to	standing)		

We	quantified	daily	physical	activity	and	sedentary	behavior	during	each	of	

the	experimental	conditions	and	on	all	other	days	participants	were	not	required	to	
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follow	any	study	conditions	(NORM).		In	order	for	data	to	be	counted,	participants	

were	required	to	wear	the	activPAL	for	at	least	10	hours	per	day.	Invalid	days	were	

eliminated	from	the	dataset.	

Statistical	Analysis	

We	performed	all	statistical	analyses	using	the	R-software	package.	

Significance	levels	were	set	at	p	<	0.05.	All	data	are	expressed	as	mean	(95%	

confidence	interval)	unless	otherwise	noted.	Differences	in	participant	

characteristics	between	men	and	women	were	assessed	by	analysis	of	variance	

(ANOVA)	and	Tukey	HSD	post	hoc	testing.	We	used	linear	mixed	models	with	

repeated	measures	to	determine	sex	differences	in	mean	postprandial	glucose	

responses	and	differences	in	physical	activity	during	the	control	condition.	Finally,	

we	investigated	the	interaction	of	sex	in	the	dose	response	relationship	between	

physical	activity	and	postprandial	glycemia.		

Results	

Participant	Characteristics		

As	previously	reported,	men	had	a	significantly	higher	RMR	and	total	daily	

energy	expenditure	and	a	lower	percent	body	fat	than	women.	There	were	no	other	

significant	differences	in	participant	characteristics	(Table	5.1).	Finally,	all	women	

who	participated	in	this	study	were	postmenopausal.	

Medications		

Overall,	the	proportion	of	individuals	taking	biguanides	was	equivalent	

between	men	(n=7)	and	women	(n=8).	There	were	more	women	(n=3)	who	were	
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not	taking	any	glucose	lowering	medications	than	men	(n=1).	A	complete	depiction	

of	medications	can	be	found	in	Figure	5.1.	

Physical	Activity		

	 There	were	significant	differences	between	men	and	women	in	physical	

activity	and	sedentary	behavior	during	the	NORM	days.	Women	spent	less	time	

sitting	per	day	(106.5	minutes	(CI:	24.4-188.6),	p=0.01)	and	more	time	standing	per	

day	than	men	(86.1	minutes	(CI:	29.6-142.7,	p=0.002).	Finally,	there	were	no	

differences	in	daily	stepping	time	between	men	and	women	during	the	NORM	days	

(Figure	5.2).	There	were	no	significant	differences	in	physical	activity	or	sedentary	

behavior	between	the	NORM	days	and	CON.	There	were	also	no	differences	in	wear	

time	between	men	and	women.	

There	were	no	sex	differences	in	the	change	in	physical	activity	or	sedentary	

behavior	between	conditions.	Both	men	and	women	significantly	increased	their	

daily	stepping	time	in	EX	and	BR	compared	to	CON	(Figure	5.3)	and	there	were	no	

differences	in	stepping	time	between	EX	and	BR.	Additionally,	there	total	sitting	or	

standing	time	were	not	different	between	any	of	the	conditions.	Prolonged	sitting	

(bouts	of	sitting	>30	minutes)	was	significantly	lower	in	BR,	but	participants	did	not	

increase	the	frequency	of	breaks	from	sitting.	Finally,	the	number	of	breaks	from	

sitting	was	lower	in	EX	compared	to	CON.					

Postprandial	Glucose	Responses:	Effect	of	Conditions	

Postprandial	duration	of	hyperglycemia	was	the	only	postprandial	glucose	

summary	measure	that	was	significantly	different	between	men	and	women.		

Women	had	a	significantly	shorter	duration	of	hyperglycemia	compared	to	men	at	
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control.	Further,	there	was	no	effect	of	EX	or	BR	compared	to	CON	among	the	

women	in	this	study.	On	the	contrary,	the	duration	of	hyperglycemia	among	men	

was	significantly	shorter	in	EX	and	BR	compared	to	control	(Figure	5.4).	There	were	

no	significant	differences	between	EX	and	BR	within	the	men.	As	previously	

reported	in	Chapter	IV,	individuals	with	a	long	duration	of	hyperglycemia	at	CON	

had	a	shorter	duration	of	hyperglycemia	in	the	EX	and	BR	conditions	independent,	

of	sex.	However,	individuals	with	low	postprandial	hyperglycemia	at	CON	also	

showed	no	significant	effect	of	EX	or	BR	compared	to	CON.		

