Eels III: Assessment of Three Sonars to Evaluate the Downstream Migration of American Eels in the St. Lawrence River

Christopher W.D. Gurshin
Normandeau Associates

David J. Coughlan
Normandeau Associates

Anna-Maria Mueller
Aquacoustics, Inc.

Donald Degan
Aquacoustics, Inc.

Paul T. Jacobson
Electric Power Research Institute

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
Assessment of Three Sonars to Evaluate the Downstream Migration of American Eels in the St. Lawrence River

Wednesday, 22 June 2016
2016 International Conference on River Connectivity
Campus Center 168C, University of Massachusetts, Amherst MA USA

Christopher W.D. Gurshin, Ph.D.
David J. Coughlan
Normandeau Associates, Inc.

Anna-Maria Mueller, Ph.D.
Donald Degan
Aquacoustics, Inc.

Paul T. Jacobson, Ph.D.
Electric Power Research Institute
BACKGROUND

- Electric Power Research Institute (EPRI) facilitated the collaboratively funded Eel Passage Research Center (EPRC)
- To provide effective downstream passage of out-migrating adult American eels at hydroelectric facilities on St. Lawrence R.
- EPRC strategy: trap-and-transport eels downstream
- Need a sampling technique to evaluate guidance systems and monitor abundance/distribution
- What about sonar? This Study
OBJECTIVES
Sonar Mount System on Iroquois Dam Pier Nose

• Can sonar be used to:
 1. Estimate relative abundance of out-migrating eels,
 2. Determine their distribution, and
 3. Describe their approach behavior?

• Test 3 Sonars
 - **EK60**: Simrad EK60 Split-beam Echosounder (120 kHz)
 - **ARIS**: Sound Metrics ARIS Explorer Multibeam Sonar (1100/1800 kHz)
 - **M3**: Mesotech M3 Multi-mode Multibeam Sonar (500 kHz)
MULTI-PHASE APPROACH
3 Phases of Sonar Evaluation

• **Phase 1** – Installation and testing multiple sampling configurations

• **Phase 2** – Sonar measurements of known number and size of live eels tethered to surface floats and released at known locations/depths.
 1. Develop tether-and-release methods
 2. Test detectability at multiple ranges
 3. Randomized, single-blind target classification test
 4. Test acoustic vs. batch release counts

• **Phase 3** – Continuous monitoring of “wild” out-migrating eels
PHASE 1 - SUMMARY
Optimal System Design & Sampling Configurations

- Absorption loss too high at 1800 kHz
- ARIS Spreader lens doubles sampling volume & eels still visible
- Eel targets seen in M3 & ARIS at expected sampling coverage
- Tracking > 20 m possible, but ID unlikely
- Near-surface deployment too noisy
- Near-bottom has blind zones & shadows
- Motion artifact of long, fast moving targets can mimic “anguilliform” echo patterns
Motion artifacts distort the image to resemble an anguilliform “squiggle” that makes interpretation difficult:

- Alters echo shape over time

A long, fast moving, rigid object mimics the changing shape of an eel in typical anguilliform swimming motion:

- Leads to false positives

Factors:

- Target speed within a single frame
- Target orientation relative to the trajectory
- Maximum range (affects cycle period, i.e. ping rate within a frame)
MOTION ARTIFACT EXAMPLE
Ping & Echo Pattern Within Frame from Fast-moving Oblong Target

Image Credit: A.M. Mueller, Aquacoustics
PHASE 2: EXPERIMENTATION WITH TEST EELS
Developed method to release live eels tethered with surface float

- 30 eels
- 70-91 cm TL
- 1.3-2.4 kg
PHASE 2: TARGET CLASSIFICATION TEST
Randomized, Single-Blind Classification of ARIS Data

<table>
<thead>
<tr>
<th>ARIS Setting</th>
<th>Total Valid Releases</th>
<th>Eel</th>
<th>Fish</th>
<th>Eel Lure</th>
<th>PVC Pipe</th>
<th>Stick</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 48 beams, r = 2-18 m, -13° Tilt</td>
<td>13</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2. 96 beams, r = 2-12 m, -13° Tilt</td>
<td>15</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3. 48 beams, r = 10-36 m, -32° Tilt</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Manual Eel Classification of ARIS Data

