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ABSTRACT

NANOSTRUCTURED POLYMER ELECTROLYTE MEMBRANES FOR FUEL
CELL APPLICATIONS: STRUCTURE vs PROPERTIES

MAY 2008

AKINBODE I. ISAACS-SODEYE, B.Sc, OBAFEMI AWOLOWO UNIVERSITY

M.S., UNIVERSITY COLLEGE LONDON

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D.. UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Samuel P. Gido

This dissertation explores various topics within the theme of nanosrtuctured

polymer electrolyte membranes having controlled morphology, and their resulting

properties. Chapter 1 gives an introduction to the field of Polymer electrolyte

membranes(PEM) in its current state, and an overview of the work done. In chapter 2,

relatively inexpensive block copolymer ionomers of fluorinated poly(Isoprenej-/:»/<7cA:-

sulfonated poly(Styrene) (FISS) with various sulfonation levels, in both the acid form

and the cesium neutralized form, have been cast into membranes of desired random phase

separated morphology. The morphology of these membranes were characterized by TEM

and USAXS, as well as water uptake, proton conductivity and methanol permeability

from 20 to 60"C. The transport properties increased with increasing sulfonation and

temperature for all samples. The acid form samples absorbed more water than the cesium

samples with a maximum swelling recorded at 60'^C for the acid sample with 50mol%

sulfonation. Methanol permeability for the latter sample was more than an order of

magnitude less than Nafion 112 but so was the proton conductivity at 20°C within the
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plane of the membrane. Across the plane of the membrane this sample had half the

conductivity of Nafion 1 12 at 60°C.

In chapter 3, neutron and x-ray scattering techniques have been used to study the

structural evolution of FISS materials as they have evolved from the dry state to the

water soluble state. A dilation of the nanometer-scale hydrophilic domains have been

observed as hydration has been increased , with higher swelling for the higher sulfonated

sample or upon hydrating at higher temperatures. Furthermore a decrease in the order in

these phase separated structures is reduced upon swelling. The glass transition

temperature of the fluorinated blocks decreased upon hydration, and at the highest

hydration levels loosely bound water was evident. Thermal and dynamic mechanical

characterization of these materials have shown the there is a high degree of softening

beyond the 45"C glass transition temperature. Finally highly sulfonated samples have

shown the formation of spherical micelles , even at concentrations as low as 0.05 mg/ml.

The sizes of these micelles range from 13-13.5 nm, with the higher concentration

solutions having smaller radius of gyration, possibly due to crowding effects.

In chapter 4, lonomers from the cesium salt (20 mol %) of fluorinated

Poly(Isoprene)-block-sulfonated Poly(Styrene) have been spun cast into membranes and

annealed under an electric field of -40 V/um at 130oC for 24hours. This resulted in the

.transformation of the morphology from a random phase separated state to one

preferentially oriented in the direction of the electric field but with smaller domain sizes.

The effect of this change in morphology was a 2.5 times increase in the ionic
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conductivity, as measured by electrochemical impedance spectroscopy, at all humidity

conditions measured. This can be attributed to the increased connectivity of the ionic

domains.

In chapter 5, The applicability of electropun nanostructure with high surface to volume

ratios for PEM application is presented. To this end. sulfonated poly(ether ether ketone)

has been electrospun and electrosprayed by varying concentration in DMF, yielding

isotropic fibrous mats and beads. The glass transition temperatures of these materials

have been shown to be higher those of the unsulfonated precursors and they increase with

increasing sulfonation, due to hydrogen bonding induced rigidity. The presence of

sulfonic acid groups on the surface has been confirmed by means of x-ray photoelectron

spectroscopy, with sulfur representing 3% of the surface elemental composition. These

acid groups on the surface of internal fibers, help to form a 3 dimensional network of

conducting channels in the voids of the fibrous mats upon hydration. This in turn has led

to an improvement of conductivity from 0.033 S/cm for void-less solution cast

membranes to 0.040 S/cm for the electrospun fibrous mats.
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CHAPTER 1

POLYMER ELECTROLYTE MEMBRANES FOR FUEL CELLS

1.1 Background

Alternative sources of energy, besides fossil fuels, are a pressing need in the

world we live in today. One such promising alternative is a fuel cell. In the broadest sense

a fuel cell is an electrochemical device which converts chemical energy to electrical

energy while giving off heat. Such devices can be contrasted with the internal combustion

engine, in that they convert directly to electrical energy and not indirectly through a

mechanical system and dynamos, and are generally more efficient'.

Fuel Cells were first developed as early as 1839, by Sir William Grove, based on

his idea of producing electricity by reversing the electrolysis of water. However, he

called it a "Gaseous voltaic Battery" and the name fuel cells was only coined later by

two engineers Charles Langer and Ludwig Mond in their efforts to build a practical Fuel

Cell using air and coal gas" . Subsequent progress on fuel cell development was impeded

by the advent of cheap fossil fuels and the steam engine.

The NASA space program, as well as a few persistent researchers such as Francis

Bacon, led to the use of Fuel cells to produce electricity and water for the space missions

from the late 1950s. In more recent times, the drive to reduce dependence on foreign oil,

cut emissions and their related environmental impact, as well as the global population

increase has greatly increased the interest in fuel cell research and development in

industry, government and academia alike. This is particularly true in the Automobile
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industry, where most major car manufacturers have some form of fuel cell Vehicle (FCV)

development ongoing.

1.2 Operating Principles

Fuel cells basically consist of two electrodes, separated by and in contact with an

electrolyte, and connected to each other by an electrical circuit (conductor). This basic

unit is known as a Membrane electrode Assemblies (MEA), many of which are clamped

together to form a stack of many units. As can be seen in Figure 1.1 below the MEA

typically has a porous electrode which also acts as a gas diffusion layer, a catalyst layer

which includes a binder to adhere it to the membrane, a membrane, the former two layers

repeated on the other side. The catalyst is usually supported on finely divided carbon to

increase surface area.

In a Hydrogen-oxygen fuel Cell, hydrogen enters through the pores of the anode

and is oxidized at the catalyst layer according to the equation for this half reaction^

H: 2H^ + 2e' (1)

This results in protons being released into the electrolyte, and electrons being conducted

away through the external circuit and load (if any) around to the cathode. At the cathode,

the oxygen entering through the gas diffusion layer is reduced by the electrons in the

circuit according to the equation:

O2 + 4e" 20-" (2)
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These oxygen ions eventually react with the protons that conduct through the membrane

thus closing the second half reaction and producing water as follows:

O- +2H^ H2O (3)

Through this process bonds are broken and new ones form requiring less energy and thus

the net energy is released in the form of heat. Through this whole process the membrane

plays the crucial role of a cell separator, forcing electrons to flow through the external

circuit thus ensuring half reactions happen separately.

1.3 TypesOf Fuel Cells

Fuel Cells are typically classified according to their type of membrane they

possess and are named accordingly. In a broad sense membranes can be classified as

being solid or liquid electrolytes. Typically the liquid is immobilized to reduce or prevent

leakage. The five major fuel cell types are as follows:

1. Alkaline Fuel Cell (AFC)

2. Polymer Electrolyte Membrane Fuel cell (PEMFC)

3. Phosphoric Acid Fuel Cell (PAFC)

4. Molten Carbonate Fuel Cell (MCFC)

5. Solid Oxide Fuel Cell (SOFC)

Other types of fuel cells do exist; the most important of these with regard to this

work is the Direct Methanol Fuel Cell (DMFC). The Table 1.1 below summarizes the

main features of the above listed Fuel Cell types.
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Fuel Cells can also be classified according to their operating temperature. Thus

there are low temperature fuel cells, which include the Alkaline, Polymer electrolyte

membrane. Direct Methanol and Phosphoric acid types. The Molten Carbonate and the

solid Oxide types are meant for high operating temperatures between 600-100°C where

catalysts functions more efficiently. The Phosphoric Acid type of fuel cell can be said to

operate at a relatively intermediate temperature between 160-220°C, which has

increasingly become the target temperature range for new polymeric membrane

development.

Fuel cells are made for various market niches, according to their power output,

temperature ranges, and feed requirement. Typically the low temperature fuel cells put

out less power and lend themselves to portable apphcations, whereas the high

temperature ones are more feed tolerant, put out more power and can serve as stationary

combined heat and electricity generation plants.

The PEMFC is the type of fuel cell of interest to this study, of course, having at

their core a polymer electrolyte membrane. These fuel cells typically possess a polymeric

acid bearing membrane such as Nafion™ sandwiched between catalyst layers. The most

common catalyst used is Platinum dispersed onto carbon supports, held together by PTFE

based binders. These catalysts are typically sensitive to feed impurities, such as carbon

monoxide so pre-cleaning is often required for reformed hydrogen. Other options include

the use of CO- tolerant Pt-Ru catalyst.
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The DMFC can be seen as a variant of the PEMFC. The membranes are typically

the same; however, the feed is methanol in an aqueous 1-2M solution or vaporized. This

fuel cell type has the most promise for portable applications as system complexities are

reduced since there is no need to reform or store hydrogen, and the existing liquid fuels

infrastructure can be used for methanol. Catalysts as well as operating temperature ranges

are very similar to the PEMFC. The main technical challenge for the DMFC is the cross-

over of methanol from anode to cathode, reducing cell efficiencies.

1.4 PEM Materials

Due to the reasonable commercial success of PEMFC membrane materials such

as Nafion™ and their technical limitations, a plethora of Polymer electrolyte materials

have been and are being developed till date. These materials range from fluoropolymer to

aromatic to hydrocarbon backboned materials, bearing pendant acid groups in one

configuration or another. Except for some new materials, they typically require water to

serve as a vehicle to facilitate proton conductivity via a "hopping "mechanism.

Though some polymer electrolytes are better in some aspects than others, the crucial

factors for a good polymer electrolyte membrane are as listed"^

1. High Proton Conductivity .

<

2. Low electronic conductivity. .
>

3. Low Permeability of fuel and oxidant i;
'

,

4. Low water transport through diffusion and electro-osmosis.

5. Oxidative and hydrolytic stability.

6. Good mechanical properties in dry and hydrated states.
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7. Low cost.

8. Capability for fabrication to a MEA.

A summary of such materials reported in literature is given below.

Poly(Perfluorosulfonic Acid) Membranes:

The most common PEM is Nafion™, having PTFE based backbone and

perfluorosulfonic acid pendant chains as shown in figure 1.2. This chemical structure

derives good thermal and chemical stability from the fluoropolymer backbone and strong

acidity from the fluorosulfonic acid side chains where the fluorine atoms are electron

withdrawing.

Nafion™ was developed by Dupont, and is the most researched and developed

PEM. Dow has made a variant of this with shorter side chains, as have Asahi chemical,

and Asahi Glass of Japan with carboxyhc acid. Composites of Teflon and Nafion have

been made into PEMs by W.L Gore, as have organic-inorganic composites.

Styrenesulfonic Acid Membranes:

Sulfonating styrene has been found as a facile route to adding acidic functionality

to back bone chains that contain them. Two companies have commercialized product

based on this approach. Ballard's BAM PEMs are based on trifluorostyrene, and Dais

analytical has sulfonated poly(Styrene)-block- (Ethylene-co-Butylene)-block-sulfonated

poly(Styrene) (sSEBS) block copolymers as shown in figure 1.2 below.
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The BAM membranes have similar conductivity and chemical stability as Nafion,

while the SEBS ones have less due to their aliphatic nature. However they have only been

reportedly applied to portable applications that require temperatures less than 60°C'^.

Other PEM materials have been made from styrenesulfonic acid macromonomers grafted

to polystyrene backbones and Poly(Acrylonitrile)^. Radiation grafting techniques have

also been used in the attachment of Poly(styrene sulfonic acid) to Poly (Ethylene-co-tetra

fluoroethylene), Poly(vinylidene fluoride), and tetrafluoroethylene-co-

hexafluoropropylene.

Poly(Arylene Ether) Membranes:

Aromatic polymers used in high performance polymer applications, are expected

to be good materials for PEM membranes. Their high chemical and oxidative stability

have made them attractive for use as fuel cell membranes. Their chemical modification

has proven to be very flexible and so they can be easily sulfonated or even fluorinated.

Some early work on the sulfonation of poly (ether ether ketone) (PEEK) was done

here at PSE in the Karasz group in order to reduce its crystallinity and dissolve and

characterize the polymer . Other promising candidates in this category are Poly(Arylene

ether Sulfone)s. Though they maintain good mechanical properties and thermal stability

even after sulfonation, their adhesive compatibility with the fluorinated catalyst layer is

generally poor. To eliminate this effect copolymers based on hexafluoroisopropylidene

bisphenol have been made with some success. Their chemical structures'* after

modification are a shown figure 1.2 below:
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Poly(Imide) and other high performance membrane materials:

Five and six membered ring polyimides being stiff, tough polymers have been

thought to be good candidates for fuel cell membranes. It has been found that the

naphthalenic polyimides are more stable in these applications. Six membered ring

polyimides as the one shown below have shown promise, however their low solubility

remains a technical challenge.

Other ductile polymers and copolymer that have been sulfonated for use as PEM

materials include Poly(phenylquinonexaline),Poly(2,6 dimethyl- 1,4 phenylene

oxide)(PPO), Poly(4-phenoxybenzoyl-l,4-pheneylene) (PPBP), and Polybenziimidazole

(PBI). The PBI though good in its unmodified state as a host for phosphoric acid

electrolyte, in high temperature FC applications, becomes insoluble and brittle upon

sulfonation^.

Polyphosphazene Membranes:

These polymers are attractive for PEM use because of their chemical and thermal

stability as well as their ease and flexibility of side chain addition. They exhibit suitable

proton conductivity but are reported to have low Tg and poor mechanical properties.

Other Proton Conducting Membrane Materials:

All the above mentioned PEM materials derive their conductivity from sulfonic acid

groups attached in some way to a backbone. Another rare approach is to put a

phosphonic acid functionality into the backbone to facilitate conductivity. This has
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resulted in lower conductivity values than their sulfonic acid analogues, due to the greater

acidity of the later, but they prove to have better chemical and thermal properties than

them"^. Another substitute acidic moiety that has been investigated is the sulfonamide,

which is strongly acidic. However these have not shown increased conductivity when

substituted for Sulfonic acid in the Nafion™ structure'^.

The U.S Department of energy's guidelines for PEM to be applied for automotive Fuel

Cells aims at operating at 120"C and 50% relative humidity , with 0.1 S/cm for its proton

conductivity. This benchmark cannot be reached by the previously cited PEM materials

as they depend heavily on water for their proton transport mechanism. In view of this

some new approaches that have been tried include using organic-inorganic composite

membranes" or using imidazole proton conductors tethered to a polymer backbone as

water substitutes'" as shown in figure 1.2 below.