Postprandial	Glucose	Responses:	Dose-Response	Relationships	

We	investigated	sex	differences	in	the	dose	response	relationship	between	

physical	activity	volume	groups	and	postprandial	duration	of	hyperglycemia.	There	

was	a	significant	interaction	effect	of	sex	in	our	dose-response	models	for	

postprandial	duration	of	hyperglycemia.	(Figure	5.5).	Among	the	men,	the	duration	

of	hyperglycemia	got	progressively	shorter	in	the	moderate	and	high	activity	

volume	groups,	but	only	the	high	volume	group	was	significantly	different	from	the	

low	volume	group	(p<0.05).	Again,	there	were	no	significant	differences	between	

the	activity	volume	groups	in	the	women.	A	similar	relationship	was	found	in	

individuals	with	a	high	duration	of	hyperglycemia	at	CON	(n=9).	People	with	a	high	

duration	of	hyperglycemia	had	a	shorter	duration	postprandial	glucose	in	the	

moderate	and	high	activity	volume	group	compared	to	the	low	activity	volume	

group	(p=0.08)	and	there	were	no	significant	differences	between	the	moderate	and	

high	activity	volume	groups.	Finally,	there	were	no	significant	differences	between	



	

102	

activity	volume	groups	among	individuals	with	low	postprandial	glycemia	during	

CON.		

Discussion	

The	primary	purpose	of	this	study	was	to	evaluate	any	sex	differences	in	the	

glucose	response	to	2	different	physical	activity	interventions	(continuous	walking	

and	post-meal	physical	activity	breaks	from	sitting).	Men	and	women	similarly	

increased	stepping	time	in	the	active	conditions	(EX	and	BR)	and	there	were	no	

significant	changes	to	sitting	or	standing	time	in	any	of	the	conditions.	Despite	men	

and	women’s	similar	increases	in	physical	activity,	their	glucose	responses	were	not	

the	same.	We	found	that	men	had	a	robust	response	to	both	active	conditions	and	

showed	a	predictable	dose-response	relationship.	On	the	contrary,	postprandial	

glycemia	in	women	did	not	change	in	the	active	conditions	and	no	significant	dose	

response	relationship	was	observed.	These	sex	differences	appear	to	be	primarily	

driven	by	the	high	duration	of	hyperglycemia	in	the	CON	condition	among	men.		

Despite	no	sex	differences	in	HbA1c,	the	duration	of	hyperglycemia	during	

the	control	condition	was	higher	in	men	compared	to	women.	This	sex	difference	in	

postprandial	duration	of	hyperglycemia	may	be	due	to	the	differences	in	their	

habitual	sitting	and	standing	time.	We	are	confident	that	physical	activity	and	

sedentary	behavior	in	the	CON	condition	is	representative	of	habitual	behavior	due	

to	the	lack	of	difference	between		NORM	days	and	the	CON	condition.	We	found	that	

women	in	the	present	study	sat	less	and	stood	more	than	the	men	in	their	habitual	

state.	These	behavioral	sex	differences	in	daily	sitting	time	are	supported	in	a	

representative	sample	of	US	older	adults	(120).	Sitting	is	well	established	to	
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negatively	impactt	postprandial	glucose	regulation	(61).	The	less	time	that	women	

spent	sitting	may	have	maintained	lower	durations	of	hyperglycemia	during	CON.	

However,	it	is	still	surprising	that		we	observed	differences	in	postprandial	glycemia	

given	that	there	were	no	sex	differences	in	HbA1c	(overall	average	HbA1c:	7.4	±	

1.1).	While	the	variations	in	HbA1c	concentrations	less	than	7.3	are	primarily	due	to	

postprandial	hyperglycemia,	(127)	it	is	possible	that	the	women	recruited	for	our	

study	had	more	issues	with	fasting	glucose	regulation.	It	is	clear	based	on	these	

results	that	using	HbA1c	as	a	criteria	for	matching	participants	on	postprandial	

glycemic	control	is	inadequate.		