Visual Inspection & Quality Score for Eel Identification

<table>
<thead>
<tr>
<th>Score</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Highly confident eel ID Eel shape & anguilliform motion</td>
</tr>
<tr>
<td>Q2</td>
<td>Reasonably confident eel ID; shape and/or anguilliform motion ambiguity</td>
</tr>
<tr>
<td>Q3</td>
<td>Uncertain; ambiguity in shape/motion</td>
</tr>
<tr>
<td>Q4</td>
<td>Reasonably confident non-eel ID</td>
</tr>
<tr>
<td>Q5</td>
<td>Highly confident non-eel ID</td>
</tr>
</tbody>
</table>

How accurate is Q1-Q2 vs Q1-Q3?

- Balancing Missed Detections vs False Positives
- Classification Experiment with Known Targets
EEL ID SCORE = Q1
76-cm live eel (ID 901) released at 6 m
EEL ID SCORE = Q3
130-cm stick released at r=10 m
EEL ID SCORE = Q5
1-m PVC Pipe
CLASSIFICATION TEST: EEL (Q1-Q3) ERROR RATE

Confusion Tables for Eel IDs Among Randomized Target Releases

Eel ID
- **Score**
 - Q1
 - Q2
 - Q3
 - Q4
 - Q5

Non-Eel ID
 - **Score**
 - Q1
 - Q2
 - Q3
 - Q4
 - Q5

Eel ID Confidence
- **HIGH**
- **LOW**

Non-Eel ID Confidence
- **HIGH**
- **LOW**

<table>
<thead>
<tr>
<th>Score</th>
<th>TRUE EEL</th>
<th>TRUE NON-EEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRUE (+)</td>
<td>FALSE (+)</td>
</tr>
<tr>
<td>Q1-Q3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>FALSE (-)</td>
<td>TRUE (-)</td>
</tr>
<tr>
<td>Q4-Q5</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td>88%</td>
</tr>
</tbody>
</table>

Setting 1
- 48 beams/ 2-18 m range
- -13° Down

Received “Ghost” Echo of Pier Nose 9 From Previous Ping

Setting 2
- 96 beams/ 2-12 m range
- -13° Down

Setting 3
- 48 beams
- -32° Down

INITIAL CLASSIFICATION SCHEME:
- Q1+Q2+Q3= EEL, Q4-Q5, Missed = NOT EEL

Score
- Q1
- Q2
- Q3
- Q4
- Q5

Confidence
- **HIGH**
- **LOW**

Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Non-Eel ID
- **TRUE EEL**
- **TRUE NON-EEL**
- **FALSE (+)**
- **FALSE (-)**

Score
- Q1
- Q2
- Q3
- Q4
- Q5

Confidence
- **HIGH**
- **LOW**

Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Non-Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Score
- Q1
- Q2
- Q3
- Q4
- Q5

Confidence
- **HIGH**
- **LOW**

Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Non-Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Score
- Q1
- Q2
- Q3
- Q4
- Q5

Confidence
- **HIGH**
- **LOW**

Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Non-Eel ID
- **TRUE EEL**
- **FALSE (+)**
- **FALSE (-)**

Normandeau Associates

Environmental Consultants

Aquacoustics
Classification Test: EEL (Q1-Q2) Error Rate

Confusion Tables for Eel IDs Among Randomized Target Releases

<table>
<thead>
<tr>
<th>Eel ID</th>
<th>Score</th>
<th>TRUE EEL</th>
<th>TRUE NON-EEL</th>
<th>Score</th>
<th>TRUE EEL</th>
<th>TRUE NON-EEL</th>
<th>Score</th>
<th>TRUE EEL</th>
<th>TRUE NON-EEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TRUE (+)</td>
<td>FALSE (+)</td>
<td></td>
<td>TRUE (+)</td>
<td>FALSE (+)</td>
<td></td>
<td>TRUE (+)</td>
<td>FALSE (+)</td>
</tr>
<tr>
<td>Q1-Q2</td>
<td>EEL ID</td>
<td>4</td>
<td>0</td>
<td>Q3-Q5</td>
<td>NON-EEL</td>
<td>0</td>
<td>Q3-Q5</td>
<td>NON-EEL</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80%</td>
<td>0%</td>
<td></td>
<td></td>
<td>33%</td>
<td></td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20%</td>
<td>100%</td>
<td></td>
<td>67%</td>
<td>100%</td>
<td></td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Preferred Classification Scheme:

Q1+Q2 = EEL, Q3-Q5, Missed = NOT EEL

Image Descriptions:

- **Setting 1:** 48 beams/2-18 m range, -13° Down
 - 78-cm Eel

- **Setting 2:** 96 beams/2-12 m range, -13° Down
 - Received “Ghost” Echo of Pier Nose 9 From Previous Ping
 - 80-cm Eel

- **Setting 3:** 48 beams, -32° Down
 - Base of Pier Nose 9

Notes:

- Received "Ghost" Echo of Pier Nose 9 From Previous Ping
- 78-cm Eel
- 80-cm Eel
- Base of Pier Nose 9

Environment:

- Setting 1: 48 beams/2-18 m range, -13° Down
- Setting 2: 96 beams/2-12 m range, -13° Down
- Setting 3: 48 beams, -32° Down
M3 EXAMPLE OF AN EEL
83-cm Eel (ID 931) at 9 m on 18 Sep 2015 (~12:13)
EXAMPLE OF EK60 ECHOGRAMS
Matched to known range and time

1.9 seconds (8 frames on M3)
-3.2 m change in range

Eel SED
TS min

Eel Tracks
Mean TS range

Eel SED
TS max

Proportion

Mean Target Strength (dB)

Passive Tracks

Eel Tag ID# 930

Eel Tag ID# 931

PVC Pipe (1 m x 1.5 inch)

Northern Pike 670 mm
PHASE 2: RANGE TEST
Released live tethered eels into beams at 5 range intervals

- 80-cm eel released at 5 m
- Detected at 9 m in 3 sonars

NOTE: Eel TL = 70-89 cm, tether lengths = 3-7 m
PHASE 2: RANGE TEST SUMMARY

- Targets were detected by all sonars at multiple ranges
- ARIS sonar identified eels:
 - 30% at 5 m
 - 50% at 10 m
- Accepting more uncertainty eels, 25% at 25 m were identified as eels
- M3 and EK60 sonars detected targets, ID was only possible with the knowledge of the range and time of tethered eel release
PHASE 3: RESULTS OF SONAR MONITORING
Continuous Monitoring of Out-migrating Eels at Iroquois Dam

- No eels in 15-22 July 2015
- 2 eels in 17-19 September
 1. ID Quality Score 1: 18Sep 2015 01:06 (after midnight)
 2. ID Quality Score 2: 18Sep 2015 04:16 (pre-dawn)
- Estimated lengths of 95 cm & 64 cm
CONCLUSIONS

Sampling Limitations & Sonar Performance

• St. Lawrence River is challenging
 – 1.7 to 2 m/s flow
 – Orders of magnitude higher abundance of debris and fish
 – Potential impact of high false positive error

• Motion artifacts decreases eel ID certainty, especially at increasing ranges

• Important to classify targets conservatively to avoid false positives

• 15-22 July: no eels

• 17-19 September: 2 eels @ night

• EK60 can detect eels, but eel ID difficult

• ARIS can provide ID at range < 18-20 m

• M3 has merit for tracking behavior, but not ID
ACKNOWLEDGEMENTS

• Field staff
• Ecological Specialties for I-beam fabrication
• Hunt Underwater Specialties
• Ontario Power Generation
• New York Power Authority
• EPRC Members
• USFWS & NYSDEC
• Simrad, Kongsberg, & Sound Metrics
EXAMPLE OF M3 AND ARIS AT >20 M RANGE
Released 79-cm eel with 4-m tether at nominal 25-m interval

(detected 21 m range)
EEL ID SCORE = Q2
80-cm live eel (ID 930) released at 7 m
EEL ID SCORE = Q4
1-m PVC Pipe released, motion artifact present