A similar approach is actively being pursued by the Coughlin group here at PSE,

as well as the Kerr group at Lawrence Berkeley National lab. In their approach they have

utilized both perfluorosulfonic groups and imidazole solvation groups so as to operate

over a wide temperature range with little to no water.

1.5 PEM Morphology And Its Control

PEM performance is hmited by factors such as thermal, Mechanical, and

selectivity of the membranes. Selectivity issues arise from methanol permeation which

closely tracks water based proton conductivity. Water facilitated conductivity depends on
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the shape and size of the water domains and state of the water in these domains, which

both largely depend on the morphology of the membrane^^.

A largely synthetic approach has been taken to the manipulation of PEM

morphology as reported in literature. Generally the molecular architecture of the polymer

electrolyte has been designed to give a certain expected morphology, which is then

characterized. Copolymers containing hydrophilic and hydrophobic components in some

form or the other have been used typically, given the rich morphologically diverse

structures these can produce even without ions.

Copolymers can be made with random (Statistical), block, graft, or star

architectures, which will phase separate(de-mix) depending on the enthalpic-entropic

balance between their different components. The extent of separation depends on the

degree of mismatch, the molecular weight of the components and crystallinity. Block

copolymers microphase separate on the nanometer length scales to form spherical,

cylindrical, lamellar and bicontinuous morphologies'"*. When ionic groups are added to

one component of the copolymer, the resulting morphology is a compromise between the

above mentioned driving force and the electrostatic interactions amongst the ionic

groups.

Nafion™ for instance which is a random copolymer of a hydrophobic backbone

and grafts of ionic side chains, forms membranes with a phase separated structure , which

is more pronounced upon hydration. Gebel and others have done extensive scattering
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(SAXS.SANS) studies on these materials and have come up with a dry membrane

structure having isolated spherical ionic clusters 15 Angstroms in diameter and 27

Angstroms apart in the midst of the hydrophobic domain. Upon addition of water SANS

data has eventually indicated ribbon-like aggregates with characteristic thickness, width

and length of 20, 80 and 1,000 Angstroms respectively'

^

An example of diblock copolymer PEM materials was synthesized by Holdcroft et al.

and consists of a polysulfone and poly(vinylidene fluoride), SPSF-/7-PVDF. This was

done in order to study the effect of the fluoropolymer block on conductivity and

morphology. The TEM micrographs obtained are as in figure 1.3 below.

Ionic aggregates are seen in both the homo and block sulfonated polysolfones,

however an increased conductivity is noticed for the block copolymers when there is

lower sulfonation (or Ion Exchange Capacity TEC). This is attributed to enhanced ionic

aggregate and network formation from the fluorinated block. The size of the aggregates

are smaller in the block copolymers (7 nm vs. 1 Inm)'^. i

Morphological work has also been done on A-B-A triblock copolymers of

Polystyrene-Z?-Poly(ethylene-r-butylene)-/?-Polystryrene, with the styrene block partially

sulfonated (sSEBS). In this work the membrane morphology was tuned using different

solvent combinations to shield or enhance the electrostatic interactions.
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The effect of increasing the MEOH co-solvent on the morphology was the

frustration of the normal block copolymer lamellae structure. This may be due to the

distortion of the volume fractions due to swelling. The disordered structure had a higher

proton conductivity and methanol permeability as it is more difficult to have transport

through domains lying parallel to the membrane surface'^. Another study used

crosslinking to fix proton conducting channels in similar materials and in effect increased

1

8

conductivity and lowered methanol permeability

Other morphological studies have been done on the PS-g-macPSSA graft

copolymers mentioned previously^. These membranes show connected ionic domains 5-

10 nm wide which yield a continuous network. The graft copolymers show no significant

phase separation and the phase separated network of nanochannels is developed as the

sulfonation increases. This seems to explain the fact that conductivity in the graft

copolymers is much higher than the random ones and increases with increasing

sulfonation. This trend is consistent for most studies reported for low lEC. However as

lEC (sulfonation) increases the percolation limit is reached and phase separation does not

prove to make that much of a difference in conductivity. However it may also enhance

mechanical properties and reduce gross macroscopic swelling^

Finally the backbone flexibility determines the extent of phase separation and the

sharpness of the interface, which will ultimately dictate the conformation of water in the

nano-channels. Generally, a less stiff backbone allow more phase separation and more

loosely bound water which facilitates conductivity.
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1.6 Materials For This Work

Two sets of materials have been used in this work. However both types will fall

under the theme of creating and characterizing nanostructured PEMs.

The first group of materials are fluorinated Poly(isoprene)-b- sulfonated Poly

(Styrene) (fPI-Z^-sPS) polymers which have been used to form PEMs (Films) , and the

resulting structure and properties investigated. These materials have been synthesized

using facile post-polymerization modification methods to Fluorinate and sulfonate well

defined Poly(Styrene)-b- Poly(Isoprene) (PSPI) diblock copolymers.

In the light of mounting energy costs and environmental concerns, there has been

a renewed thrust to develop and commercialize fuel cell systems as alternative sources of

energy. Full commercialization has been impeded by factor such as cost , feed storage

and deployment to mention a few. On the other hand , inadequate understanding of the

relationship between structure/morphology and fuel cell relevant properties have slowed

the development of suitable alternative PEM materials to replace the expensive and

structurally ill-defined Nafion.

To this end, our sample produced by fluorinating the Poly(diene) block and

partially sulfonating the poIy(Styrene) block of anionically polymerized PS-PI, is seen as

a possible less expensive PEM candidate material, and a model compound for accurate

study of the relationship between polymer architecture, morphology ,and ultimately,

properties of block copolymer based PEMs.
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The synthetic route employed is as follows : The Polydiene block of the PS-PI

was fluorinated via the addition of in situ generated difluorocarbene to the double bond

of poly(Isoprene). The sulfonation of the polystyrene block with controlled degree of

sulfonation was performed by using a mixture of acetyl sulfonate and sulfuric acid.

Further synthetic details are available elsewhere''^ and briefly described in the scheme

shown in figure 1.4 below.

The other type of materials used are a family of Sulfonated Poly(Aryl ether

Ketone)s which are electrospun to make PEMs based on nanofibrous mats of said

polymers. As discussed earlier aromatic polymers are seen as good candidate precursors

for PEMs because of their good chemical, oxidative, thermal and mechanical stability

which carry over to some extent when they are sulfonated.

.

The most common of these is poly(ether ether ketone) (PEEK) which is

commercially available under the trade name Victrex. The other two are also available

commercially. Lower cost, higher use temperatures and easy processing and sulfonation

have made these polymers attractive substitute PEM materials. Sulfonation is achieved by

use of sulfuric acid'^

1.7 Work Done

1 . 7. 1 Membrane Structure and Transport properties

Polymer electrolyte membranes have been fabricated from the above described

materials, synthesized by Prof. Jimmy Mays group in University of Tennessee Knoxville.
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Solvents or solvent mixtures with varying dielectric constants have been used to cast

films from this materials in order to produce different membranes with controlled

morphologies.

The fuel cell relevant transport properties have been measured namely. Proton

conductivity and Methanol permeability. Our potential target application for such

materials are powering portable devices. Such applications are best served by Direct

Methanol Fuel Cells as explained in the introduction section.

Electrochemical Impedance Spectroscopy (EIS) has been employed to measure

the proton conductivity of these membranes. As is the case with Nafion™ and other PEM

materials, conductivity in a material varies with water content, operating temperature, and

counterion quantity and type. All these variables have been explored. EIS involves

applying a small AC current to and Electrochemical Cell, comprising of the PEM and

electrodes in some configuration or the other. The voltage response of this cell is

measured and analyzed, giving a resistance or better put impedance of the membrane,

which is used to calculate ionic conductivity through the membrane.

Methanol permeability have been measured using a horizontal diffusion Cell that

comprises of two side-by-side jacketed liquid chambers with holes facing each other. 1-2

M aqueous Methanol solution was put in one chamber while water was put in the other

chamber. The membrane was sandwiched in between and the change in methanol

concentration on the water only chamber is to be measured by pumping this liquid in a
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cycle through and RI detector and the signal monitored via a LabVIEW PC based data

acquisition system.. This has been done at different possible operating temperatures.

1.7.2 Membrane Structural evolution with hydration and heating.

According to the foregoing discussion on PEM morphology, it is clear that the

structural/morphological characteristics of a PEM affect its fuel call relevant properties,

especially proton conductivity. It is also well established that these properties evolve with

varying hydration and operating temperature, which implies that the structure also

changes.

Extensive Small angle scattering work has been done by a couple of researchers

on Nafion™ by Gebel et al and show that PEM morphology changes with heating and

hydration , however the Nafion™ microstructure is still under debate. This area of

research for PEMs is important because it can elucidate the structure and water

management of these membranes, especially under conditions mimicking operations.

This will facilitate the development of appropriate models to estimate and eventually

predict properties.

Small angle scattering and microscopy have been the main tools for investigating

PEM structure. DSC has been used to determine the structure of water within the

conducting hydrophilic domain. In this work, scattering and microscopy facilities (SAXS,

TEM, DSC) have been used to study the structure of dry fPI-/7-sPS membranes.
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Hydrated membranes have been studied at the Argonne National Laboratory using

SANS and Ultra SAXS over extended angular ranges. These all have been carried out at

different temperature and hydration levels, over as wide an angular range as possible, so

as to map the complex structures formed in our fPI-Z?-sPS samples at different length

scales.

1.7.3 Membrane microdomain orientation by external fields.

All the PEM materials discussed so far have hydrophilic acid bearing side chains

or pendant groups and some relatively less hydrophilic (or distinctly hydrophobic)

components. The proton conductivity takes place in the hydrophilic domains as this is

where the water resides. This means that for the protons to conduct from one surface of

the membrane to the other side there must be a continuous hydrophilic pathway from one

end to the other. If this pathway is straight it would take a proton less time to get to the

other side than if the path had all sorts of twists and turns(tortuousity).

Different external fields have been used to orient or order block copolymer

morphologies successfully and they include: shear forces, Solvent, rate of solvent

evaporation and film thickness^. One report has been published of electric field

orientation of the conducting phase of PEM blends, and another of magnetic field

alignment of nanoparticle conducting phase in Lil:PEO polymer electrolytes for Lithium

ion batteries. Significant enhancements of conductivity were noticed in both cases, with

the Li ion batter gaining up to an order of magnitude increase"' "".
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To orient microdomains of our fPI-^-sPS perpendicular to membrane plane

electric fields have been applied, in order to reduce tortuousity and thus enhance

conductivity. The problem is however not a straightforward as for normal block

copolymers because the sulfonate groups in our block copolymer ionomers frustrate the

normal self assembly due to strong electrostatic interactions. Theses interactions favor

disordered morphology. These membranes and their control have been characterized by

TEM and EIS.

1 .7.4 PEMs from electrospun poly (Aryl ether ketone)s

Electro-spinning is a process whereby fibers of polymeric materials can be spun

from solution or melt by means of an electrostatic field induced drawing and is

schematically shown in figure 1.5. The polymer solution is typically forced out of a

needle by a syringe pump, and when the surface charges on the polymer droplet at the tip

of the needle overcomes its surface tension, the drop is elongated and a jet of fluid is

accelerated towards a grounded target. By the times this jet reaches the target it would be

evaporated to a web of fibers of size ranging from tens of nanometers to microns.

This process depends on certain parameters such as;

Polymer Properties: Type, and architecture of polymer.

Solution Properties: viscosity, elasticity, conductivity, and surface tension.

Process Parameters: Electric potential, gap distance, and flow rate.

Ambient Conditions: Temperature, humidity and Air velocity in chamber.
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The technique has been apphed to end uses such as nanofiber based membranes and

smart cloth using nanofiber mats; biomedical usage like porous mats for wound dressing,

gene encapsulation; Supports for enzymes and catalysts, PEO encapsulated enzymes;

Sensors, Electrodes and Electro-optical devices; Sacrificial templates.

Little work has been done on electro-spinning of nanofibrous mats from polymer

electrolytes for membrane applications. This part of the work comprised of the

investigation of the electro-spinning characteristics, and the potential for use of

electrospun sulfonated PEEK or PEKK as nanoporous PEMs. It is known that the

presence of unbound water or electrolyte in a membrane's pores or channels enhance

conductivity. This will be measure using Electrochemical Impedance Spectroscopy.
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Figure 1 . 1 Membrane Electrode Assembly (MEA)
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Table 1.1 The different Fuel Cells that have been realized and are in current use and

development.^
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Figure 1.2: Chemical structures^ for (a) Nafion™ (b) BAM™ (c) sSEBS (d) sPEEK
(Continued)
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Figure 1.2: Chemical structures for (e) sulfonated Poly(Arylene ether Sulfone) (f)

Sulfonated Poly(Imide) (g) Sulfonated PBI (h) sulfonated Poly[(3-

methylphenioxy)(phenoxy)phosphazene (Continued)
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Figure 1.2: Chemical structures"^ for (i) poly(arylene ether)s bearing phosphonic acid

groups (j) Nation like bis(perfluoroalkyl) sulfonamide (k) Free and tethered polymer

backbones

.
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Figure 1.3 TEM micrographs^ of a) SPSF (lEC 1.55); b)SPSFl-b-PVDF(IEC=1.62); c)

SPSF (IEC=0.83); d) SPSFl-b-PVDF(IEC=0.78)

.
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Figure 1.4 Synthetic Scheme for Fluorinated PI-Z?-Sulfonated PS'^.
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Figure 1.5 Electro-spinning experimental setup""*.
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CHAPTER 2

POLYMER ELECTROLYTE MEMBRANES FROM FLUORINATED
P0LY(IS0PRENE;-BL0CK-SULF0NATED POLY(STYRENE):
MEMBRANE STRUCTURE AND TRANSPORT PROPERTIES

2.1 Abstract

With a view to optimizing morphology and ultimately properties, membranes

have been cast from relatively inexpensive block-copolymer ionomers of fluorinated

poly(Isoprenej-^/oc/:-sulfonated poly(Styrene) (FISS) with various sulfonation levels, in

both the acid form and the cesium neutralized form. The morphology of these

membranes were characterized by TEM and USAXS, as well as water uptake, proton

conductivity and methanol permeability within the temperature range from 20 to 60°C.