Overall,	the	sex	differences	observed	between	conditions	and	in	the	dose-

response	relationship	in	this	study	can	be	primarily	explained	by	the	discordant	

levels	of	glycemia	between	men	and	women	in	the	CON	condition.	Terada	et	al.	

demonstrated	that	the	strongest	predictor	of	capillary	blood	glucose	in	response	to	

exercise	is	the	pre-exercise	blood	glucose	concentration	(170).		Our	findings	further	

the	idea	that	the	individuals	who	have	the	largest	glucose	lowering	benefits	are	the	

ones	who	have	the	highest	initial	glucose	concentrations	in	their	normal	behavioral	

state.	In	our	study,	the	majority	of	individuals	with	a	high	duration	of	hyperglycemia	

in	CON	were	men,	which	explain	the	robust	glucose	lowering	effects	we	observed	in	

the	men.	In	order	to	conclusively	determine	the	influence	of	sex	in	the	glucose	

response	to	exercise,	a	large	number	of	men	and	women	with	varying	levels	

hyperglycemia	are	needed.		

It	is	interesting	that	we	observed	a	dose	response	relationship	between	

activity	volume	and	duration	of	hyperglycemia	in	the	men	and	not	in	the	women.	



	

104	

These	data	are	in	agreement	with	previous	studies	that	have	found	that	a	bout	of	

exercise	is	less	effective	to	improve	metabolic	responses	in	women	compared	to	

men	(137,	154).	In	our	participants,	it	is	possible	that	the	women	may	have	required	

either	a	longer	duration	or	higher	intensity	of	activity	to	attain	the	same	benefits	as	

the	men.	However,	these	results	should	be	interpreted	with	caution	since	the	

duration	of	hyperglycemia	between	men	and	women	was	significantly	different	in	

the	CON	condition.		

The	use	of	a	clinically	relevant	participant	population	and	real	world	setting	

are	unique	strengths	to	this	study.	The	standardization	of	energy	intake	during	the	

conditions	allowed	for	the	effective	comparison	of	different	methods	to	increase	

physical	activity.	This	approach	that	we	term	ecolabical,	combined	essential	

elements	of	a	laboratory	controlled	study	to	an	ecologically	relevant	setting.	We	

utilized	a	minimally	invasive	tool	to	measure	glucose	in	the	free-living	environment	

to	better	understand	the	real	world	impact	of	different	physical	activity	

interventions	on	daily	glucose	concentrations.	Finally,	the	men	and	women	in	our	

study	were	well	matched	on	many	participant	characteristics	(e.g.	age,	BMI	and	

HbA1c).	However,	the	significant	differences	in	postprandial	glycemia	during	CON	

condition	between	men	and	women	limited	our	ability	to	investigate	the	effect	of	

sex	on	postprandial	glycemia.	To	ensure	an	even	distribution	of	high	and	low	

postprandial	glycemia,	future	studies	would	benefit	from	prescreening	postprandial	

glucose	concentrations	prior	to	enrolling	participants	in	their	study.	Additionally,	

while	men	and	women	were	matched	on	age,	all	of	the	women	enrolled	in	this	study	

were	postmenopausal	women.	To	completely	understand	the	potential	sex	
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differences	in	the	glucose	response	to	exercise,	future	studies	will	need	to	include	

men	and	women	of	varying	ages	and	hormonal	levels.		

In	this	comparison	of	continuous	exercise	and	post-meal	breaks	from	sitting,	

we	observed	a	significant	glucose	lowering	effect	of	activity	in	men	but	not	women.	

This	sex	difference	was	likely	driven	by	the	men’s	high	duration	of	hyperglycemia	

during	the	CON	condition.	Our	results	highlight	the	importance	of	matching	men	and	

women	on	daily	glycemia	in	order	to	effectively	investigate	potential	sex	differences.	

