Passive sorting of invasive sea lamprey in the Great Lakes basin

Nicholas Corniuk
Eastern Michigan University

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

https://scholarworks.umass.edu/fishpassage_conference/2017/June20/8

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Passive sorting of invasive sea lamprey in the Great Lakes basin

Nicholas Comiuk

Master of Science Candidate
Eastern Michigan University

Advisory Committee:

Dr. Ulrich Reinhardt, Chair
Dr. Steven Francouer
Dr. Peter Bednekoff
Today’s Agenda

- Sea lamprey in the Great Lakes
- The use of barriers within the basin
- Selective passage as a solution to fragmentation
- Sorting methods
- Experimental design
- Results and conclusions
Sea lamprey are a severe ecological and economic pest

1. Sea lamprey are a costly and disruptive invasive species within the Laurentian Great Lakes basin.
 - Contributed to *decline of keystone species* such as lake trout.
 - Resulted in widespread trophic cascades.
Sea lamprey are a severe ecological and economic pest
Sea lamprey are a severe ecological and economic pest

1. Sea lamprey are a costly and disruptive invasive species within the Laurentian Great Lakes basin.
 • Contributed to decline of keystone species such as lake trout.
 • Resulted in widespread trophic cascades.

2. Control tactics include **in-stream barriers** to prevent access to spawning habitat.
 • Delays and prevents spawning migration of **native and desirable** species.
Sea lamprey are a severe ecological and economic pest

Adapted from Velez-Espino et al. (2011)
Sea lamprey are a severe ecological and economic pest

Adapted from Velez-Espino et al. (2011)
Anguilliform swimmers exhibit wide lateral displacement of head

Lampreys have a very different mode of locomotion compared to native/desirable species.

Most fishes in N. America are subcarangiform swimmers.

Anguilliform swimming is less efficient than carangiform/subcarangiform
• 0.43 BL/beat vs 0.74 BL/beat

Redrawn from Fish Physiology (1978)
Differences in locomotion could allow for sorting of species.

Ramp angle
- 10°: No lamprey pass
- 20°: Some lamprey pass
- 30°: All lamprey pass

Ramp width
- No lamprey pass
- Some lamprey pass
- All lamprey pass
Ramp Angle Blocks Lamprey but With Low Native Passage

- Angles > 10 degrees block sea lamprey
- Low Native Passage
 - 0-13% passage for seven native species
 - Reduced water depth likely limited native success

Adapted from Sherburne and Reinhardt 2016
Study objectives

Objective 1:
Investigate the effects of limiting the tail-beat amplitude of sea lamprey

Objective 2:
Revisit the efficacy of using ramp angle to sort sea lamprey

Objective 3:
Investigate the effects of discharge on fish performance
Experimental Setup

Variables Tested:
• Ramp width, Ramp angle, and Discharge
• 12 treatments total

Measures of performance:
• Maximum height achieved
• Swimming speed
• Success rate

Fish behavior was recorded with Infrared cameras
Experimental Setup

- April-June 2016:
 - Sea lamprey (TL 36.8-56.8 cm)
 - n=207

- September-November 2016:
 - Creek chubs (TL 92.0-24.9 cm)
 - n=71
 - White suckers (TL 83.0-38.2 cm)
 - n=60

- April-June 2017:
 - White suckers (TL 14.9-39.0 cm)
 - n = 33 (projected)
Channel Hydrology

Water Velocity (m/s):
- 5-degrees: 0.5-1.05
- 10-degrees: 0.95-1.17

Water Depth (cm):
- 5-degrees: 0.5-1.6
- 10-degrees: 0.4-1.1
Ramp Width

Sea Lamprey

- **5 cm**: 52% Success
- **9 cm**: 36% Success
- **9 cm (v)**: 23% Success

Average Height (cm)

<table>
<thead>
<tr>
<th>Channel Width/Shape (cm)</th>
<th>Average Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>45</td>
</tr>
<tr>
<td>9 cm</td>
<td>50</td>
</tr>
<tr>
<td>9 cm (v)</td>
<td>40</td>
</tr>
</tbody>
</table>

Creek chubs & suckers

- **5 cm**: 100% Success
- **9 cm**: 93% Success

Average Height (cm)

<table>
<thead>
<tr>
<th>Channel Width/Shape (cm)</th>
<th>Average Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 cm</td>
<td>70</td>
</tr>
<tr>
<td>9 cm</td>
<td>65</td>
</tr>
</tbody>
</table>
Ramp Angle

- **Average Height (cm)**
 - 5°: 45 cm
 - 10°: 30 cm

- **Success Rates**
 - 73% Success
 - 2% Success

- **Swim Speed (BL/sec)**
 - y = 0.0409x + 0.246
 - $R^2 = 0.1111$

- **Tailbeat Frequency (Hertz)**
 - y = 0.0592x + 0.0417
 - $R^2 = 0.1184$
Discharge

Sea Lamprey (Overall)

24% success

50% success

Sea Lamprey (10-degrees)

0% success

9% success

Average Height (cm)

Discharge (L/sec) 0.300 0.600

Average Height (cm)

Discharge (L/sec) 0.300 0.600
Discharge

Sea Lamprey (Overall)

- 24% success
- 50% success

Native Species

- 100% success
- 95% success

Discharge (L/sec)

Average Height (cm)

- 0.300
- 0.600
The Story Continues

- Swimming at the air-water interface may have implications for selective passage devices
 - Fully submerged (7 cm)
 - Half submerged (3 cm)
 - Wetted Surface (1 cm)

- Sea lamprey were tested in June-July 2016
 - White suckers will be tested in June-July 2017

- Early results for sea lamprey indicate a significant reduction in swimming efficiency at 1 cm
Conclusions

- Channel width did not significantly affect sea lamprey passage rates
- Ramp Angles >10-degrees block sea lamprey
- The effects of discharge are unclear for sea lamprey
 - >0.5 cm is likely required for native/desirable passage
- Moderate velocities and device length should facilitate high passage success for desirable species
 - Testing of a wider range of body morphologies and swimming abilities is required

Acknowledgements:
Dr. Ulrich Reinhardt and my committee members
Dr. John Hume and the Wagner lab (Michigan State University)
Nayeli Sanchez (Eastern Michigan University)
Michigan DNR, USFWS, and USGS