Random phase separated morphologies were obtained for all samples exept the cesium

sample with 50mol% sulfonation. The transport properties increased with increasing

degree of sulfonation and temperature for all samples. The acid form samples absorbed

more water than the cesium samples with a maximum swelling of 595% recorded at 60"C

for the acid sample with 50mol% sulfonation. Methanol permeability for the latter sample

was more than an order of magnitude less than for Nafion 1 12 but so was the proton

conductivity at 20°C within the plane of the membrane. Across the plane of the

membrane this sample had half the conductivity of Nafion 1 12 at 60"C.
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2.2 Introduction

Alternative sources of energy, besides fossil fuels, are a pressing need in the

world we live in today. One such promising alternative is a fuel cell. Fuel Cells are

typically classified according to their type of membrane, which serve both as a cell

separator and a proton conductor'. Two of the existing types of fuel cell membranes use

polymers namely, Polymer Electrolyte Membrane Fuel Cells (PEMFC) and Direct

Methanol Fuel Cells (DMFC)

The DMFC can be seen as a variant of the PEMFC. The membranes are typically

the same: however, the feed for DMFC is methanol in an aqueous 1-2 M solution or in its

vapor form. This fuel cell type has the most promise for portable applications as system

complexities are reduced since there is no need to reform or store hydrogen, and the

existing liquid fuels infrastructure can be used for methanol. Catalysts, as well as

operating temperature ranges, are very similar to the PEMFC. Widespread

commercialization of such devices has been impeded by factors including catalyst cost,

mechanical or chemical instability and poor selectivity of the Polymer Electrolyte

Membranes (PEM)". Selectivity issues arise from the cross-over of methanol from the

anode to the cathode, which closely tracks water based proton conductivity, ultimately

reducing cell efficiencies.

Nafion™, which is the prototypical PEM material, has a hydrophobic

fluoropolymer backbone and hydrophilic fluorosulfonic acid bearing side chains'* At

present it is costly and still exhibits poor selectivity in DMFC applications. This has led
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to a concerted effort to develop alternatives'^"". These materials range from

fluoropolymer to aromatic to hydrocarbon backboned materials, bearing pendant acid

groups in one configuration or another.

Block copolymer ionomers are one such category gaining interest. As in normal

block copolymers, nanometer scale microphase separation occurs, creating separate

hydrophobic and ion-cluster containing hydrophilic domains with similar morphological

diversity to neutral block copolymers. These phase separated systems have been shown to

yield greater conductivity than the more homogeneous structures from random

copolymers ^. Also having random phase separated domains in these systems has been

shown to give better transport properties than in systems where well ordered domains do

not line up with direction of transport . Furthermore block copolymer ionomers with

one block being a fluoropolymer have been shown to exhibit enhanced network

formation and mechanical integrity especially when hydrated^.

Swelling or dilation of ionomers upon increasing water or methanol content and at

service temperatures is also an important factor affecting conductivity and mechanical

integrity. Backbone stiffness and counterions attached to the acid sites are known to

affect the degree of water uptake and, hence swelling\ Upon neutralizing Nafion™ from

its acid form to its Cesium form, one study has shown decreased water uptake and

methanol permeability, due to its lower hydration energy and hence water uptake'"^.
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With a view to developing inexpensive phase separated PEMs we have

synthesized, block copolymer ionomers comprising of a fluorinated hydrophobic block

and a partially sulfonated hydrophilic block by means of post polymerization

modification of the common poly(Styrene)-/7/o(: A'-poly(Isoprene). The structures of

membranes fabricated from these material as well as their transport properties (i.e proton

conductivity and methanol permeability) have been investigated under conditions

mimicking fuel cell usage, to assess their viability for low temperature DMFC

applications. Also being synthesized from anionically polymerized precursors these

materials will serve as suitable model molecules with precise architectures, to study the

relationships between chemical structure and morphology.

2.3 Experimental Section

2.3.1 Materials

The synthetic procedure and characterization for fluorinated poly(Isoprene)-

block- sulfonated poly(Styrene) (FISS) materials have been described in detail

elsewhere'\ The precursor poly(Styrene)-block- poly(Isoprene) (PS-PI) diblock

copolymer used in this work was anionically polymerized, having reported properties:

Mw =31,000 ,PDI=1.05, 27mol% PS. Fluorinated samples were sulfonated to 23,28 and

50 mol%, as determined by 'H NMR. Some samples were neutralized to the cesium salt

form , and the balance left in the acid form. The cesium form facilitates contrast in the x-

ray scattering experiments, besides exhibiting different transport properties. A sample

coded FISS-AC50 would refer to the acid form of the material, sulfonated to 50mol% of

the styrene units in the PS block. Nafion™ 1 12 was generously donated by Atofina
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Chemicals Inc., and was pretreated to the acid form according to the procedure reported

elsewhere'^.

2.3.2 Preparation of Membranes

Freeze dried FISS samples were dissolved in a mixture of Toluene/N-

methylformamide(TOL/NMF:85/15 (w/w)) with a concentration ranging from 12-15

wt%. The NMF was used as a polar cosolvent. These solutions were then cast unto glass

plates for a day in the fume hood at room temperature for rapid casting of kinetically

trapped disordered morphology. Subsequently they were placed in an oven for 1 day at

60°C, and finally in the oven at 60"C plus vacuum for a day to remove most residual

solvent. The acid form samples were further reactivated by soaking overnight in a 2M

aqueous HCL solution containing methanol (20v/v) to enhance swelling and acid

permeation. They were thereafter rinsed repeatedly in deionized water until PH was

neutralized and then dried at 60''C in a vacuum oven for a day, and again in vacuum plus

60°C for one day. Cast membranes were subsequently removed and stored in airtight bags

for further usage. Dry membrane thicknesses were measured using a digital micrometer

and range from 60-90 um. The Nafion 1 12 samples were also rinsed until PH was

neutralized and then dried at 60"C in a vacuum oven for a day and stored in the same

way.

2.3 .3 Structural Characterization

The morphology of the dry membranes were determined by transmission electron

microscopy (TEM). The membranes were first coated with gold and carbon on both

sides, to serve as marker and epoxy diffusion barrier respectively. They were
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subsequently embedded in epoxy(Araldite 516) and 50 nm thin sections of samples were

cut across the thickness of the membrane using a Leica Ultracut UCT cryomicrotome at -

These were then collected on copper grids and stained with RUO4 vapor for 1

hour. It is assumed that only the unsulfonated Polystyrene domains were stained. TEM

images were obtained using a JEOL-2010 microscope operating at an accelerating

voltage of 200Kv. In the bright field mode.

Small angle x-ray scattering(SAXS) was performed at the Advanced Photon

Source(APS) in Argonne National Laboratory on beamline 32-ID, fitted with a Bonse-

Hart camera typically used for ultra small angle x-ray scattering (USAXS), which has

been described elsewhere'^. The x-ray energies range from 7 to 18 keV, yielding a q

range from 0.0001 to 1 .0 A '
( where q, the scattering vector is equal to 4;rsin(^)/ ^. ,

where 26 is the scattering angle and X is the wavelength of the incident radiation). The

beam size was 1mm x 2mm, and a 1 -dimensional photodiode detector was used. Air-

blanks were subtracted and slit desmearing of the resulting data was carried out using the

lake method. All SAXS data were collected with the samples in the transmission position,

with membrane normal in the direction of the beam. ^

In order to determine the surface morphology of the membranes, which

significantly affects the interfacial properties in both Proton and methanol transport

measurements, scanning probe microscopy (SPM) technique was used. SPM images of

both sides of each membrane were collected using a Digital Instruments Dimension™

3100 Atomic Force Microscope (a type of SPM) in the tapping mode.
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2.3.4 Transport Properties

The water uptake behavior of the membranes were determined by soaking the

samples in deionized water for at least 16 hours each at both room temperature(20°C) and

60"C. The difference in weight from dry to wet state was measured using a weighing

scale accurate to 0.01 mg. The amount of water uptake was then calculated according to

the expression:

W -W
WaterUptake{%)^— ^xlOO (1)

Where Wwei and Wory are the weights of wet and dry samples respectively. The

permeation of methanol was measured using a horizontal diffusion cell, procured from

Permegear Inc. the whole experimental setup is shown in the Schematic in figure 2.1

below.

The cell was customized to have two 5ml jacketed chambers side by side,

between which a membrane was clamped after being soaked in deionized water for at

least a week. Holes in between the chambers allowed for 0.502 cm" of active membrane

area exposed to 2M aqueous methanol solution on the feed side and HPLC grade water

on the receiving side. Two ports in the receiving side allowed for continuous recirculation

of content at a rate of lOOul/min, through a Waters 410 differential refractometer with

voltage signal output to a National Instruments data acquisition interface sampling at a

rate of 20,000 Hz. The voltage signal was calibrated to reflect changes in methanol

concentration on the receiving side. Contents of both chambers were stirred continuously

and water from a bath recirculation through the thermal jackets surrounding the chambers
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was used to control the temperature. The procedure was according to the technique

reported by Elabd et al. with the difference being the detection method**^.

Upon solving the equation for one-dimensional diffusion through a plane sheet and

rearranging, the expression below can be used to determine the permeability of methanol

through membranes of different thicknesses at early times.

6D
(2)

Where Ca and Cb are the methanol concentrations in the feed and receiving

chambers and the condition Ca» Cb is satisfied. A and L represent the membrane area

exposed to fluid and its thickness, while Vb is the volume of the receiving chamber. P

represents the permeability of methanol through the membrane and is calculated as the

slope of [(Cb (t) VbL)/ (CaA)] versus time. P is equivalent to the product of the

membrane diffusion and partition coefficients, D and K respectively

Proton (and cesium) conductivity of the membranes were measured by means of

four and two probe complex impedance spectroscopy techniques, which measure

conductivity within and normal to the plane of the membrane respectively. A solartron

1252A frequency response analyzer linked to a an SI 1287 electrochemical interface was

used within a frequency range of 0. 1 and 300KHz.The 4 probe used was similar to that

described in literature" , however graphite paper strips were used as the blocking

electrode. The 0.5 x 3cm membrane samples were initially soaked in deionized water for

16 hours at desired temperatures, and then removed and sealed in plastic container with
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some water added to maintain 100% relative humidity and left to equilibrate for a day at

relevant temperature (20 "C or 60"C), before measurements were made at room

temperature. The two and four probe setups are as illustrated in the schematic Figure 2.2

below.

A similar procedure has been used for preparing sample for the two probe method

as for the four probe method; however samples larger than the 1.18 cm" probe surface

were sandwiched between the graphite paper to allow for good equilibration. The value

of the real intercept in the Imaginary vs. real impedance plot (Bode plot) in the high

frequency range is taken as the bulk resistance of the membrane. This is used in the

expression below to calculate ion conductivity.

o--— (3)
RA

Where C7 is the conductivity in (Siemens, S/cm), 1 is the distance between

electrodes in cm (counter and working electrodes in the 4-probe method), R is the bulk

resistance ( D. ), and A is the membrane area normal to ion flux (cm").

2.4 Results and Discussion

Membranes were cast in this study with the intent of kinetically trapping a

random but phase separated morphology. This has been shown in previous block

copolymer studies to decrease the effective tortuosity, and hence shorten the diffusion

path length of the domain through which the species being transported permeates the

membrane, resulting in improve transport properties" . In block copolymer ionomer
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systems the use of a mixture of polar and nonpolar solvents have been shown to produce

a more random phase separated microstrucure which also had the effect of increasing

permeability across the membrane "~, due to an enhanced connectivity of domains

which provide more favorable diffusion of penetrant across the membrane'". With the

careful choice of the other block(s) to disallow diffusion of fluid, this can serve the

purpose of maintaining mechanical integrity of the material especially in cases where

transport of fluid is dependent on water content.

To this end a mixed solvent pair was chosen comprising toluene, which is a good

solvent for FISS neutral copolymer, and NMF a highly polar cosolvent which will solvate

the ionic domains in all the samples, especially the cesium neutralized samples. Also to

varying degrees, this solvation is accomplished by dissociation of the counterions, which

upon drying are available to frustrate the formation of regular equilibrium block

copolymer morphologies due to presence of strong columbic interactions which lead to

aggregation in the ionic domains.

Block copolymer systems have been well studied and exhibit a rich diversity of

morphologies which include the classical spherical .cylindrical and lamellar

morphologies, as well as the gyroid""*. These morphological forms are brought about by

the process of self assembly into separated phases, which is governed by the degree of

dissimilarity in the adjacent blocks, as well as the volume fraction of each block. It is

usually observed by means of small angle x-ray scattering (SAXS) or TEM, with feature
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sizes ranging from 5 to 50nm" . The figures 2.3 below shows TEM images of the

membrane samples prepared.

The dark parts of all images represent the partially sulfonated domains. Solid

thick dark lines in the images represent gold used as a marker at the surface of the

membrane, so a normal to this gold line in the direction of the film represents its depth.

As was desired we observe a disordered morphology having sulfonated PS domains

interconnected to essentially the same degree in the AC50,AC28 and CS23 samples.

These grainy structures represent cylinders of partially sulfonated PS domains in a

fluorinated PI matrix. A hexagonally packed cylindrical morphology is typically

observed in unsulfonated PS-PI diblock copolymer with same volume fraction of PS as

the precursor material (27mol% of PS). However as reported in other block copolymer

ionomer studies there is a reduction m long range order upon addition of ionic groups .

These disordered cylindrical domains can be seen to impinge on one another in the

images, this will lead to a degree of interconnectivity in the transporting phase. Upon

swelling in water and/or methanol this is expected to be further enhanced under fuel cell

operating conditions, leading to a network proton conducting channels across the

thickness of the membrane. This structural evolution has been shown in other copolymer

ionomer studies"^ "^, and is the subject of a subsequent publication"^

.

The CS50 sample however, shows a lamella morphology with domains aligned

parallel to the film surface. The reason for the formation of this classical neutral block

copolymer morphology is not fully understood, however when the choice of the polar

cosolvent was being made, it was observed that this sample was the most difficult to
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dissolve, n-butanol and DMSO were tried but could not dissolve this sample,

necessitating the use of NMF in this and all other samples for consistency. The

cosolvents listed above are in order of increasing dielectric constant , which is an indirect

measure of their ability to dissociated the counterion from the sulfonic acid group and

hence dissolve the ionomer. With the foregoing it is safe to assume that this sample had

the least amount of counterion dissociation (due to the larger quantity of Cs ions in the

ionic domain), and hence there was minimal interference to the normal block copolymer

self assembly process by free counter ions. This may also have to do with the low affinity

of Cesium for polar solvents.

Self-assembly in block copolymer ionomers have consistently shown ordering at

two length scales, due to the neutral block copolymer phase separation and ionic cluster

formation"*^ "^. To capture the sizes of the different structural features (domains or ionic

clusters) in this hierarchical microstructure, different configurations of SAXS cameras

are typically used for the different q ranges; however we have been able to use a USAXS

camera to capture several decades at one shot.

