Pushing and Pulling I: Acoustically Guided Avoidance Responses in Three Invasive Carp Species

Daniel Zielinski
Minnesota Aquatic Invasive Species Research Center

Peter Sorensen
Minnesota Aquatic Invasive Species Research Center

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference
Acoustically guided avoidance responses in three invasive carp species

Daniel Zielinski & Peter Sorensen

Department of Fisheries, Wildlife, and Conservation Biology and Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, USA

June 20, 2016
The Problem – Asian Carp

- Silver and Bighead Carp
 - Highly fecund and fast growing
 - Disrupt aquatic food webs
 - Silver carp jump
- Not yet established in Upper Mississippi River
- Lock-and-Dams likely restrict passage
Blocking Silver and Bighead carp at Lock-and-Dams

Objectives:
1. Use acoustic deterrents to guide carp away from the lock
2. Modify gate operation to create velocity barrier
Acoustic deterrents – what do we know?

• Studies have examine broad scale responses
• Potentially taxon specific
• Alternative to physical barriers
 • At cost of lower efficacy

It is unclear what orientation mechanism is used to guide avoidance response

i.e. is the response random or directional?
Underwater Acoustics

- Sound is a longitudinal wave of vibrating fluid particles
- Results in a traveling pressure wave and local particle motion

Pressure waves emanating from a monopole source.

Local oscillation of particles. Note, particle motion vectors are orthogonal to pressure contours.
Fish Hearing

- Fish detect sound through the use of their Octavolateralis system
 - Inner-ear = accelerometer to detect particle motion
 - Swim Bladder = pressure transducer (Carp hearing specialization)

Source: Lesse Amundsen

Webb et al. 2009
Behavioral Response to Sounds

• Approach behaviors are guided by sound field without visual cues (Zeddies and others, 2010, 2012, 2014)

• Avoidance ≠ Approach

• Evidence of negative phonotaxis (Vetter et al. 2015, Wilson et al. 2008, 2011)
 • But movements have not been compared to either sound field component without visual cues

Trajectories of Allis shad avoiding a sound source in the dark (Wilson et al., 2011)

Silver carp ping-pong away from complex sounds (Vetter et al. 2015)
Laboratory Experiment

Objective: Characterize how silver, bighead, and common carp avoid a complex sound in the absence of visual cues

Q1: Are all three carp negatively phonotaxic in the absence to visual cues

Q2: What are the relative roles of sound pressure and particle motion
Experimental Design

- Expose each species to sound in darkness
- Repeat 150 s control and 150 s treatment
- Treatment: complex outboard motor sounds
 - Stressful to carp (Wysocki et al. 2006)
 - Silver carp avoid in lab (Vetter et al. 2015)
- Relate position and swimming trajectories to sound field
Results – Do carp avoid complex sound?

Common carp

Silver carp

Bighead carp

Key

- Treatment
- Control
Results – Do carp avoid complex sound?

• All three species exhibited >70% reduction in time spent near the speaker.
Results - What is the role of the sound field?

Analysis of orientation

What to expect?

- Zig-zag movements (spatial-temporal sampling)
- Direct movement away from speaker
- Constant orientation to particle motion vector
Results - What is the role of the sound field?

• Sound pressure gradient at maximum when fish turned away
Next Steps
• An array of 5 underwater speakers have been installed on the downstream lock gates of Lock and Dam #8 (MN-IA border)
• Monitor fish response (native and invasive) with high resolution sonar this summer
• Common carp as model species
This work was funded by:

Thank You

Contact me at ziel0064@umn.edu

Special Thanks to:
Peter Sorensen
Daniel Krause
Reid Swanson
Clark Dennis