Jun 22nd, 10:45 AM - 11:00 AM

Case Studies VI: Dynamics of the 2015 Spawning Migration of American Shad (Alosa sapidissima) in the Connecticut River

Jason M. Boucher
National Marine Fisheries Service

Richard S. McBride
National Marine Fisheries Service

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

https://scholarworks.umass.edu/fishpassage_conference/2016/June22/5

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Dynamics of the 2015 spawning migration of American shad (Alosa sapidissima) in the Connecticut River

Jason M. Boucher, PhD
Richard S. McBride, PhD

Fish Passage Conference 2016
June 22, 2016

2. Integrated Statistics
American shad (*Alosa sapidissima*)

- Range from Canada to the St. Johns River, Florida
- Home to natal river to spawn
- Latitudinal variability in parity:
 - St. Johns River, FL: 0%
 - York River: 23%
 - Connecticut River: 38%
 - St. John River, NB: 73%
Project Scope & Methods

- **Major goals**
 - Estimate & compare annual fecundity
 - Estimate spawning rates and batch fecundity
 - Estimate ages and parity (virgin/repeat)
 - Estimate condition

- **Aging and fecundity workup**
 - Aging
 - Scales by CT-DEEP (Jacque Benway)
 - Otoliths by MA-DMF (Scott Elzey)
 - Reproductive biology
 - Ovary histology (Mass Histology, E. Towle)
 - Oocyte size distribution (E. Towle)
 - Fecundity (E. Towle)
 - Condition by USGS (Steve McCormick)
Sampling Protocol & Locations

- Weekly from 4/30 – 6/30
- Two locations per week
- Sample from 0800 – 1300
- 30 females and 15 males
Fish Collected

- Total of 640 individuals:
 - 239 males
 - 401 females

<table>
<thead>
<tr>
<th>Location</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernon Dam</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>Cabot Power Station</td>
<td>78</td>
<td>45</td>
</tr>
<tr>
<td>Hadley Power Station</td>
<td>177</td>
<td>96</td>
</tr>
<tr>
<td>Lower River</td>
<td>28</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex</th>
<th>Fork Length</th>
<th>Body Weight</th>
<th>Somatic Weight</th>
<th>Gonad Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Means</td>
<td>Group</td>
<td>Means</td>
<td>Group</td>
</tr>
<tr>
<td>Female</td>
<td>450.56</td>
<td>a</td>
<td>1264.93</td>
<td>a</td>
</tr>
<tr>
<td>Male</td>
<td>403.03</td>
<td>b</td>
<td>828.75</td>
<td>b</td>
</tr>
</tbody>
</table>
Size Distribution

- Vernon Dam
- Cabot Power Station
- Hadley Power Station
- Lower River

Females
- Fork length of male American shad in 2015
- p < 0.05

Males
- Fork length of female American shad in 2015
- p > 0.05

- Body weight of male American shad in 2015
- p < 0.05

- Gonado weight of female American shad in 2015
- p < 0.05

- Gonado weight of male American shad in 2015
- p < 0.05
Otolith-Derived Ages

No significant difference in age between locations or time

- **Vernon Dam**
- **Cabot Power Station**
- **Hadley Power Station**
- **Lower River**

Mean age-at-maturity (Leggett & Carscadden 1978):

Females: 4.8
Males: 4.1

Mean

Females: Mean = 5.14
Males: Mean = 4.58

Age truncation

NOAA Fisheries

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 8
Repeat Spawners

<table>
<thead>
<tr>
<th>Location</th>
<th>Females</th>
<th>Males</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vernon Dam</td>
<td>6/3</td>
<td>1</td>
</tr>
<tr>
<td>Cabot Power Station</td>
<td>5/13</td>
<td>1</td>
</tr>
<tr>
<td>Hadley Power Station</td>
<td>5/19</td>
<td>2*</td>
</tr>
<tr>
<td></td>
<td>5/26</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6/18</td>
<td>1 (ds)</td>
</tr>
<tr>
<td>Lower River</td>
<td>4/30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5/5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5/6</td>
<td>1*</td>
</tr>
</tbody>
</table>

Ratio of repeat spawners:
- Total: 13:640 2%
- Females: 10:401 2.5%
- Males: 3:239 1.2%

Historical data:
- 38%
- 32%
- 46%
Connecticut River PAFs

<table>
<thead>
<tr>
<th>Study</th>
<th>Method</th>
<th>Annual Fecundity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leggett (1969)</td>
<td>Determinate</td>
<td>256,000</td>
</tr>
<tr>
<td>McBride et al (in prep)</td>
<td>Determinate</td>
<td>303,000 ± 73,400</td>
</tr>
<tr>
<td>Current study</td>
<td>Indeterminate</td>
<td>325,100 ± 11,300</td>
</tr>
</tbody>
</table>

Student's t-test, $P > 0.05$
Annual Fecundity Estimates

<table>
<thead>
<tr>
<th>Location</th>
<th>Potential Annual Fecundity (n)</th>
<th>Thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Johns River (FL)</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>York River</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Connecticut River</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>St. John River (NB)</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Miramichi River</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

U.S. Department of Commerce | National Oceanic and Atmospheric Administration | NOAA Fisheries | Page 12
“... intraspecies variation in reproductive characteristics represents a fine tuning of life history to long term features of the environment by natural selection.”
– Leggett & Carscadden (1978)
Acknowledgements

- **USGS**
 - Steve McCormick
 - Ted Castro-Santos
 - Shannon Bayse
 - Amy Regish

- **NMFS**
 - Wendy Gabriel
 - William McDavitt
 - Emilee Towle
 - Mark Wuenschel
 - Jakub Kircun
 - Robert Johnston

- **USFWS**
 - Michael Bailey
 - Ken Sprankle

- **CT DEEP**
 - Tom Savoy
 - Jacque Benway

- **MA DMF**
 - Scott Elzey

- **Holyoke Gas & Electric**
 - Richard Murray

- **First Light**
 - Robert Stira
 - Joe Lucas

- **Transcanada**
 - Donald Dionne
 - Jennifer Griffin
 - John Ragonese
 - Stephen Gottardi

- **Normandeau Associates**
 - Steve Leach
 - Brittney LaFlamme

- **Commercial Shad Fishermen**
 - John Rogers

- **Mass Histology**