The characteristic dimension of the scattering objects can be obtained by

substituting the value q* of the first-order peak from the scattering intensity versus

scattering vector plot I(q) versus q), into the Bragg law given by the expression:

^ =^ (4)

This bragg spacing represents the average center-to-center distance between scatterers. In

scattering profiles of samples with more regular spatial arrangement , the higher order
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peaks are visible, and the type of structures packed on the lattice can be determined using

the ratio of higher-order peaks to the first-order peak (qVq*). A profile with hexagonally

packed cylinders would therefore have a relative peak ration of 1

,

yjxi, yfl while a

lamellar morphology, would have a ratio of 1,2,3,4 The inter-aggregate distance in

the ionic domains can also be calculated by using the ionomer peak position in the Bragg

equation. These will be found in a separate phase embedded in the PS domains which are

in turn phase separated from the fluorinated PI domains"^'. The slit desmeared USAXS

profiles from the membrane samples studied are shown in figure 2.4 below

We observed a prominent peak in both the AC28 and the CS23 samples at a

position q= 0.030861 A '. This corresponds to a characteristic dimension of 20.3 nm for

both samples. A faint peak at q = 0.052879 A"' can be seen in the profile for the CS23,

and this would have a qVq* ratio of 1:1.71, which is approximately representative of

hexagonally packed cylinders(qVq* ratio of 1 : 1 .73). Combining this information with the

TEM images obtained we can deduce that these two samples have a morphology

composed of cylinders arranged imperfectly on a hexagonal lattice. Since the SAXS

beam went into the membrane normal to the surface and there is a slight secondary peak

in the CS23 sample, there is evidence of some cylinders oriented perpendicular to the

film surface. It is worthwhile noting that there is no difference in the peak position for

both samples. This is due to the fact the molecular weights of both samples are similar

and so are their styrene weight fractions.
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We also observe at a smaller length scale a broad peak in both samples with peak

position centered around q = 0. 13264 A ' which corresponds to a bragg spacing of 4.7

nm. This is known as the ionomer peak, which represents the ionic clusters or aggregates.

The intensity of this peak is greater in the cesium sample, as expected, due to the higher

X-ray contrast relative to the acid samples.

In the CS50 sample we observed a similar hierarchical structure with the first

order peak position at q= 0.026455 A'\ corresponding to a bragg spacing of 23.7nm.

Two other peaks were visible at q= 0.052876 A"' and q= 0.077556 A"', which yield a

q'/q* ratio of 1: 1.99:2.93. This confirms the lamellar morphology observed in the TEM

image and suggests that the lamellae sheets lie predominantly in a direction normal to the

membrane surface. For both this sample and the AC28/CS23 samples, there is evidence

of mixed or random orientation of the domains as the orientation evident in the TEM

images are opposite to that in the SAXS. However SAXS information gives a better

average of the existing morphology.

We also observe an ionomer peak for this sample within approximately the same

q range as seen for the other samples however, the peak is centered at a position yielding

a bragg spacing of 3.2nm. It is not clear as to why this sample has a smaller ionic

characteristic dimension, however it is safe to assume that with an increased sulfonation

there will be a greater crowding of aggregates in a similarly sized block domain, leading

to shorter center-to-center distances. We collected USAXS data down to q=0.0001 A"^

for all samples. The general trend shows an I-q"'^ dependence, where 2« d <3 for AC28,
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CS23 and CS50 samples, suggesting a self-similar mass fractal structure"*". However the

AC50 sample has a power law slope of -3.5 suggesting a rough surface fractal structure.

This sample also shows a weak peak at a bragg spacing around q= 0.027679 A"' . yielding

a brag spacing around 22.7 nm. This peak represents the block copolymer characteristic

dimensions. The ionomer peak was however indistinguishable.

The transport properties of the investigated membranes are summarized in table

2.1 below. Data from Nafion™ 112 of similar thickness are also included for comparison.

All experiments have been done under the same conditions.

The water uptake data show an increase in uptake both for increasing level of

sulfonation as well as for increasing temperature. For the samples with the cesium

counterion the water uptake measured is relatively lower than their acid counterpart. This

is similar to results for Cs-t- ion doped Nafion™ reported by Tricoli''^. Cesium ions are

known to have less affinity for water, due to their lower hydration energy^'^. This may

however be dependent on other factors such as membrane morphology, and glass

transition of the material. The CS50 sample disintegrate upon soaking in water at 60"C,

whereas the AC50 sample does not. With lamellae layers lying perpendicular to the

membrane surface the CS50 samples can be more easily pried apart upon swelling. The

AC50 samples also swell markedly by 595% upon soaking in water at 60"C and are

softened significantly. The results shown are an average of two samples per polymer.
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Methanol permeation through our FISS and Nafion membrane samples were

measured by the method earlier described , and the specific concentration of permeated

methanol in the receiving chamber has been plotted as a function of time in Figure 2.5.

The slope of these graphs in the hnear regions, yield the permeability of methanol

through the membrane and have also been summarized in table 2. 1 . For samples prepared

at 20''C we observe an order of magnitude less methanol permeability for the AC50

sample compared to Nafion™ 1 12, however the result for the CS50 sample is just a little

less. This may reflect the difference in morphologies of these two FISS samples. These

values measured are similar to those reported for other styrene based ionomers^"^ '^ '*'*.

No methanol cross-over could be detected for the AC28 and CS23 samples.

However at 60"C these samples showed 27 times less permeability than Nafion™ 1 12.

The higher sulfonation membranes could not be measured at this temperature as they had

swollen excessively and suffered mechanical failure under the osmotic pressure exerted

by the 2M methanol solution.

Proton conductivity has been measured both in the plane and normal to the plane of our

membrane samples, using the four-probe and two-probe methods respectively. The two

methods should ideally give the same result, since the ions are moving through the same

membrane, however there is a significant impedance contribution by the interface at low

frequencies' . For the application of block copolymer ionomers to DMFC technology, the

more relevant measurement is that taken normal (across) the plane of the membrane as the

methanol flux in a functioning fuel cell is in that direction. Also block copolymer domains
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may possess some orientation which will impact the transport of ions the conducting phase.

For these and other reasons the conductivity values measured using the two probe method are

typically less than for the Four point probe"*^ . The conductivity values obtained have also

been summarized in table 2.1 and are represented in figure 2.6 below.

The conductivity values for Nafion 1 12™ were measured for comparison with the

FISS samples and published work in literature. Though most of the literature reports for

Nafion conductivity measurements have been made using thicker Nafion 1 17™ ,

however one study using the 50 micron thick Nafion 112™ has reported an in-plane

conductivity of 0.06 S/cnv'^ at 80"C, whereas this study reports 0.065 S/cm at 60"C. The

conductivity values measured with this geometry at room temperature for our AC50 and

CS50 materials are about the same at 0.001 IS/cm and 0.0013 S/cm respectively. The

CS50 samples has a higher conductivity under these conditions possibly due to the

lamellar morphology lying perpendicular to the film surface. The conductivity value

measure at 60''C are higher for both Nafion 1 1
2™ and AC50 due to greater chain

mobility at higher temperature, and higher water uptake which facilitates proton

transport.

The ionic conductivity measured in this geometry for both the AC50 and CS 50

samples are less than that for Nafion 112™ by more than an order of magnitude. In like

manner, the conductivity of other styrenic copolymer ionomers have been reported to

be less than Nafion, '^ "^ depending on the degree of sulfonation, as well as the

morphology of the copolymer. This can also be attributed to the fact that the
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fluorosulfonic acid found in nafion is a stronger acid than the styrene sulfonic acid in the

styrenic systems. This deficit in conductivity can usually be made up for by increased

sulfonation. but usually at the cost of softening due to increased swelling. Some

sulfonated aromatic polymers having significantly more chain stiffness have however

been able to bear more sulfonic acid groups with minimal swelling"*.

For the two probe conductivity measurement which measures ionic conductivity

across(through) the plane of the membrane, we see more than an order of magnitude less

conductivity for all the samples with respect to the four probe method. This is mainly due

to the difference in the experimental setup as this configuration has a much higher

electrode surface area than the four probe configuration, and also there is charge buildup

at the membrane-electrode interface leading to increased effective resistance "

. This

typically leads to lower conductivity values For the samples soaked at 60*^^ AC50,

the in-plane conductivity is 48 times less than nafion 1 12 whereas the, through plane

conductivity of AC50 is only 2 times less than Nafion 11 2. Since the through plane

measurements are more relevant to a functional fuel cell, and both materials were

measured in the same way these values are more descriptive of the actual membrane

conductivity in a fuel cell.

The AC28 and CS23 samples did not show any measurable conductivity values.

This is possibly due to the sulfonic acid concentration being less than the percolation

threshold for these materials, or their low water uptake. Also for these samples with low

sulfonation the fluorinated phase will tend to have less competition in migrating to the
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surface layer as they have a lower surface energy than the sulfonated phase, leading to

interfaces with reduced surface tension which is preferred. In order to test this hypothesis,

an atomic force microscopy (AFM) study of the membrane surfaces was carried out. The

scan from the smoother surface of each membrane adjoining the neutralized glass plate

are shown in the figure 2.7 below.

The darker domains in the contrast image on the right represent the fluorinated

phase which is softer. In the AC28 and CS23 images there is an almost uniform dark

phase, which signifies the presence of a surface layer of mainly the fluorinated phase.

This can explain the non-detectable ionic conductivity or methanol permeability of these

samples, since the phase that allows permeation would have to be present on each surface

and be connected from one surface of the membrane to the other.

However in the images for the AC50 and CS50 samples with higher sulfonation

levels there is evidence of both a lighter and a darker phase at the surface. As seen in the

TEM images for these samples the AC50 sample has a speckled morphology with spots

of the lighter domain (sulfonated PS, and PS) will dispersed in the darker domain, where

as the CS50 sample shows stripes of both light and dark domains running diagonally

across the surface resembling a lamellar morphology. These surface morphologies with

the hydrophilic phase present in greater amount, would favor higher ionic conductivity to

the surface as is the case from our conductivity results.
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2.5 Conclusions

New proton conducting membranes have been developed based on partially

sulfonated poly(Styrene)-block- fluorinated poly(Isoprene). A randomly microphase

separated morphology has been achieved using mixed polar and non-polar solvents, and

USAXS has been used to elucidate the hierarchical structure and fractal dimensions

which are favorable for enhanced transport properties. Low methanol permeability has

been recorded relative to Nafion 1 \ 2™, however modest proton conductivity values were

obtained. We believe that with further crosslinking of the residual polystyrene units to

reduce swelling and optimization of the casting process, promising inexpensive

candidates for low temperature direct methanol fuel cells will emerge.
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Figure 2.2 Experimental Setup for a) Two Probe , b) Four Probe EIS measurements.
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lOOnm AC28

AC50

Figure 2.3 Transmission electron Microscopy images for the FISS samples.

(Continued)
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Figure 2.4 Ultra Small Angle Scattering Profiles for the FISS samples.
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Table 2.1 Thickness, Water uptake, methanol permeability and ionic conductivity of

materials investigated in this work.

Dry

Thickness Methanol Permeability in Plane Conductivity Across Plane

Polymer (^m) Water Uptake (%) (cm^/s) (S/cm) Conductivity (S/cm)

20°C 60°C 60°C'' 20°C^ 60'C''

Nation 112 50 2.6 X 10
'

25.4 X 10

'

1.82 X 10
^

6.45 X 10^ 8.47 X 10^ 3.51 X lO'

AC50 81 17 595 2.0 X 10"° a 1.06 X 10^ 1.33 X 10^ 5.38 X 10
*

1.57 X 10
"

CS50 91 5 a 2.4 X 10
'

a 1.26 X 10^ a 4.24 X 10
*

a

AC28 69 5.4 257 0 2.0 X 10
*

a a a a

CS23 74 2.4 129 0 2.0 X 10* a a a a

^Not Measurable

''Processing Temperature
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Figure 2.5 Specific concentration of permeated methanol versus Time measured at

2(fC.
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Figure 2.6 Ionic Conductivity of measurable samples.
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Figure 2.7 AFM images of membrane surface adjacent to casting glass plane. (Continued)
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CHAPTER 3

POLYMER ELECTROLYTE MEMBRANES FROM FLUORINATED
POLYdSOPRENEj-BLOCK-SULFONATED POLY(STYRENE):

STRUCTURAL EVOLUTION WITH HYDRATION AND HEATING

3.1 Abstract

SANS and USAXS have been used to study the structural evolution of FISS

materials as they have evolved from the dry state to the water swollen state. A dilation of

the nanometer-scale hydrophilic domains has been observed as hydration increased ,

with greater dilation occurring in the higher sulfonated sample or upon hydration at

higher temperatures. Furthermore a decrease in the order in the these phase separated

structures is reduced upon swelling. The glass transition temperature of the fluorinated

blocks have been seen to decrease upon hydration of these materials, and at the highest

hydration levels . DSC has shown the presence of tightly bound water. A precipitous

drop in the mechanical integrity of the AC50 materials is also observed upon exceeding

the Tg as measured by DMTA. Finally, highly sulfonated CS97 samples have shown the

formation of spherical micelles , even at concentrations as low as 0.05 mg/ml. This is

related to the great dissimilarity of the blocks (fluoropolymer versus ionic) in these

ionomers. The sizes of these micelles range from 13-13.5 nm, with the higher

concentration solutions having smaller radius of gyration , possibly due to crowding

effects.

3.2 Introduction

The study of the structure of ionomers under conditions at which they will be used

can shed light on the observed properties of such materials. Ionomers have increasing
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utility in various areas of research and industry such as batteries, fuel cells, electrolysis

cells, ion exchange membranes, sensors, electrochemical capacitors, modified electrodes

and even golf balls'.

lonomers typically are comprised of a hydrophillic acid bearing phase embedded

in a hydrophobic phase. The hydrophillic phases are known to form due to aggregates of

the acid groups in to multiplets or larger clusters""*. Nafion™ which is the most used

ionomer material in PEM applications, is composed of a hydrophobic fluoropolymer

backbone and hydrophilic fluorosulfonic acid bearing side chains^. Other materials range

from fluoropolymer to aromatic to hydrocarbon backboned materials, bearing pendant

acid groups in one configuration or another^.

The clusters formed by the acid groups at the end of the side chains are essential

in facilitating ionic conductivity by absorbing water which dissociates the proton counter

ions, forming a hydronium ions which in turn hop from one acid site to the next during

transport . Thus the quantity, shape, size, and connectivity of these ionic aggregates

dictate the observed transport properties of such materials.