Future	studies	with	higher	statistical	power	are	required	to	provide	evidence	

demonstrating	whether	physical	activity	benefits	men	and	women	equally	for	the	

management	of	hyperglycemia.		
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Figures	

	
Figure	5.1:	Medications	by	Sex	
Count	of	each	medicate	on	combination	divided	by	men	(black)	and	women	(grey).		
Biguanides:	Metformin;	Sulfonyureas:	Glipazide,	Glimepiride,	Glyburide;	
Thiazolidinediones:	Pioglitazone;	DPP4-inhibitors:	Lingaliptin,	Sitagliptin;	SGLT2-
inhibitors:	Canagliflozin;	Bile	Acid	Sequestrants:	Colesevelam	
	
	

	

	
Figure	5.2:	Physical	Activity	During	Normal	Activity	Days:	Sex	Differences	
Percent	time	spent	sitting,	standing	and	stepping	during	the	normal	activity	days	
(NORM)	in	men	(black	circles)	and	women	(grey	triangles).	Data	are	presented	as	
mean	±	SEM.	#	significantly	different	from	men	(p	<	0.05)	
	

Biguanides

Sulfonylureas7

8

1
1

1
2

1 1 1 1 1 1

3

1

0

5

10

15

Big
uan

Biguan & DPP4-i

Biguan & Sulfa

Biguan,  S
ulfa & SGLT2-i

Biguan,  S
ulfa & TZD

Biguan,  S
ulfa, TZD, DPP4-i &

 BA Seq
Sul
fa

Sulfa & DPP4-i

No Medication

Medications

C
ou
nt

Sex
men

women

#
60

65

70

men women

P
er

ce
nt

 T
im

e

Percent Sitting

#

20

24

28

32

men women
Condition

 

Percent Standing

8

9

10

11

men women
 

 

sex
men

women

Percent Stepping



	

107	

	
Figure	5.3:	Change	in	Physical	Activity	from	Control:	Sex	Differences	
Change	in	percent	time	spent	sitting,	standing	and	stepping	from	CON	to	active	
conditions	(BR	and	EX)	in	men	(black	circles)	and	women	(grey	triangles).	Data	are	
presented	as	mean	±	SEM.	*	significantly	different	from	control	condition	in	both	
sexes	(p<0.01)	
	

	
Figure	5.4:	Sex	differences	in	the	Response	to	Exercise	and	Post-Meal	Breaks	
from	Sitting	
Duration	of	postprandial	hyperglycemia	(minutes)	during	each	condition	in	men	
(black	circles)	and	women	(grey	triangles).	Data	are	presented	as	mean	±	SEM		
*	significantly	different	from	CON	in	men	p	<	0.05	
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Figure	5.5:	Sex	Differences	in	Dose	Response	Relationship	
Dose	response	relationship	between	duration	of	hyperglycemia	and	activity	volume	
group	in	men	(black	circle)	and	women	(grey	triangles).	Data	presented	as	mean	±	
SEM.	*	significantly	different	from	low	activity	volume	group	in	men	(p<0.05).	
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Tables	

Table	5.1:	Participant	Characteristics	
	 Men	(n=14)	 Women	(n=16)	
Age	(yrs)	 60.9	±	10.1	 66.8	±	4.8	
Weight	(kg)	 94.7	±	16.1	 85.2	±	16.6	
BMI	(kg/m2)	 31.6	±	5.4	 32.2	±	5.6	
Years	since	menopause	 NA	 13.3	±	8.7	
Years	since	diabetes	 12.5	±	9.5	 8.0	±	5.5	
RMR	 2002.1	±	354.9	*	 1594.5	±	308.9	
TDEE	 2816.8	±	446.4	**	 2128.9	±	442.6	
Body	fat	(%)	 30.9	±	7.0	***	 45.4	±	6.8	
HbA1c	(%)	 7.4	±	1.1		 7.3	±	1.2	
HbA1c=	Hemoglobin	A1c,	BMI=	Body	Mass	Index	
*				p	=	0.01		
**			p=0.001	
***		p	≤	0.0001	
	
		
	 	
	
	



	

110	

CHAPTER	6 	

SUMMARY	AND	CONCLUSION	

Managing	daily	and	postprandial	hyperglycemia	is	critical	in	the	treatment	of	

type	2	diabetes	(T2D).	Exercise	is	generally	accepted	to	improve	glycemic	control,	

but	most	Americans	do	not	meet	current	physical	activity	recommendations.	In	fact	

spend	less	than	5%	of	waking	hours	in	moderate	to	vigorous	physical	activity	and	

the	majority	of	the	day	(60-70%)	is	spent	in	sedentary	behavior	(120,	176).	

