Jun 20th, 4:50 PM - 5:10 PM

Attraction and Passage Efficiency of a Vertical-Slot Fish Pass for Sea Lamprey

Bernardo Quintella
C. S. Mateus
C. M. Alexandre
E. Pereira
A. F. Belo

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Quintella, Bernardo; Mateus, C. S.; Alexandre, C. M.; Pereira, E.; Belo, A. F.; Oliveira, R.; and Almeida, P. R., "Attraction and Passage Efficiency of a Vertical-Slot Fish Pass for Sea Lamprey" (2017). International Conference on Engineering and Ecohydrology for Fish Passage. 4.
https://scholarworks.umass.edu/fishpassage_conference/2017/June20/4

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Presenter Information
Bernardo Quintella, C. S. Mateus, C. M. Alexandre, E. Pereira, A. F. Belo, R. Oliveira, and P. R. Almeida

This event is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/fishpassage_conference/2017/June20/4
ATTRACTION AND PASSAGE EFFICIENCY OF A VERTICAL-SLOT FISH PASS FOR SEA LAMPREY

Bernardo QUINTELLA, C.S. MATEUS, C.M. ALEXANDRE, E. PEREIRA, A.F. BELO, R. OLIVEIRA, P.R. ALMEIDA
Outline

• Sea lamprey background
• Coimbra fishway (River Mondego)
• Attraction efficiency
 • Lamprey counts / statistical model
• Passage efficiency
 • PIT tagging
• Pre & post operational monitoring
• Conclusions
Sea lamprey background

• Anadromous species (1.2 m length; 2.3 kg weight)
• Worldwide distribution - both sides North Atlantic
• “Vulnerable” (Portuguese Red List, 2005)
• “Least concern” (Global IUCN Red List, 2014)
 • Pop. trend: stable
Socio-economic relevance

Gastronomy festivals

Cultural Heritage
Lamprey Brotherhood
Threats - commercial fishing

FYKE net

Drift TRAMMEL net

PESQUEIRAS (traps)

Hoop net
Threats – obstacles to migration

MINHO – 174 km (69%) habitat loss
DOURO – 496 km (96%) habitat loss
TEJO – 483 km (76%) habitat loss
GUADIANA – 516 km (80%) habitat loss

80% of the habitat lost in the Iberian Peninsula
Available freshwater habitat for anadromous fish: **15 km**
Available freshwater habitat for anadromous fish: \(~60\) km

- 4x habitat increment in River Mondego;
- 5% National level
Coimbra Fishway

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>125m</td>
</tr>
<tr>
<td>Nº pools</td>
<td>23</td>
</tr>
<tr>
<td>Pool dim.</td>
<td>4.5x3.0m</td>
</tr>
<tr>
<td>Pool depth</td>
<td>1.5-2.0m</td>
</tr>
<tr>
<td>Flow discharge</td>
<td>1-1.5 m³s⁻¹</td>
</tr>
<tr>
<td>Attraction flow</td>
<td>+0.5-1.0 m³s⁻¹</td>
</tr>
<tr>
<td>Current veloc. (slots)</td>
<td>1.2-1.5 ms⁻¹</td>
</tr>
<tr>
<td>Dissipated power</td>
<td><150 Watt/m³</td>
</tr>
</tbody>
</table>

Main target species:

- Sea lamprey
- Allis shad
Attraction efficiency - methods

- 4 spawning seasons 2013-2016
- Continuous video recording system
- Sea lamprey counts made a posteriori
- Statistical models - relate environmental predictors with counts
Attraction efficiency - counts

Total/year
- 2013 = 8,333
- 2014 = 21,977
- 2015 = 9,998
- 2016 = 9,414
Attraction efficiency - counts

Set of data used (subsample - peak of spawning migration)

Lamprey counts (cumulative %)

Date

2013
80%

2014
80%

2015
80%

2016
80%
Attraction efficiency - predictors

Pre-selected predictors to relate with the sea lamprey counts:

- Water **temperature** (Temp - °C)
- Specific **Conductivity** (SpeCon - µS/cm)
- **Turbidity** (Turb - FNU)
- Discharge **Flow** (Flow - m³/s)
- **Lunar Cycle** (LunCyc – Full Moon; Last Quarter; New Moon; First Quarter)
- **Day Period** (DayPer - Night, Sunrise; Day; Sunset)
- **Photoperiod** (Phot - Day length in hours)

N.B: Variables highly correlated (r > |0.8|) were excluded from the analysis
Attraction efficiency – BRT model

Predictors explanatory percentages:

<table>
<thead>
<tr>
<th>Year</th>
<th>Flow</th>
<th>Conductivity</th>
<th>Turbidity</th>
<th>Temperature</th>
<th>Day period</th>
<th>Lunar cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>81.0%</td>
<td>10.8%</td>
<td>3.2%</td>
<td>3.0%</td>
<td>1.7%</td>
<td>0.4%</td>
</tr>
<tr>
<td>2014</td>
<td>28.6%</td>
<td>8.5%</td>
<td>14.8%</td>
<td>33.6%</td>
<td>8.9%</td>
<td>5.7%</td>
</tr>
<tr>
<td>2015</td>
<td>6.3%</td>
<td>23.2%</td>
<td>33.9%</td>
<td>25.1%</td>
<td>2.9%</td>
<td>8.3%</td>
</tr>
<tr>
<td>2016</td>
<td>34.5%</td>
<td>13.7%</td>
<td>17.0%</td>
<td>12.7%</td>
<td>21.8%</td>
<td>21.8%</td>
</tr>
</tbody>
</table>

- **2013**: $R^2 = 0.80$
- **2014**: $R^2 = 0.8$
- **2015**: $R^2 = 0.87$
- **2016**: $R^2 = 0.86$
Flow: low flows increase the attraction efficiency for sea lamprey
Flow: low flows increase the attraction efficiency for sea lamprey

- **400 m3/s** (High flow)
- **20 m3/s** (Low flow)
Temperature: peak of activity from 15-19 °C
Attraction efficiency – BRT model

Day period: nocturnal activity pattern during fishway negotiation
Passage efficiency – PIT tagging

Capture–Fyke net

PIT tagging

Tagged lampreys release site

15 km

~2 days migration time

Colimbra Dam (fishway)

PIT antenna
#225 sea lampreys **PIT tagged** in April 2014
PIT tagging 2015 spawning season

#103 sea lampreys PIT tagged Jan-Apr 2015
Pre a post operational monitoring

Pre a post operational monitoring – lamprey abundance

Electric fishing monitoring
#34 sampling stations

Ammocoete survey

Coimbra Fishway

downstream upstream
Pre a post operational monitoring – lamprey abundance

Ammocoete survey

CPUE (nº lampreys/hour)

Year

¢ Downstream fishway
¢ Upstream fishway
Conclusions

• Attraction efficiency of Coimbra fishway for sea lamprey is mainly conditioned by flow and temperature;

• It is possible to improve the attractiveness of the fishway through flow regulation (3 large dams upstream) during a certain period of the spawning migration (water reach 14-18°C temperature) and night period;

• Passage efficiency can be improved but 30% was enough to promote a 38x increment in ammocoete abundance in the upstream stretch.
Acknowledgements

Funding:

- Coimbra fishway monitoring program
 (http://apambiente.wix.com/pppeixescoimbra)

- PROMAR project - Habitat restoration for diadromous fish in River Mondego
 (http://www.rhpdm.uevora.pt/)