When block copolymers of these ionomers are made , typically in the diblock

o

,tribIock or graft copolymer architectures , an extra level of morphological complexity is

introduced which yields a hierarchical structure. As in normal block copolymers,

nanometer scale phase separation occurs between the blocks, creating separate

hydrophobic and hydrophilic domains with morphologies similar to neutral block
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copolymers. The acid groups in the hydrophihc domains further form clusters at a

smaller length scale*^
'^

.

Swelling or dilation of ionomers upon increasing water or methanol content, and

at service temperatures is also an important factor affecting conductivity and mechanical

integrity. Block copolymer ionomers with one block being a fluoropolymer have been

shown to exhibit enhanced network formation and mechanical integrity especially when

hydrated*'. Backbone stiffness and counterions attached to the acid sites are known to

affect the degree of water uptake and hence, swelling^ '". The structure of Nafion™ has

been shown to undergo evolution and phase inversion in order to conserve specific

surface as water content increases''^.

With a view to understanding of the swelling induced structural evolution of our

fluorinated poly(Isoprene)-^/c>cA:-sulfonated poly(Styrene) ionomers from the dry

membrane to solution, we have investigated its structure using USAXS and SANS under

conditions mimicking fuel cell usage. Furthermore we have looked at the state of water in

these systems, and the effect of swelling on thermal transitions using differential

scanning calorimetry (DSC),. Finally the thermal and mechanical transitions were studied

using dynamic mechanical thermal analysis (DMTA).

3.3 Experimental Section

3.3.1 Materials

The synthetic procedures and characterization for fluorinated poly(Isoprenej-

/?/ocA:-sulfonated poly(Styrene) (FISS) materials have been described in detail
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elsewhere'"^. The precursor poly(styrene)-block- poly(Isoprene) (PS-PI) diblock

copolymer used in this work was anionically polymerized, having reported

characteristics: Mw =31,200 ,PDI=1.05, 27mol% PS. The fluorinated samples cast into

membranes were sulfonated to 23,28 and 50 mol%, as determined by 'H NMR. Some of

these samples were neutralized to the cesium salt form , and the balance left in the acid

form. The cesium form facilitates contrast in the X-ray scattering experiments, besides

exhibiting different transport properties. Nafion™ 1 12 was generously donated by

Atofina Chemicals Inc., and was pretreated to the acid form according to the procedure

reported elsewhere'"''. Another PS-PI diblock copolymer having Mw= 32.700, PDI 1.01 ,

52mol% PS; was fluorinated and sulfonation to 97mol% for use in micellization studies

in aqueous media. A sample coded FISS-AC50 would refer to the acid form of the

material, sulfonated to 50mol% of the styrene units in the PS block.

3.3.2 Preparation of Membranes

Freeze dried FISS samples were dissolved in a mixture of toluene/N-

methylformamide(THF/NMF:85/15 (w/w)) with a concentration ranging from 12-15

wt%. The NMF was used as a polar cosolvent. These solutions were then cast unto glass

plates for a day in the fume hood at room temperature for rapid casting of kinetically

trapped disordered morphology. Subsequently they were placed in an oven for 1 day at

60°C , and finally in the oven at 60"C under vacuum for a day to remove most of the

residual solvent. The acid-form samples were further reactivated by soaking overnight in

a 2M aqueous HCL solution containing methanol (20v/v) to enhance swelling and acid

permeation. They were thereafter rinsed repeatedly in deionized water till PH was
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neutralized and then dried at 60"C in a vacuum oven for a day, and again in vacuum plus

60''C for one day. Cast membranes were subsequently removed and stored in airtight bags

for further usage. Dry membrane thicknesses were measured using a digital micrometer

and range from 60-90 Dm. The Nafion 1 12 samples were also rinsed until PH was

neutral, then dried at 60°C in a vacuum oven for a day and stored in the same way.

3.3.3 Structural Characterization

Small angle x-ray scattering(SAXS) was performed at the Advanced Photon

Source(APS) in Argonne National Laboratory on beamline 32-ID, fitted with a Bonse-

Hart camera typically used for ultra small angle x-ray scattering (USAXS). which has

been described elsewhere. The x-ray energies range from 7 to 18 keV, yielding a q range

from 0.0001 to 1 .0 A"' ( where q, the scattering vector is equal to 4 ;r sin(^) / A , where

2^ is the scattering angle and A is the wavelength of the incident radiation). The beam

size was 1mm x 2mm, and a 1 -dimensional photodiode detector was used. Air-blanks

were subtracted and slit desmearing of the resulting data was carried out using the lake

method. All SAXS data were collected with the samples in the transmission position,

with membrane normal in the direction of the beam.

Small angle neutron scattering (SANS) experiments were also carried out on both

dry and hydrated samples, at the Intense pulsed Neutron Source (IPNS) at the Argonne

National Laboratory. The Small Angle Scattering Instrument (SASI) , having a q range of

0.007 to 1.45 A"' was used having a q resolution of 0.3 to 0.036. This instrument used an

area detector, with area of 50 x 50 cm^ and 3 - 5 mm (FWHM) detector resolution. The
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samples were sealed in quartz cells and empty cells were also run for background

subtraction.

Samples were hydrated by soaking in D2O or D2O vapor for at least 16 hours each

at both room temperature (23"C) and 60"C. The humidity of the D2O vapor was

controlled by placing jars of appropriate saturated salt solutions of D2O, having known

equilibrium relative humidities"' into sealed plastic containers, with the membrane

samples also placed within the sealed chamber but separate from the solution. A relative

humidity and temperature meter was also placed in this chamber before sealing. At the

end of the immersion period the hydrated samples were rapidly placed in the quartz cells

after blotting of surface D2O, with the edges sealed using Teflon™ tape to prevent

evaporation. These as well as blank cells were placed in the beamline and experimental

runs were carried out at room temperature for hydrated membrane samples.

In order to study the self-assembled structure of these ionomers in solution,

aqueous solutions of the highly sulfonated samples were made. These samples were

dissolved in D2O with concentration ranging from 0.05 to 10 mg/ml. For the SANS

experiments, the solutions were poured into 1 mm thick quartz liquid cells. The lids of

these cells were wrapped with teflon tape to prevent evaporation or spillage. These sealed

cells as well as cells containing pure D2O were placed in the neutron beamline at room

temperature.
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3.3.4 Thermal Characterization

As-received FISS samples were placed in a desiccator over Phosphorus pentoxide

for a week in order to dry any absorbed water. They were subsequently placed in an oven

at 105''C overnight under Nitrogen flow. DSC analysis was performed on these dry

materials , using a TA Instruments Q200 calorimeter. 4-7mg for samples was placed in

aluminum pans, which were sealed in the press. Heating and cooling rate was set to 10°C

min"'. Hydrated membrane samples prepared using water, with the same procedure as

described above for SANS measurements, were also sealed in aluminum pans and

analyzed.

Dynamic mechanical analyses of the cast FISS membranes were performed with a

TA Instruments' DMA 2980, using tensile fixtures. The samples had thicknesses as given

in Table 3.3 below, with length and width of 10mm and 5mm respectively. Heating rate

was 3°C/min , in a temperature range from 25"C -140"C, Strain of 15 um amplitude and

frequency of 1 Hz. The tensile storage modulus and loss modulus were measured.

3.4 Results and Discussions

3.4. 1 Structural Evolution with hydration

The structural evolution of PEM membranes under conditions mimicking use

environment is essential to understand the true structure, from which their properties

emanate. Specifically the changes in domain sizes as well as the hierarchical structure of

the block copolymer ionomers, under varying degrees of hydration and at different

temperatures, shed light on the changing transport properties that have been recorded.
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In order to determine the center-to-center distance (d spacing) of block copolymer

domains and the acid clusters of the FISS samples USAXS experiments were done. The

results are summarized below in Table 3.1. Both the AC28 and CS23 samples have the

same block d spacing of 20.3nm and cluster d spacing of 4.7nm. The AC50 and CS50

samples on the other hand have differing d spacing of 22.7nm and 23.7nm respectively.

The difference is related to the fact that, though they have the same sulfonation level,

they however have different morphologies (see chapter 2) , and hence will have different

packing of the chains resulting in different d spacings. The cluster d spacing for the CS50

sample is also less than that for the CS23 sample because of the higher number of

clustered acid sites which are more closely packed.

Scattering profiles from these dry FISS samples were also obtained using SANS

for comparison and are shown in figure 3.1 below. There is a difference in the neutron

scattering length density (SLD) between the fluorinated poly(Isoprene) (FI) and the

sulfonated poly(Styrene) (SS) blocks. The values for the neutron SLD for both FI and SS

block as well as for D2O are tabulated in Table 3.2. The contrast between two scattering

units is defined as their difference in neutron SLD squared' Using this approach the

contrast between D2O and the FI block gives 0.2423 x 10"" cm^ , while between 50mol

% Sulfonated Poly(styrene) and an adjacent FI block gives 0.00065 x 10"" cm The

latter contrast though not as great as the former, is sufficient to reveal visible block phase

separation peaks, as for some of the other samples.
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As can be seen in figure 3. 1 the CS50 samples have a d spacing of 22.2 nm as

compared to 23.7 nm obtained by USAXS. Also the AC28 and CS23 samples have d

spacings of 20.2 nm and 19.2 nm, respectively, compared to 20.3 nm measured by

USAXS. There is no distinguishable peak for the AC50 sample, which may be due to a

diffuse boundary between phases. Only block phase separation peaks can be seen in these

SANS spectra, since there is no deuterated water (D2O) in the clusters. The spectra have

been shifted on the intensity axis for clarity.

Upon hydration of these same materials with D2O as described above, at room

temperature (23"C ) and at 60"C , new d spacings were recorded at the block and cluster

peaks emerged for some of the samples, showing the hierarchical structure. Figure 3.2

shows the SANS data obtained from FISS samples hydrated at these temperatures.

Since the contrast for these SANS experiments is from the D2O absorbed into the

hydrophilic domain, several trends may be observed as more of it is absorbed. It is

expected that the contrast with the rest of the polystyrene in that domain should become

sharper and the peak position may shift to lower q values. Also, since the D2O is

absorbed essentially in the hydrophilic domain, there will emerge a clear peak due to the

block phase separation and a shift in the peak position as more D2O is absorbed. This is

observed clearly for the AC50 samples, where the block separation peak moved from a q

value of 0.0237 lOA"' to 0.017699 A"' when hydrated at 23"C and at 60 respectively.

This corresponds to d spacings of 26.5 nm and 35.5 nm respectively. Compared to the d

spacing of 22.7 nm from the same sample in the dry state obtained by USAXS, these new
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d spacings represent an increase of 16.7% and 36.0% in center to canter distance of this

sample. This indicates a clear trend of domain dilation with increased hydration.

A similar trend can be seen for the CS50 sample. In the dry state the block d

spacing was 23.7nm from USAXS, whereas after soaking in D2O at 23°C, it increases to

27.8 nm representing a 17.3% increase. Upon soaking this sample at 60°C it disintegrates

and forms a swollen gel which shows a micelle-like scattering profile. Both the AC50

and CS50 curves loose their distinct hierarchical features when soaked at 60oc ,

confirming their change in structure. The AC28 and CS23 samples show essentially the

same block phase separation peak position as they absorb relatively smaller amounts of

D2O (See Chapter 2).

On the cluster length scale the same trend can be seen. The CS50 sample which

had a cluster d spacing of 3.2 nm in the dry state indicated by the broad peak at higher

q'^
, has a center shifted to approximately 5.8 nm upon soaking at 23°C. The AC50

sample which had not cluster peak in the dry state SANS, shows a 3.2nm spacing peak

when soaked at 23"C, which becomes vague after soaking at 60''C. This is an indication

of a coalescence process of the D2O containing cluster pools, which blurs out individual

cluster entities. This leads to a three dimensional network of hydrated channels, resulting

in a jump of ionic conductivity. A similar structural evolution has been shown for

Nafion™ upon increased hydration which results in a percolation threshold in its ionic

conductivity.
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The change in domain spacing of AC28 and AC50 immersed in D2O liquid and

it's vapor at different relative humidity values are shown in Figure 3.3. The same trend of

domain dilation, as indicated by first order peak maximum shift to low q, is seen as

humidity is increased up till immersion in liquid. This domain dilation can is also more

prominent for the higher sulfonated AC50 sample than for the AC28 sample as expected.

The lower temperature and lower humidity (35% RH) spectra, show little or no change

from the dry state.

The Half-width at half-maximum (HWHM) of the scattering peak gives a clear

indication of the degree of order in a phase separated block copolymer system. Broader

peaks indicate a more disordered liquid-like systems. As seen in figure 3.2(a) the

peak for AC50 samples are much broader than the CS50 samples, indicating a more

disordered morphology, as seen also from TEM (See chapter 2). The broadness also

indicated the presence of more deuterated water D2O in this sample. Upon soaking in

D2O at 60''C the block domain peak further broadens out into a shoulder, confirming

extensive loss of order and liquid-like structure. This can also be seen by the

disappearance of a distinct cluster peak, supporting the suggestion that a three-

dimensional network structure of hydrated channels has evolved. The domain dilation

and coalescence of cluster pools to form conducting channels as described above, has

been modeled in figure 3.4 below. It must be borne in mind that the uptake of

hydrophilic molecules in ionomers is closely related to temperature, and there is

sometimes a precipitous change in swelling accompanying thermal transitions'V
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3.4.2 Thermal and Mechanical Transitions.

The transition from a glassy to a rubbery state in an amorphous polymer or

polymer segment can be detected through a change in heat capacity of the polymer,

which is measurable by DSC. The DSC themograms of some of the dried as-received

FISS materials are shown in figure 3.5 for the second heating scan of a heat-cool-heat

cycle. The AC28 and AC50 samples have similar glass transition (Tg) temperature at

45.3'^C and 45.5"C, in good agreement with literature^". However the CS50 sample has a

Tg of 32.6 "C for the FI block.. The difference between the cesium and the acid (proton)

material transitions is likely due to the relatively more bulky cesium ions and the way it

effects the whole chain mobility. The Tg of the sulfonated PS block was undetectable

even when probed up to 170°C, and may have been elevated beyond this temperature due

to sulfonation as seen in other ionomers""^ "^.