Sedentary	behavior	has	a	detrimental	impact	on	postprandial	glycemia.	Recent	

laboratory	based	studies	have	shown	that	interrupting	sedentary	time	with	light	

physical	activity	lowers	postprandial	glucose	concentrations	(62).	However,	it	is	

unknown	whether	the	robust	benefits	demonstrated	in	the	laboratory	translate	to	

the	free-living	environment.	Further,	it	is	still	unclear	whether	the	potential	benefits	

of	breaks	from	sitting	in	a	free-living	environment	are	similar	to	the	established	

glucose-lowering	effects	of	continuous	moderate	to	vigorous	exercise.	This	

dissertation	directly	addressed	these	gaps	in	knowledge	by	continuously	measuring	

glucose	concentrations	during	and	after	a	laboratory	intervention	of	breaks	from	

sitting	in	T2D	(study	1).	Further	we	compared	the	effect	of	2	different	physical	

activity	interventions	(continuous	exercise	and	breaks	from	sitting)	to	lower	

glucose	concentrations	in	free-living	men	and	women	with	T2D	(study	2	and	3).	

Study	1	

In	2008,	Healy	and	colleagues	published	the	first	epidemiological	study	

showing	that	breaks	from	sitting	was	associated	with	better	cardiometabolic	health	

(89).	Since	then,	there	has	been	an	explosion	of	laboratory	based	studies	
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investigating	the	merits	of	interrupting	sitting	time	with	short	bouts	of	walking,	

cycling	and	standing	(10,	62,	92,	106,	107,	173).	Chapter	III	provides	the	first	study	

in	T2D	that	investigated	the	glycemic	effects	during	and	after	a	laboratory	

intervention	of	breaks	from	sitting	(either	walking	or	light	resistance	activities).	

There	are	2	major	contributions	from	this	study:	(1)	walking	or	resistance	activity	

breaks	from	sitting	similarly	lowered	daily	and	postprandial	glycemia	compared	to	

an	all	sedentary	control	and	(2)	these	glucose	lowering	effects	are	maintained	in	the	

free	living	environment	through	the	next	morning.	Previous	studies	using	regular	

walking	breaks	from	sitting	have	been	criticized	because	this	type	of	activity	

requires	participants	to	stop	what	they	are	doing	(e.g.	work,	watching	TV).	Standing	

breaks	from	sitting	allow	individuals	to	continue	the	task	at	hand,	but	provide	

modest	to	negligible	glucose	lowering	effects	(144,	173).	This	study	provides	an	

effective	stationary	activity	(light	resistance	activity)	to	lower	daily	glucose	

concentrations.	

The	use	of	continuous	glucose	monitoring	allowed	us	to	investigate	how	long	

the	glycemic	effect	of	the	laboratory	intervention	lasted	in	the	free-living	

environment.	The	concurrent	use	of	physical	activity	monitors	enabled	us	to	

account	for	physical	activity	and	sedentary	behavior	in	the	free-living	environment.	

We	observed	that	the	glucose	lowering	effects	of	both	types	of	physical	activity	

breaks	from	sitting	persisited	through	the	morning	of	the	next	day.	This	finding	can	

be	interpreted	as	either	(1)	breaks	from	sitting	have	a	lasting	glucose	lowering	

effect	or	(2)	the	detrimental	effects	of	prolonged	sitting	continue	for	many	hours	

after	a	bout	of	sitting	ends.	Like	most	laboratory	studies	to	date,	our	participants	in	
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the	control	condition	sat	uninterrupted	for	a	prolonged	period	of	time.	It	is	clear	

that	7	hours	of	sustained	sitting	is	not	representative	of	most	free-living	sedentary	

behavior.	In	order	to	understand	the	real	world	impact	of	interrupting	sitting	time	

with	light	physical	activity,	a	control	condition	more	representative	of	the	free-living	

sedentary	behavior	is	needed.		

