Jun 21st, 3:15 PM - 3:30 PM

Ocean Connections: European River Lamprey Lampetra fluviatilis Passage Efficacy at a Tidal Barrage Using a Navigation Lock as a Novel Fish Pass

S. Silva
Durham University

M. Lowry
Durham University

C. Macaya
Durham University

B. Barry
Durham University

E. Silva
Durham University

See next page for additional authors

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

http://scholarworks.umass.edu/fishpassage_conference/2016/June21/45

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Presenter Information
S. Silva, M. Lowry, C. Macaya, B. Barry, E. Silva, and M. Lucas
European River Lamprey *Lampetra fluviatilis* passage efficacy at a tidal barrage using a navigation lock as a novel fish pass

Silva, S; Lowry, M; Macaya, C; Barry, B., Silva, E & Lucas, M.
Introduction

- Lock-and-dam structures abundant around the world
 - Diadromous fishes specially affected
 - Affecting access to the whole basin
 - Using locks as fish passes potential alternative

- Aim of this study
 + Effectiveness of using locks at tidal barrages for European river lamprey passage
 + Attraction and passage by any other routes
Study site

- River Derwent (UK)
- Barmby Barrage first obstacle
- Relevant obstacle for lamprey passage (Lucas et al. 2009)
Barmby barrage

- **Causes:** Physical obstruction? Velocity barrier?
Background

- **Lock as a vertical slot fish pass**
 - ~40 cm gap between gates
 - ~4 hours per ebbing tide
 - Sluices remain open for several hours more
Experimental design

- Study split into 2 elements:
 - CAN lamprey pass through lock (PIT telemetry)
 - WILL they enter lock (acoustic telemetry)
Pit Telemetry

Eleven trials (~ 4 h per trial). N = 267 (10 radio tagged)

- % lamprey attempting
- Passage efficiency
- Time of passage
Acoustic telemetry (Will they use the lock?)

- 69 KHz
- n = 59 (> 380-390 mm)
- 1 at flooding tide, 2 at ebbing tide
- Range receivers ~100 m
RESULTS
PIT telemetry (lock passage)

- Efficiency of downstream PIT array: 90% (combined for both PIT arrays = 99%) - supported by radio telemetry observations

<table>
<thead>
<tr>
<th>Release site</th>
<th>Lampreys attempting per trial (%). Mean, SE</th>
<th>Passage efficiency per trial (%). Mean, SE</th>
<th>Passage from released per trial (%). Mean, SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock</td>
<td>93.3 ± 2.6 (80.0-100)</td>
<td>66.4 ± 5.9 (31.8-96.4)</td>
<td>62.7 ± 6.7 (29.7-96.4)</td>
</tr>
<tr>
<td>DSSlock</td>
<td>54.8 ± 7.3 (22.2-81.8)</td>
<td>78.1 ± 8.1 (31.8-100.0)</td>
<td>42.6 ± 7.6 (11.1-80.0)</td>
</tr>
</tbody>
</table>

YES, THEY CAN PASS THROUGH THE LOCK
Passage time of PIT tagged lamprey through the lock

<table>
<thead>
<tr>
<th>Release site</th>
<th>Release-</th>
<th>First lock-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First ups lock</td>
<td>SE</td>
</tr>
<tr>
<td>Lock</td>
<td>57.0</td>
<td>6.2</td>
</tr>
<tr>
<td>DSlock</td>
<td>64.1</td>
<td>8.7</td>
</tr>
<tr>
<td>Lock+DSlock</td>
<td>59.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>

![Graph](image.png)
21 out of 59 (36%) lamprey attempting to pass the barrage (based upon individual residence times at Derwent mouth, relative to group averages)
Acoustic telemetry

- Lamprey passing:
 - 16 out of 21 attempting: **76% obstruction passage efficiency!!**

- But:
 - 15 (out of 16) passing through the sluices!!!! (low attraction)
Acoustic telemetry

- Lamprey passing:
 - 16 out of 21 attempting: 76% obstruction passage efficiency!!
- But:
 - 15 (out of 16) passing through the sluices!!!! (low attraction)

Therefore:

YES, THEY CAN PASS THROUGH THE LOCK

but

NO, THEY DO NOT USE IT (THEY ARE NOT ATRACTED TO IT)
Factors affecting lamprey passage

- **Head**
 - Lower **head** when lamprey passed the lock (Mann Whitney U test, $p < 0.05$) (PIT)
 - Lower **head** when migrating to Derwent (Mann Whitney U test, $p < 0.05$) (Acoustic)
 - Higher time of passage with higher head (Pearson, $p < 0.05$) (PIT and Acoustic)

\[
y = 1.4265x - 0.0482 \\
R^2 = 0.62
\]
\[
y = 7.7397x^{1.9832} \\
R^2 = 0.69
\]
Factors affecting lamprey passage

- **Head**
 - Lower when lamprey passed the lock (Mann Whitney U, p < 0.05) (PIT)
 - Lower when migrating to Derwent (Mann Whitney U, p < 0.05) (acoustic)
 - Higher time of passage with higher head (Pearson, p < 0.05) (PIT and acoustic)

- **Tidal cycle**
 - Flooding tide: Sluices and lock close (not access nor attraction)

<table>
<thead>
<tr>
<th>Release tide</th>
<th>N</th>
<th>Attempting [n (%)]</th>
<th>Passing (n)</th>
<th>Obstruction pass. effic. (%)</th>
<th>Pass. from released (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flooding</td>
<td>24</td>
<td>3 (12.5%)</td>
<td>2</td>
<td>67</td>
<td>8</td>
</tr>
<tr>
<td>Ebbing</td>
<td>35</td>
<td>18 (51.4%)</td>
<td>14</td>
<td>78</td>
<td>40</td>
</tr>
</tbody>
</table>
Conclusions

- Lamprey can pass through locks
- Passage through sluices possible
- Specific conditions (more studies needed)
- Advantages of lock: less flow velocity (head split in two), less turbulence
 - Problem: attraction must be maximized
- Three main factors to maximize passage in tidal barriers:
 - **Access** (period of sluices-locks open)
 - **Discharge** (attraction)
 - **Low flow velocity** (< 1.3-1.5 m s⁻¹)
Thank you so much for your attention
Lamprey capture and tagging procedure

- Eel pot
- Sedating
- Measuring and weighting
- Tagging (PIT, acoustic, radio)
- Recovering (ca. 1h)
PIT telemetry *(can they pass through the lock?)*

- 32 mm PIT tag
- Two release points (within and downstream the lock)
- Eleven trials (~ 4 h per trial). $N = 257$
- Two PIT arrays (three loops per array)
- 10 radio tagged lamprey also released
Insulated copper multistrand wire used to form electromagnetic induction antenna
Lamprey passing the barrage (acoustic detections)