Upon a transition from the glassy state to the rubbery state in the fluorinated

poly(Isoprene) block, which is the bulk phase of the polymer, the mechanical integrity of

the whole PEM made from this material is compromised. This is shown in figure 3.6

below in which the Storage modulus of the AC50 sample drops by more than 90%

between 45"C and 60^^C (at Ihz frequency). Since the storage modulus in viscoelastic

solids measure the stored energy or the solid-like characteristic of a viscoelastic

material"'', it means that this material will flow under desirable fuel cell membrane

application temperatures (60''C-100"C), even without considering the softening effects

swelling. On the other hand the Nafion™, though not as stiff at room temperature,

maintains appreciable mechanical integrity under desirable use temperatures.
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Membrane samples from the same batch used for the SANS experiments were

soaked in the same manner in deionized water for 16 hours, at room temperature and at

60"C and the DSC thermograms obtained thereafter are shown in figure 3.7. After soaking

20 °C a depression in the glass transition of all the samples that were measured in the dry

state was recorded. The data are summarized in Tables 3.3, and show that the highest Tg

reduction of 6.2 "C was observed for AC50, which has the highest water uptake value for

membranes soaked at 20 "C. This indicated that the absorbed water serves as a plasticizer

even in the hydrophobic FI domain. Similar glass transition reduction effects observed in

other ionomer systems have been attributed to the presence of non-freezing water"

The state of water in the hydrophilic domains of an ionomer can be deduced from

the characteristics of the melting endotherm, upon the melting of frozen absorbed water,

via differential scanning calorimetry"^. The occurrence of a broad melting endotherm

between -20 °C and 20 °C, has been attributed to the melting of freezable water that is

loosely bound to the polymer chains "
. The same kind of features have been observed

for the FISS samples soaked at 60°C and seen in figure 3.7(b). The broadest peaks are

observed for the samples with correspondingly large water uptake values, as can be seen

in table 3.3. The peak area gives a measure of the crystallization enthalpy (effectively

how much water is bound to the acid sites of the ionomer), and shows that AC50 has the

largest crystallization enthalpy and also the largest water uptake at this pre-soak

temperature. No sharp spike can be seen in the thermograms suggesting the absence of

free- water in the system. Nafion 1 12 membranes on the other hand show much less
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loosely bound water under the same conditions, than AC50. They were also much less

visibly swollen after soaking at 60°C but had better transport properties, suggesting that

they use the water they do absorb much more efficiently than the FISS-AC50 material.

Also there is no glass transition observable in the FISS samples because they are, to

varying degrees, essentially in the gel state upon soaking at 60°C.

3.4.3 Micelle Formation

Amphiphillic polymers and oligomers (surfactants) are well known to self

assemble into various kinds of micelles in a liquid medium. In an aqeous medium, the

hydrophilic part of the polymer would face the water, while shielding the hydrophobic

portions of the chains in the micelle core, thus preventing unfavorable interactions with

the water. Many types of micellar structures are known and well studied including

spherical, ellipsoidal, cylindrical, bilayer (vesicles), however for the most part they can

be approximated as being spherical.

Small angle scattering is widely used as a tool for characterizing the size ,shape ,

and other features of these micellar aggregates. In our SANS experiments with FISS-

CS97 materials, the contrast which leads to scattering is due to the difference in neutron

SLD between D2O and both the FI ans SS block of this highly sulfonated water soluble

sample.. Calculations using SLD figures from table 3.2, show that the ratio SLD for

D2O versus FI block is 4.7, while for sPS (Cs"^) versus FI block is 1.3, therefore the

strongest contrast is between the D2O or aqueous surrounding medium and the FI chains

in the core of the micelles. In this scenario the structure of the hydrophilic polymer
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chains in the micelle corona can also be determined as, they are an intermediate region

between the core, and the D2O only regions, this is known as shell contrast..

The SANS profiles for solutions of the CS97 samples with concentrations of 0.05,

1, and 10 mg/ml in D2O are shown in figure 3.8(a). The curves for 1, and 10 mg/ml

solutions have essentially the same shape , with a form factor peak in the mid q range

around the same position indicating they are have similar shapes and sizes. In the high q

region, where the smallest features can be seen , the slopes of the curve indicate the

conformation of the hydrophilic chains dangling in the D2O. A I(q) dependence of q ",

indicates gaissian chains whereas, a q ' dependence indicates 1 -dimensions objects, or

stretched out chains"^. The Power law fits to the data show, that the 1 mg/ml solution

have approximately q dependence . whereas the lOmg/ml solution has q " dependence.

This can be explained by the fact that the latter have less space for each micelle due to

the higher concentration than the former, and so the chains have less room to stretch. The

low concentration, 0.05 mg/ml solution has too little scattering to discern this slope due

to very few scattering objects being present and hence low counting statistics.

The shape of micelles can be determined by the use of a kratky plot"**^. The kratky,

I(q) X q" versus q plot for a spherical object exhibits a clear peak , with its position

dependent on the objects radius of gyration. This is because the Gaussian coil (low q or

guinier) portion of the curve is multiplied by relatively small q" value"*'. At higher

angles, where the guinier approximation no longer holds . the curve should obey the

porod approximation (I(q) a q'^) and the intensity should sharply decease when
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multiplied by q~, forming a peak. As can be seen for the Kratky plots in figure 3.8(b), all

the plots show a distinct peaks( the peak for the 0.05 mg/ml is visible at a smaller scale),

confirming the micelles are essentially spherical. The peak for the lOmg/ml sample is

positioned at slightly higher q value, indicating a smaller radius of gyration.

The size of a micelle can be determined from the net scattering intensity I(q)

based on the Guinier approximation (at low q values) as expressed in the equation

below:

I(q) =I(0)exp(-R-gq-/3) (1)

Where 1(0) denotes the scattering intensity extrapolated to zero angle and Rg is the radius

of gyration. The initial slope in the logarithm plot of equation (1) gives the radius of

gyration of the micelle . The Guinier plots and analysis of the micelle data studied are

shown in figure 3.8(c). The radius of gyration values for the 0.05. 1, and 10 mg/ml

solution micelles are 13.3, 13.5 and 130 nm respectively. The results for the 0.05 and 1

mg/ml solutions are almost the same, with the largest size of 13.5nm for the 1 mg/ml

sample. The size for the lOmg/ml sample is slightly smaller, further confirming the

suggestion that the 1 mg/ml has stretched out chains which may increase its radius of

gyration, whereas the lOmg/ml samples may experience some crowding effects and so

show a smaller radius of gyration with Gaussian, random coils.

3.5 Conclusions

SANS and USAXS have been used to study the structural evolution of FISS

materials as they have evolved from the dry state to the water soluble state. A dilation of
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the nanometer-scale hydrophilic domains has been observed as hydration was increased,

with higher sweUing for the higher sulfonated samples or upon hydrating at higher

temperatures. Furthermore a decrease in the order in these microphase separated

structures is reduced upon dilation. The glass transition temperature of the fluorinated

blocks, have been seen to decrease upon hydration of these materials; and at the highest

hydration levels DSC has shown the presence of tightly bound water. A precipitous drop

in the mechanical integrity of the AC50 materials is also observed upon exceeding its

Tg.. These results explain the bursting of the membranes during methanol permeability

testing at 60°C, and the sharp increase in methanol permeability with increased

temperature. To further develop these materials, new approaches must be found to limit

the domain dilation, and increase the glass transitions way beyond the operating

temperature.

Finally highly sulfonated CS97 samples have shown self-assembly into spherical

micelles in aqueous media, even at concentrations as low as 0.05 mg/ml. This is related

to the highly dissimilar blocks (fluoropolymer versus ionic) in these ionomer. The sizes

of these micelles range from 13-13.5 nm, with the higher concentration solutions having

smaller radius of gyration, possibly due to crowding effects.
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Table 3. 1 Dry sample center-to-center distances for fluorinated poly(Isoprene)-

Z?/c»c-A:-sulfonated poly(Styrene) (FISS) obtained by USAXS.

Sample D spacing of D spacing of

Blocl<, nm Cluster, nm

FISS-AC28 20.3 4.7

FISS-CS23 20.3 4.7

FISS-AC50 22.7

FISS-CS50 23.7 3.2
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Figure 3.1 SANS profiles from fluorinated poly(Isoprene)-/?/<7c'A:-sulfonated poly(Styrene)

dry at23°C.
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Table 3.2 Neutron Scattering length densities calculated for different parts of

fluorinated poly(Isoprene)-Z?/oc^-sulfonated poly(Styrene) and D2O.

Scattering D2O Fl PS sPS (H^) sPS (Cs^)

Unit

Neutron SLD* 0.6236 0.1313 0.1374 0.2519 0.1764

(cm'^x lO"*^)

* Calculated using scattering cross section data from T. P Russell's, Polymer Physical

Chemistry lecture notes and Reference 16.

Fl: fluorinated poly(Isoprene)

PS: poly(Styrene)

sPS (H"^): sulfonated poly(Styrene) with proton counterion

sPS (H"^): sulfonated poly(Styrene) with cesium counterion
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Figure 3.2 SANS profiles from fluorinated po]y(Isoprene)-Z?/oc^-sulfonated poly(Styrene)

soaked for 16 hours in D2O at (a) 23°C and (b) 60"C.
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Figure 3.3 SANS profiles from fluorinated poly(Isoprene)-Z?/oc-A:-sulfonated poly(Styrene)

soaked for 16 hours in D2O and its vapor for (a) AC28 and (b) AC50.
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gure 3.4 Schematic of structural evolution with increased hydration.
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Figure 3.5 DSC thermogram from fluorinated poly(Isoprene)-/7/orA:-sulfonated

poly(Styrene) as received samples dried under nitrogen flow overnight at 105"C.
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Figure 3.6 DMTA curves for fluorinated poly(Isoprene)-Z?/oc/:-sulfonated poly(Styrene)

and Nafion™ samples pre-dried under nitrogen flow overnight at 105°C. Tension Mode.
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Figure 3.7 DSC thermograms from fluorinated poly(Isoprene)-/7/ocA:-sulfonated

poly(Styrene) soaked for 16 hours in HiO at (a) 23°C and (b) 60''C.
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Table 3.3 Thermal properties of fluorinated poly(Isoprene)-Z?/c»rA'-sulfonated

poly(Styrene) and Nafion™.

Dry

Thickness

Polymer (uni) Water Uptake (%)

Tg Reduction Area/Water

Glass Transition Glass Transition after soaking absorbed

Dried(°C) after soaking (°C) (°C) after soaking (J/g)

60°C'' 105°C' 60°C''

Nafion 112 50 0.11

FISS-AC50 81 17 595 45.5 39.3 6.2 74.45

FISS-CS50 91 5 a 32.6 32.4 0.2 a

FISS-AC28 69 5.4 257 45.3 41.9 3.4 54.86

F1SS-CS23 74 2.4 129 7.34

^Not Measurable

''Pre-soak Temperature in Deionized water

"^Pre-Dry Temperature under flow
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Figure 3.8 SANS profiles from fluorinated poly(Isoprene)-/?/6'rA:-sulfonated poly(Styrene)

micelles formed in D2O (a) profiles with Power law fits (b) Kratky plots (c)Guinier plots

and analysis. (Continued)
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Figure 3.8 (Continued)
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CHAPTER 4

POLYMER ELECTROLYTE MEMBRANES FROM FLUORINATED
POLY(ISOPRENEj-BLOCK-SULFONATED POLY(STYRENE):
MICRODOMAIN ORIENTATION BY EXTERNAL FIELD.

4.1 Abstract

In this study, block copolymer ionomers of the cesium salt (20 mol %) of

fluorinated poly(Isoprene)-block-sulfonated poly(Styrene) have been spun cast into

membranes and annealed under an electric field of -40 V/um at 130oC for 24hours.

This resulted in the .transformation of the morphology from a random phase separated

state to one preferentially oriented in the direction of the electric field but with smaller

domain sizes. The effect of this change in morphology was a 2.5 times increase in the

ionic conductivity as measured by electrochemical impedance spectroscopy, at all

humidity conditions measured. This can be attributed to the increased connectivity of the

ionic domains. This technique may find application in the fabrication of nanostructured

polyelectrolytes with enhanced charge transport capacity,

4.2 Introduction

The use of external fields to orient the different components of a polymeric

system has gained significant interest over the last decade. It involves the application of

an external field to induce structural rearrangement of a material to achieve preferential

texture in a desire direction. Different kinds of external field have been employed

including shear' ", electric fields'*""^, solvent evaporation^ '', and mechanical

constraints^'^.and magnetic fields'^^.These techniques commonly employ the interaction of

the field with the anisotropic portions of the materials having different components that
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are not phase mixed such as blends, block copolymers, or polymer- nanoparticle

mixtures.

The purpose of such microdomain orientation is typically to enhance orientation

dependent properties, and has found application in the fabrication of templating nanowire

arrays" '", photonic crystals'"^"'"^, and improved gaseous permeability'\ The effective

diffusion of small molecules through polymeric microdomains has been shown to vary

inversely to the square of tortuosity'^', where tortuousity is a measure of the degree of

twisting of the domains. In essence a block copolymer with oriented domains has been

shown to have much higher transport of the penetrant small molecules in the direction of

orientation.

This same approach has been applied to the improvement of ionic conductivity.

A study by Weiss and Coworkers et al.'^
'^ showed that blend of sulfonated Poly (Ether

Ketone Ketone) ionomer and neutral Poly (Ether Imide) cast under an electric field(E-

field), yielded a morphology with the ionic component oriented in the direction of this E-

field (Perpendicular to plane of membrane) and resulted in orders of magnitude increase

in ionic conductivity. Also LiI:PEO based solid Polymer electrolyte for batteries showed

one- order of magnitude increase in Li ion conductivity upon orientation of the PEO

crystalline chains, by incorporation of magnetic particles and application of a magnetic

field'^. Furthermore it has been predicted that an orientation of block copolymer ionomer

domains in the direction of desired ionic conductivity would enhance their utility as

Polymer electrolyte fuel Cell membranes"^.
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Block copolymers are particularly suited for microdomain orientation by external

fields, due to their predictable formation of microstructures with anisotropic domains,

such as lamellae or hexagonally packed cylinders. Much work has been done on the

orientation of block copolymers using E-Fields. Most of the work has centered on

poly(Styrene)-poly(Methyl Methacrylate) (PS-b-PMMA) block copolymers'^'^'"' ", and

23
their complexes with Lithium salts . Some work has also been done on rubbery di- and

tri-block copolymers of poly(Styrene)-poly(Isoprene), as well as poly(Styrene)-

poly(Ethylene-co-butylene)- poly(Styrene) (sSEBS) as shown in figure 4.1.

The driving force for the alignment of block microdomains is due to the dielectric

constant difference between the dissimilar blocks. Recent experimental studies in the

melt have suggested that disordering of the original lamellar morphology is followed by

rotation of the smaller grains formed in the direction of the applied E-field"^ "''. whereas

studies from solution suggest the latter step is preceded by defect translation"^. These

suggested pathways have also been corroborated by simulation" '
.