Study	2	and	3	

To	address	the	limitations	of	study	1	and	previous	breaks	from	sitting	studies	

in	the	literature,	we	conducted	study	2	and	3	in	free-living	individuals	with	T2D.	We	

used,	what	we	term,	an	ecolabical	approach	to	maximize	the	translation	of	our	

findings.	This	approach	applied	the	essential	elements	of	laboratory	controlled	

studies	(standardized	meals)	in	an	ecologically	relevant	setting.		The	control	

condition,	therefore,	was	each	participant’s	sedentary	behavior,	which	included	the	

regular	interruptions	in	sedentary	time	that	occur	naturally	throughout	the	day	(e.g.	

bathroom	breaks,	meal	preparation).	Instead	of	removing	physical	activity	in	the	

control	condition,	our	participants	added	physical	activity	to	a	normal	day	in	the	

form	of	a	continuous	walk	after	breakfast	or	light	physical	activity	breaks	from	

sitting	after	meals.	Results	from	Chapter	III	indicated	that	both	walking	and		

stationary	resistance	activity	are	equally	effective	to	reduce	postprandial	glycemia.	

We	used	this	evidence	as	a	rationale	to	allow	participants	to	walk	or	perform	

stationary	resistance	activities	during	their	breaks	from	sitting.		

Chapter	IV	provides	evidence	that	in	free-living	individuals	with	T2D,	a	bout	

of	continuous	walking	after	breakfast	is	more	effective	to	lower	postprandial	

glucose	concentrations	than	post-meal	breaks	from	sitting.	However,	in	a	subgroup	
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of	individuals	(n=9)	with	a	high	duration	of	hyperglycemia	in	the	control	condition,	

we	found	that	walking	after	breakfast	and	post-meal	breaks	from	sitting	were	

equally	effective	to	reduce	postprandial	duration	of	hyperglycemia.		

The	influence	of	baseline	levels	of	hyperglycemia	on	the	glucose	lowering	

effects	of	physical	activity	is	an	important	contribution	with	real	clinical	

implications.	For	individuals	with	high	postprandial	hyperglycemia,	breaks	from	

sitting	may	be	an	effective	alternative	to	traditional	exercise	for	daily	glucose	

concentrations.	It	is	important	to	consider	that	there	may	be	other	health	benefits	of	

taking	physical	activity	breaks	from	sitting.	To	date,	the	majority	of	studies	have	

focused	on	the	glucose	lowering	effects.	There	have	been	a	few	studies	that	have	

investigated	the	impact	of	breaks	from	sitting	on	blood	pressure	and	vascular	

function	(106,	107,	174).	Before	recommending	breaks	from	sitting	as	a	global	

strategy	to	to	manage	T2D	and	prevent	future	complications,	more	studies	with	

comprehensive	assessments	of	cardiometabolic	health	are	needed.	Therefore,	with	

the	current	evidence	available,	we	would	not	recommend	breaks	from	sitting	as	a	

global	strategy	to	improve	the	health	of	individuals	with	T2D.		

For	those	with	lower	durations	of	hyperglycemia,	the	dose	of	breaks	from	

sitting	likely	needs	to	be	much	higher	in	order	to	yield	significant	glucose	lowering	

benefits.	Previous	studies	that	have	shown	a	benefit	of	breaks	from	sitting	either	by	

dramatically	reduced	sitting	time	or	increased	the	frequency	of	breaks	from	sitting.	

This	higher	dose	of	breaks	from	sitting	may	not	be	readily	adopted	by	sedentary	

individuals	with	T2D.	Exercise,	on	the	other	hand,	is	a	well-established	treatment	

option	to	improve	CVD	risk	factors	in	diabetes	(112).	Encouraging	continuous	
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exercise	to	manage	CVD	risk	in	those	individuals	with	both	high	and	low	durations	

of	hyperglycemia	is,	without	a	doubt,	an	important	message.	

We	also	determined	that	adding	a	moderate	amount	of	physical	activity	(40	

minutes)	resulted	in	the	lowest	mean	postprandial	glucose	concentrations	in	our	

participants.	Interestingly,	only	in	the	subgroup	of	individuals	with	high	levels	of	

postprandial	glycemia	did	the	60-minute	dose	of	activity	provide	a	significant	

glucose	lowering	effect.	Again,	the	finding	that	the	initial	level	of	hyperglycemia	

predicts	the	change	in	response	to	physical	activity	is	an	important	clinically	

relevant	contribution.		