Few studies have been reported on the orientation of ionomers by any external

field"^'-^^. This was found to be a nontrivial task as the ionic aggregation of the acid sites

severely limited chain mobility, in nematic liquid crystal domains. Alternatively track-

etched membranes with pores oriented normal to the plane of the membrane , have been

filled with ionomers, yielding significant increase in ionic conductivity compared to

isotropic membranes'^ '
"^". This work is focused on the orientation of block copolymer
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ionomer domains normal to the plane of membranes formed from them and investigation

of the resultant effects on proton conductivity.

4.3 Experimental Section

4.3. 1 Materials

The synthetic procedure and characterization for fluorinated poly(Isoprene)-

block- sulfonated poly(styrene) (FISS) materials have been described in detail

elsewhere"^\ The precursor poly(styrene)-block- poly(Isoprene) (PS-PI) diblock

copolymer used in this work was anionically polymerized, having reported

characteristics: Mw =27,000 ,PDI=1.05, 50mol% PS. The fluorinated samples had the PS

block sulfonated to 20 mol%, as determined by 'H NMR, and subsequently neutralized to

the cesium salt form. This sample will be referred to as FISS-CS20 hereafter.

4.3.2 Preparation of Membrane

Membranes from the FISS-CS20 samples were prepared by spin coating a 5 wt %

solution in Tetrahydrofuran (THF) unto a silicon substrate on which gold had been

deposited, as shown in figure 4.2 below. Spin speed was at 1000 rpm and was left to spin

for 5mins. The resultant film was ~ 500nm in thickness as determined by a Dektak^

profilometer. A piece of this membrane coated wafer was reserved as the As-cast sample.

4.3.3 E-field Alignment Experiments.

An aluminized Kapton film was used as an upper electrode , having ~ 25 Dm layer

of crosslinked poly(Dimethylsiloxane) (PDMS) (Slygard) cured on the kapton side. This
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was necessary to have an intimate contact between the top electrode and the copolymer

film , thus eliminating insulating air gaps. The sandwitched capacitor, was placed in an

oven with a nitrogen flow blanket, and annealed at 1 30°C for 24 hours under an E-field

strength of ~ 40V/\)m as shown in figure 4.3. The E-field was typically applied before the

oven got heated. The whole setup was quenched to room temperature before the applied

E-field was removed.

4.3.4 Transmission Electron Microscopy(TEM).

TEM samples were prepared from both the As-Cast and E-Field samples. A thin

layer of gold, and then carbon was sputtered unto the surface of the membrane still in the

gold coated wafer. The gold serves as a membrane edge marker, while the carbon serves

as an epoxy diffusion barrier. Both samples were then embedded and cured in room

temperature cure Epoxy for 24 hours. The membrane was then separated from the

substrate by immersing in liquid nitrogen, and subsequently 50 nm thin sections of the

sample were cut across the thickness of the membrane (E-field direction) using a Leica

Ultracut UCT cryomicrotome at -120"C. These were then collected on copper grids and

stained with RUO4 vapor for 1 hour. It is assumed that only the unsulfonated polystyrene

domains were stained. TEM images were obtained using a JEOL-2010 microscope

operating at an accelerating voltage of 200KV in the bright field mode.

4.3.5 Ionic Conductivity.

Ionic (cesium) conductivity of the membranes were measured by means of two

probe complex impedance spectroscopy techniques, which measure conductivity normal
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to the plane of the membrane respectively. Pieces of both the As-cast and E-field

samples still on the gold plated substrates were immersed in a chamber with 50% relative

humidity (RH) for 24 hours, and then rapidly sandwiched between another piece of gold

coated silicon wafer (gold face touching membrane). A solartron 1252A frequency

response analyzer linked to a an SI 1287 electrochemical interface was used within a

frequency range of 0.1 and 300KHz, and the value of the real intercept in the imaginary

vs. real impedance plot (Bode plot) in the high frequency range is taken as the bulk

resistance of the membrane to ionic conductivity, as described in elsewhere'^"^. The same

test was repeated for the same samples after soaking in a 100% RH chamber for 7 hours.

4.4 Results and discussions

The value of orientation of ion conducting domains in the direction of the desired

ion transport has been demonstrated for batteries and for fuel cell polymer electrolytes.

However facile direct methods to orient block copolymer ionomers, which have

increasing appeal as fuel cell membrane materials due to their fast and predictable self-

assembly into nanometer lengthscale structures, are still lacking. The above described

experiments were carried out to investigate the viability of electric field induced

alignment in this regard.

Cross sectional TEM micrographs of FISS-CS20 samples, which were spun

coated, and subsequently annealed under an electric field are shown in figure 4.4 below.

The as-cast samples show a randomly (mixed) oriented morphology, with the dark

portion being the sulfonated Poly(styrene) domains. This is the typical cylindrical
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morphology expected from a elastomer-styrene block copolymer with a PS minor

component of around 25-27mol % as shown in figure 4. 1(a). The rapid spin coating and

solvent evaporation results in a kinetically trapped morphology.

Upon annealing of an uncharged block copolymer under an electric field, an

orientation of the domains in the direction of the electric field is achieved, by one of the

mechanisms discussed earlier, as seen in figure 4.1(b). It is observed that the orientation

of the domains does not visibly affect the domain size. However, upon application of a

similar treatment to the sulfonated FISS-CS20 samples, there is a visible reduction in the

domain size as seen in figure 4.4(b). This results in a much finer grained morphology,

and essentially a greater degree of connectivity in the hydrophilic domains.

Also it has been shown that the order in self assembled morphologies observed in

cast block copolymers ionomers is reduced upon annealing"^^. This observed change is

related to the fact that the electrostatic interactions leading to the formation of ionic

clusters are much stronger than the weak non-covalent interactions that lead to block

copolymer phase separation. These behave as physical cross links, hence reducing the

mobility of the chains and hindering their self assembly into equilibrium structures'^^. So

upon annealing the polymer chains gain energy for increased mobility, and this allows the

ionic groups to come in the vicinity of one another more often and interact, locking in a

structure at a shorter length scale (see chapter 3) than for block phase separation, in a

random fashion. This then templates the self-assembly of the block copolymer dissimilar

chains which are chemically connected together, in an equally random fashion, at a
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lenghtscale limited by the molecular dimensions. This process may play a significant part

in the smaller, grainy morphology observed upon annealing of the FISS-CS20 samples.

On the other hand, a slight preferential orientation of these grainy domains can be

observed in the direction of the applied E-field (indicated by the arrow). This orientation

is by no means complete or exclusive, as it is the result of competition between

electrostatically induced random orientation: and polarization of the anisotropic

microphase structure by the electric field inducing alignment in its direction. The

dominant effect will depend on field strength, temperature of annealing, duration of

annealing, and ionic content to varying degrees. A more extensive and systematic study

will be required to decouple and quantify the influence of each.

The ionic (cesium) conductivity of As-Cast and E-field annealed FISS-CS20

samples from different pieces of the same spin-coated silicon substrate, has been

measured across the plane of the membrane, and results are shown in figure 4.5. The

data clearly indicates an increase in conductivity of ~ 2.5 times upon annealing under an

electric field over the as-cast samples. The low absolute figures are either due to the low

relative mobility of the heavy cesium ion being measured, or the low humidity or

hydration condition, however the increase in conductivity is consistent for both humidity

conditions measured.

This increase in conductivity may be attributed to the high domain connectivity,

in the grainy random morphology of the Efield annealed sample or due to the induced

101



preferential orientation in the electric field direction, which is also the direction in which

ionic conductivity was measured. An increase in conductivity can however be the result

of either of these morphological attributed or both. A more exhaustive study of this

approach to increasing conductivity in block ionomers will be required, however this

approach shows significant promise as a facile means of creating nanostructured ionomer

membranes with controlled orientation.

4.5 Conclusions

Annealing of cesium salt (20 mol %) of fluorinated Poly(Isoprene)-block-

sulfonated poly(Styrene) transforms its morphology from a random phase separated state

to one preferentially oriented in the direction of the electric field but with smaller

domain sizes. This morphological change can be tentatively attributed to a competition

between templating intermolecular electrostatic interactions of the ionic groups on the

sulfonated blocks and the polarization of the dissimilar block domains in the electric

field. The effect of this change in morphology is a 2.5 time increase in the ionic

conductivity as measured by electrochemical impedance spectroscopy, at all the humidity

conditions measured. This can be attributed to the increased connectivity of the ionic

domains.
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(b)

Figure 4.1 TEM micrographs showing sSEBS samples (a) As-Cast , (b) After Electric

field of ~ 45V/um applied at 208°C, for 24 hours.
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Figure 4.2 Schematic of spin casting operation.
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Figure 4.3 Schematic of Electric Field Alignment Experimental Setup.
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(a)

Figure 4.4 TEM micrographs showing FISS-CS20 samples (a) As-Cast , (b) After

annealing under Electric field of ~ 40V/um applied at 130oC, for 24 hours. (Continued).
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Figure 4.4 Continued.
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Figure 4.5 Ionic (cesium) conductivity results for As-Cast and Efield annealed FISS-

CS20 samples.
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CHAPTER 5

POLYMER ELECTROLYTE MEMBRANES FROM ELECTROSPUN
SULFONATED POLY(ARYL ETHER KETONE) NANOFIBER MATS.

5.1 Abstract

Sulfonated poly(ether ether ketone) has been electrospun and electrosprayed by

varying concentration in DMF, yielding isotropic fibrous mats and beads. The glass

transition temperatures of these materials have been shown to be higher than those of the

unsulfonated precursors and they increase with increasing sulfonation, due to hydrogen

bonding induced rigidity. The presence of sulfonic acid groups on the surface has been

confirmed by means of x-ray photoelectron spectroscopy, with sulfur representing 3% of

the surface elemental composition. These acid groups on the surface of internal fibers,

help to form a 3 dimensional network of conducting channels in the voids of the fibrous

mats upon hydration. This in turn has led to an improvement of conductivity from 0.033

S/cm for void-less solution cast membranes to 0.040 S/cm for the electrospun fibrous

mats.

5.2 Introduction

A lot of emphasis has been placed of late in the research and development

community on the unique properties materials exhibit at the nanometer lenghtscale.

Besides other intriguing physical phenomena that occur at this lenghtscale, the basic

increases in surface -to-volume ratio and aspect ratio confer on nanoscale materials a lot

of advantages that have been harnessed in technological areas such as catalysis,

composites, and purification.
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One facile means of fabricating such, nanostructures with high surface-to-volume

and aspect ratio is through Electrostatic spinning or Electrospinning. Electrospinning (or

similarly electrospraying) is an old technique that has been used for centuries in the

materials science field to fabrication articles with small features, based on the interaction

between the molten material or a solution containing it, and electricity. The technique

was first applied in general to distort a drop of fluid with an electric charged object^ , and

more specifically with regard to polymeric systems, they were first mentioned in a 1934

patent by Formhals" .

This process basically involves the pumping of the polymer solution or melt,

through a metallic spinneret (or syringe) with a small hole, forming a droplet at the tip.

Upon application of a high voltage between this spinneret and a grounded metallic target

of opposite polarity, a uniformly distributed electrostatic charge is induced on the droplet.

When this charge exceeds the surface tension on the droplet surface, charge repulsion

leads to what is known as a taylor cone formation, and then a jet of fluid is ejected

towards the grounded target. This fluid jet experiences instabilities; elongation and

evaporation while in flight and eventually deposited as a continuous filament of the

polymer typically in a random manner unto the grounded metallic target."^.

Many variations of this basic method have been developed including the

application of high speed rotating wheel collectors to effect alignment of nanofibers "

.

Fiber dimensions reported, have varied from microns to less than 100nm^'\ The
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dimension and other morphological features of these nanofibers, have been shown to

depend on a lot of parameters including Polymer Properties ( type, molecular weight,

architecture); Solution properties (viscosity, elasticity, ionic salt content, surface tension);

Process Parameters (Electrical Potential, gap distance, flow rate to spinneret, target

motion); and Ambient conditions (temperature , humidity. Air circulation velocity). For

instance it has been shown that increasing the polymer concentration, reducing the

applied electrical potential or reducing the surface tension of the solution would lead to

7 9
smoother fibers without beads "

.

The applications for this fabrication technique continue to be developed and

expanded with reported applications including composite reinforcement'", filtration".

Medical Prostheses'", Wound Dressing'\ drug delivery'^, protective and breathable

clothing'"^, batteries'^, optical shutters'^, biochemical and optical sensors '*^ ''^, nanotubule

templates'". The electrospinning technique has also been successfully applied to more

than 40 different types of polymers, as reported in literature\

Partially charged polymers, lonomers, are typically polymers that posses acid

groups on some of the monomer units. Sulfonic or carboxylic acids are most commonly

used, with the stronger perfluorosulfonic acid bearing ionomers such as Nafion™ finding

widespread commercial application in the PEM fuel cell and ion exchange industries.

These ionomers are typically cast as pin-hole free membranes, by controlled processing

which results in specific morphologies that reflects on their transport properties. Several

differing models have been put forth for the morphology of Nafion™ with little
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consensus, which would properly explain their good ion transport properties. However
,

there is a strong evidence that its morphology transforms from a cluster-channel model

to a rod-like model"' as the membrane is hydrated. This in effect means that the basis for

the good ionic transport properties are cylindrical ionic channels running in three

dimensions through out the hydrated membrane. It is our aim in this work to create

similar 3-dimensional ionic channels in the voids of random mats of electrospun

sulfonated Poly(Aryl ether ketone)s.

A combination of hydrophilic and hydrophobic components of Nafion™ chemical

structure (See chapter 1), confer on it mechanical, thermal and oxidative stability even

under harsh environments. In light of this there has been increasing interest in the

development of ionomers based on polymers having good thermal and mechanical

properties"". One such class of polymers are poly(Aryl Ether ketone)s, which are

commercially available as high performance polymers having good thermal, mechanical

and oxidative stability. The sulfonation of these polymers is relatively well developed,

and has been applied to the preparation and study of PEMs"" ""
.

In this work, the electrospinning of sulfonated Poly( Aryl ether ketone)s , namely

sulfonated poly(ether ether ketone) (sPEEK) will be studied. The elctrospinning

charasteristics, nanofiber mat morphology, as well as their applicability as PEMs will be

investigated. There are few mentions in literature of electrospun nanofibers for

electrochmical applications. Choi et al. have reported the use of electrospun

poly(vinylidine fluoride) (PVDF) mats for battery polyelectrolyte membranes, using
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LiN(CF3S02)2 liquid electrolyte trapped in the voids of the mats as the source of ions for

conductivity"^. More specifically only one reference reports the use of electrospun and

electrosprayed sulfonated poly(ether ether ketone ketone) (sPEEKK) mats for PEM

membranes, with high proton conductivity recorded being attributed to ionic channels in

the interstices of nanofibers or nanospheres"^.

5.3 Experimental Section

5.3.1 Materials

The synthetic procedure and characterization for the sulfonated poly(ether ether

ketone) (sPEEK) sample used in this study have been described in detail elsewhere" . The

samples having an ion exchange capacity of 0.66 meq/g and 1.97 mEq.g and a precursor

poly(ether ether ketone) (PEEK) molecular weight (95,000 Da) have been studied.

Solutions of the sPEEK(1.97 meq/g) sample in N,N-dimethylformamide (DMF), with

concentrations ranging from 5- 22 wt%, were prepared for electrospinning and stirred for

several hours before electrospinning.

5.3.2 Preparation of Membranes

Membranes from isotropic mats of electrospun nanofibers were prepared by

electrospinning using 5- 10ml normject™ syringes, fitted with aluminum needles as

shown in figure 5. 1 below. The tip of the needle on the syringe was clamped by an

alligator clip electrode connected to the voltage source and the solution was pumped with

a KD Scientific syringe pump out of the needle, forcing its flight to a grounded aluminum

foil or aluminum coated kapton foil. The kapton film coated with aluminum on the back
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was used so as to prevent contamination of the sulfonate counterions. The sPEEK web

was therefore deposited on the kapton side, with the aluminum back coating serving as a

attractive pseudo-target. The flowrate through the syringe was varied from 10 ul/min -

lOOul/min, the applied voltage from a Matsusada Precision Inc. power source was varied

from 9 - 22 kilo Volts, and the distance from the syringe tip to the grounded target was

similarly varied from 7cm -15cm.

For comparison, a membrane of sPEEK was cast from 9wt% solution of sPEEK

1 .97 meq/g in DMF, unto a neutralized glass plate. This drop cast solution was then put

in the fume hood for 9 hours to dry slowly, then in the oven for 9 hours at 105"C, then

with vacuum and at 105°C in the oven for 12 hours. The collected web of sPEEK

nanofibers were also dried under a nitrogen flow at 120"C for 12 hours. The samples for

the ionic conductivity were subsequently reactivated by soaking overnight in a 2M

aqueous HCL solution. They were thereafter rinsed repeatedly in deionized water till PH

was neutralized and redried. Dry membrane thicknesses were measured using a digital

micrometer and range from 220-300 um.

5.3.3 Thermal Characterization

Electrospun membrane samples were subsequently placed in an oven at 105"C

overnight under Nitrogen flow. Differential Scanning Calorimetry(DSC) analysis was

performed on these dry materials , using a TA Instruments Q200 calorimeter. 4-7mg for

samples was placed in aluminum pans, which were sealed in the press. Heating and

cooling rate was set to 10"C min Virgin sPEEK and PEEK samples were also placed in
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TA Instruments ThermoGravimetric Analyzer(TGA 2950 ) , and percent weight loss was

measured as the samples were heated from room temperature till lOOO^'C under nitrogen

flow.

5.3.4 Scanning Electron Microscopy(SEM)

The morphology of the electrospun fiber mats were studied by means of a Field

Emission Scanning electron microscope (FESEM, JEOL 6320 FXV) operating at an

accelerating voltage of 5 or 10 Kilovolts. All samples were sputter coated with gold, and

mounted with carbon tape unto an aluminum stub prior to the performance of SEM.

5.3.5 X-Ray Photoelectron Spectroscopy(XPS)

The surface elemental composition of the sPEEK elestrospun nanofibers were

determined by x-ray photoelectron spectroscopy (XPS). XPS spectra are obtained by

irradiating a material with a beam of x-rays while simultaneously measuring the kinetic

energy and number of electrons that escape from the top 1 to 10 nm of the material being

analyzed"^. A Physical Electronics Quantum 2000 Scanning ESCA Microprobe was used

on predried samples, with an Aluminum x-ray source at a take-off angle of 15 degrees.

5.3.6 Ionic Conductivity.

Proton conductivity of the membranes were measured by means of two probe

complex impedance spectroscopy techniques, which measure conductivity normal to the

plane of the membrane. Pieces of both the electrospun and solution cast samples were
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immersed in deionized water for several hours, and then rapidly sandwiched between

pieces of graphite paper, held together by slight spring tension between two aluminum

studs which had copper wire electrode connections to the Electrochemical impedance

setup . This comprised of a solartron 1252A frequency response analyzer linked to a an

SI 1287 electrochemical interface was used within a frequency range of 0.1 and 300KHz ,

and the value of the real intercept in the Imaginary vs. real impedance plot (Bode plot) in

the high frequency range is taken as the bulk resistance of the membrane to ionic

conductivity, as described in elsewhere"^^.

5.4 Results and discussions

Thermal stability is a prerequisite for any candidate material for PEM application.

This property must therefore be determined to screen out membrane materials that

decompose or soften below or close to the use temperature. In view of this, the

degradation temperature as well as the glass transition temperature of the as-received

sPEEK materials have been measured by TGA and DSC respectively.

Figure 5.2(a) shows the TGA data for PEEK, sPEEK (0.66 meq/g) and sPEEK

(1.97meq/g) (Listed in increasing order sulfonation). The samples had been predried

under nitrogen flow overnight at 105"C, however the sulfonated samples still show some

residual water increasing in order of sulfonation. The initial weight loss prior to 100°C

indicates a 2 % water content for the sPEEK (0.66 meq/g) sample, and an 8wt% water

content for the sPEEK (1.97meq/g) sample which is as expected with increasing

sulfonation which means larger number of acid sites to absorb and hold water molecules.
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The second set of weight loss points (between 300-330"C) are as a resuh of the

disintegration of the sulfonic acid clusters'^', and as expected the sPEEK ( 1 .97meq/g)

sample shows a greater drop in weight due to the higher sulfonation. Finally we see a

precipitous drop in weight due to the decomposition of the aromatic PEEK chain between

480-555"C. These thermal transitions are high enough to ensure the suitability sPEEK

materials far beyond a lOO^C temperature range.

The DSC thermograms for the second heating scans of materials studied are

shown in figure 5.2(b). The thermograms show the glass transitions (Tg) of the PEEK and

sPEEK samples studied. The samples show an increase in glass transition temperature in

increasing order of sulfonation with PEEK T. =149.6"C, sPEEKO.66 Tg = 174.5"C, and

sPEEKl.97 Tg= 183.8"C. This trend is similar to that shown by other styrene sulfonic

acid based ionomers"*" and also observed in other sPEEK studies, and has been attributed

to the formation of a stiffer polymer due to inter and intra molecular bridges formed by

hydrogen bonding with other ionic groups'*''^'*. The Tg therefore increases with increasing

sulfonation due to increased hydrogen bonding sites. These materials are therefore

suitable for water-based conductivity at 100"C or less in PEM applications.

The morphology of nanostuctures formed by electrospinning or electrospraying

can also be looked at by means of SEM. The structures produced by varying

concentration of the sPEEK1.97meq/g in solution from 10wt% to 20 wt% have been

shown in figure 5.3. The other spinning parameters were kept constant at flow rate of

lOOul/min, voltage of 18,000 V, and distance of 13 cm to the target. These results show
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the profound effect of solution properties on the microstructure. The formation of beaded

or spherical morphology is observed at lower concentration as shown in figure 5.3 (c),(d).

Higher concentration solutions are known to produce smoother headless fibers, because

they have faster drying times in flight and more chain entanglement to rapidly form a

continuous fiber skin"^ "^'^. Also as you increase the ionomer concentration in solution the

charge density of free ions in the solution increases, and as seen when salt concentration

in spinning solution is increased there is an increase in the elongation force

experienced by the solution jet flying in the electric field thus resulting in more

continuous fibers being formed, as seen in figure 5.3 (a),(b).

Spinning conditions for making fibrous mats for PEM applications were

optimized at 22wt% sPEEKl .97meq/g in DMF, 12, 000 volts, 10-12.5 ul/min flowrate. 5

-7 cm. An example of the fiber mats thus obtained is shown in figure 5.4. In order to

determine if the sulfonic acid groups are on the surface of the fibers, XPS studies of the

surface elements were carried out as described above, and spectra are shown in figure 5.5

below. The spectra show a distinct 2p orbital peak for sulfur which can only be present

due to the sulfonic acid groups on the surface of the fiber mat. Analyses of the peak areas

give the relative atomic ratios of each atom present; and shows that 3% of the electrons

knocked off the surface of the fibers were from sulfur. This data confirms that there are

sulfonic acid sites on the fiber surfaces in the 3 dimensional network formed by the

interstices of the fibers. This basically provides protoniH"^) counterions that can be

dissociated upon hydration to affect ionic conductivity.
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The conductivity values measured for the solution cast and electrospun

membranes , have been summarized in table 5. 1. The conductivity values are normalized

by the thicknesses which are similar. There is an improvement in the conductivity

measure for the fibrous mats over the solution cast membranes from 0.033 to 0.040 S/cm.

This can be attributed to the increased surface area with exposed sulfonic acid groups, in

contact with water. This water serves as the medium of dissociation and transport of the

exposed protons resulting in conductivity. This value of 0.040 S/cm reached by the

fibrous mats may actually not be the ultimate attainable conductivity, as some of the

water is pulled out by capillary effects of the blotting paper used, during wiping off of

surface water from the membranes while transferring from water to EIS setup. However

this is standard practice, and the electrospun mat conductivity measured is the same as

that measured for the electrospun sPEEKK (2.01 meq/g) of similar ion exchange

capacity"^. As in that work a great increase in the conductivity of the mats can be

achieved by using the spherical morphology electrosprayed samples, as this has a higher

internal surface area.

5.5 Conclusions

Sulfonated poly(ether ether ketone) has been electrospun and electrosparayed

yielding isotropic fibrous mats and beads by varying concentration. The glass transition

of this material has been shown to be higher than the unsulfonated precursors, due to

hydrogen-bonding induced rigidity. The Tg increases with increasing sulfonation. The

presence of sulfonic acid groups on the surface has been confirmed by means of XPS,

with sulfur representing 3% of the surface elemental composition. This acid groups on
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the surface of internal fibers, helps to form a 3 dimensional network of conducting

channels in the voids of the fibrous mats upon hydration. This leads to improvement of

conductivity from 0.033 S/cm for void-less solution cast membranes, to 0.040 S/cm for

the electrospun mats. The utility of this technique for PEM applications can be enhanced

by spraying of dense mats of spherical beads. The capillary effect upon blotting surface

water can be mitigated by pressing the fibrous mats above the Tg to seal the surface

pores. This will also stop the permeation of H2 or methanol in a PEM fuel cell.
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Figure 5.3 SEM images for sPEEKl.97 from {a),(b) electrospun from 20wt% solution in

DMF (c),(d) electrosprayed from 10wt% solution in DMF, at 18kV, lOOul/min and

13cm distance from target, (continued)
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Figure 5.4 SEM images for sPEEK 1.97 from electrospun from 22wt% solution in DMF
at 12kV, 12.5 ul/min and 7 cm distance from target.
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Figure 5.5 XPS images for sPEEKl.97 from electrospun from 22wt% solution in DMF
at 12kV, 10 - 12.5 ul/min and 5-7 cm distance from target.
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Table 5.1 Conductivity, and membrane thickness for sulfonated Poly(Ether Ether

Ketone) (1.97 meq/g) obtained by EIS. and micrometer.

Sample
sPEEK 1.97meq/g
Electrospun mat

SPEEK1.97 meq/g
solution Cast

Membrane
Thickness (um)

294 223

Conductivity

(S/cm)
0.040 0.033
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CHAPTER 6

SUMMARY AND POSSIBLE FUTURE DIRECTIONS.

Time will tell whether the dream of fuel cell technology application as a

commercially successful alternative source of energy will be realized, however their

continues to be a great deal of scientific research and development being done in this

regard. In the time since this work began their have been announcements of imminent

commercialization of Direct Methanol Fuel Cells for portable iPod like devices by

Toshiba and other electronics manufacturer, however years have passed since without

fruition. Honda announced late last year that they would have fuel cell vehicles available

for sale this summer of 2008.

The main technical hurdles still remain the development of suitable alternative

catalyst, inexpensive membranes that can work with less water dependence, portable

storage and delivery of hydrogen fuel, and the systems engineering of the whole fuel cell.

On the polymer electrolyte membrane front, there is a strong thrust towards making

membranes that are conducive to higher temperature (120-150''C) and that can work with

little or no hydration. This trend I believe will continue into the future.

Block copolymers, or hybrids of organic and inorganic materials will eventually

prove useful in commercial PEMs. Different components of the membrane will have to

deliver different properties, with the synergy being required to fulfill the often competing

demands of an operating fuel call environment.
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In this work we have been able to create randomly microphase separated polymer

electrolyte membranes from fluorinated poly(Isoprene)-block-sulfonated poly(Styrene).

These membranes exhibit low methanol permeability at room temperature, but they swell

greatly upon hydration at bO^C due to the low glass transition temperature of the

fluorinated block leading to domain dilation. This leads to mechanical failure of the

membranes under osmotic stress as seen in the methanol permeability data and the great

drop in storage modulus beyond Tg.

To circumvent this I believe the unsulfonated poly(Styrene) units can be

crosslinked by UV/Ozone application (or chemical means), to lock in the microstructure.

Better still a fluorinated block with a higher Tg, such as fluorinated

poly(Cyclohexadiene) or a fluorinated aromatic polymer, could help preserve mechanical

integrity. Otherwise the PS block could be fluorinated instead, and the elastomeric

poly(Isoprene) sulfonated as has been done for commercially available kraton™

materials.

Some improvement in the conductivity of the membrane was achieved by

application of electric field as expected, however a more detailed and systematic study

can be done with more promising polymer samples. Studying the effect of parameters

such as the applied field strength, temperature, presence of solvent may yield some

interesting findings. However this is not a trivial pursuit as the electrostatic effects must

first be screened or somehow quenched before or during electric field annealing.
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Sulfonated poly (ether ether ketone) was electrospun and electrosprayed into

isotropic nanofiber mats or droplets showing surface functionality. This exercise was

much more difficult than for the uncharged polymers as there was random electrostatic

attraction to any metallic or sharp object in the spinning chamber making it very difficult

to collect samples. The mats showed improved proton conductivity over the solution cast

membranes, but will fail in a PEM application. As suggested by Prof. Tom Russell, they

could be melt-pressed to seal the surface voids. On the other hand I feel a hydrophobic

polymer such as poly(vinylidene fluoride) could be cast from a different solvent into the

interstices of the mats to block the pores, or be electrospun with sPEEK to form blend

fibers and then melt pressed. This will help avoid gross swelling and maintain mechanical

integrity of the membranes upon hydration. Selah.
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