Finally,	chapter	IV	provides	a	new	application	for	isotemporal	substitution	

modeling	to	identify	the	impact	of	substituting	different	behaviors	during	the	day	

(e.g.	replace	30	minutes	of	sitting	with	30	minutes	of	standing).	Previous	

epidemiological	studies	have	used	this	method	in	large	cross-sectional	datasets	to	

understand	the	impact	of	replacing	sedentary	time	with	physical	activity	on	general	

measures	of	glucose	and	insulin	metabolism	(e.g.	2-hour	glucose	concentrations,	

insulin	sensitivity)	(32).	Isotemporal	substitution	modeling	been	used	to	analyze	to	

datasets	that	have	concurrent	continuous	measures	of	an	exposure	(physical	

activity)	and	health	outcome	(daily	glucose).	Applying	isotemporal	substitution	

modeling	to	these	data	provide	a	unique	opportunity	to	determine	behavior	

substitutions	that	translate	to	meaningful	health	benefits.		

The	major	contribution	from	Chapter	V	(Study	3)	is	our	consideration	that	

men	and	women	with	T2D	may	respond	differently	to	the	same	physical	activity	

intervention.	We	found	that	the	glucose	lowering	effect	of	exercise	and	physical	
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activity	breaks	were	equivalent	in	men,	whereas	women	did	not	respond	to	the	

activity	conditions.	We	also	found	that	60	minutes	of	additional	physical	activity	

lowered	glucose	concentrations	in	the	men	but	no	dose	of	activity	lowered	glucose	

concentrations	in	the	women.	As	previously	noted,	the	sex	differences	observed	in	

this	study	were	driven	by	the	high	glucose	concentrations	in	men	during	the	control	

condition.	Interestingly,	men	and	women	were	matched	on	glycemic	control	(i.e.	no	

differences	in	HbA1c)	but	had	dramatically	different	postprandial	glucose	

concentrations.	This	study	highlights	the	importance	of	screening	participants	for	

varying	levels	of	postprandial	hyperglycemia.	The	results	from	Chapter	V	make	an	

important	contribution	to	the	limited	research	in	sex	differences	in	the	metabolic	

response	to	physical	activity.	Because	women	with	diabetes	have	a	

disproportionately	higher	risk	of	CVD	than	their	male	counterparts,	more	

systematic	studies	of	sex	differences	in	the	response	to	physical	activity	are	needed.		

	Conclusions	

This	dissertation	has	the	potential	to	significantly	influence	physical	activity	

recommendations	for	individuals	with	T2D.		Studies	1,	2	and	3	provided	evidence	to	

better	our	understanding	of	the	magnitude	and	timing	of	changes	in	glycemia	

induced	by	physical	activity	breaks	from	sitting	or	continuous	exercise	in	the	free-

living	environment.	Study	1	demonstrated	that	both	walking	and	resistance	

activities	result	in	lasting	reductions	in	glucose	concentrations	compared	to	7	hours	

of	uninterrupted	sitting.	To	our	knowledge,	Study	2	provided	the	first	direct	

comparison	of	breaks	from	sitting	and	continuous	exercise	on	daily	and	

postprandial	glycemia	in	the	free-living	environment.	Our	analysis	of	sex	differences	
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in	Study	3	indicated	that	individuals	with	high	postprandial	glucose	concentrations	

(which	were	primarily	men	in	this	study)	will	respond	equally	well	to	continuous	

exercise	or	physical	activity	breaks	from	sitting.		

Applying	our	ecolabical	approach	to	future	studies	has	the	potential	to	

enhance	our	understanding	of	the	dose	response	relationships	between	physical	

activity	and	daily	glycemic	control.	Results	from	studies,	like	the	ones	presented	in	

this	dissertation,	will	inform	future	physical	activity	guidelines	and	allow	for	specific	

recommendations	to	manage	glycemia	in	diabetes	with	physical	activity.		
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