False Positive Reduction: An Algorithmic Approach

K. Nebiolo
Kleinschmidt

T. Castro-Santos
USGS

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

What are false positives? Why do we care?

- Problems with telemetry data of all types (Beeman & Perry 2012)
 - Received signal may not correctly assigned
 - Not all records generated by receivers are from tagged fish
 - Not all tagged fish are recorded when present
- This introduces false positives into our data
 - Bias results in favor of presence and overestimate frequency of occurrence
 - Or overestimate residence time within critical infrastructure, which increases measures of delay
Current False Positive Reduction Methods

• Current false positive reduction methods rely on simple metrics and subjective opinion
 – Power floors
 – Consecutive detections (2, 4, 6, etc...) (Beeman & Perry, 2012)
 – Logical errors in site progression
• Manual classifications are labor intensive
 – For very large studies with many releases and sites (whole river studies) classification can become cost prohibitive
Naïve Bayes Classifier (Minsky 1961)

- Bayes rule (conditional probability) can estimate the probability that a record is either true or false positive given observed data
- **Prior**: marginal probability for a detection class \((C)\)
- **Likelihood**: The conditional probability of an observable event \((F_1, ..., F_n)\) given each state of nature \((C)\)
- **Posterior**: the probability of the class occurring given the observable event

\[
P(C|F_1, ..., F_n) \propto P(C) \times \prod_{i=1}^{n} P(F_i|C)
\]

- Training data set contains observations of feature variables \((F_i \ldots F_n)\) and known detection classifications \((C)\)
- Naïve assumption
Predictors – Creating the Detection History

Was it heard here?

Current detection in record

and here?

52 54 56 58
0 2 4 6 8 seconds

backwards in time

forwards in time

P X P X P X P P P

1 0 1 0 1 0 1 1 1
Predictors – continued

• Derived from detection history
 – Hit Ratio
 – Consecutive Hit Length
• Power
• Noise Ratio

<table>
<thead>
<tr>
<th>Detection History (+/- 4)</th>
<th>Hit Ratio</th>
<th>Consecutive Hit Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 1 0 1 1 1 1</td>
<td>6/9</td>
<td>3</td>
</tr>
<tr>
<td>1 0 1 0 1 0 1 0 1 0</td>
<td>5/9</td>
<td>1</td>
</tr>
<tr>
<td>1 1 1 1 1 0 0 0 0 0</td>
<td>5/9</td>
<td>5</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1 1 1</td>
<td>9/9</td>
<td>9</td>
</tr>
</tbody>
</table>
Implementation

• Algorithm split into two parts, Training and Classification
• Training:
 – Beacon tags placed at strategic locations throughout the study area - provide information on what known true positive detections look like
 – Miss coded and noise transmissions provide information on what false positive detections look like
 – Loop over all beacon tag and miss coded detections and derive metrics
 • (detection history, hit ratio, etc.)
 – Store to RDBMS in this case SQLite
• Classification:
 – Loop through records for known study tags,
 – Derive metrics
 – Calculate posterior for true and false positive – use MAP to classify
• Algorithm Accuracy assessed with k-fold cross validation (k = 10)
 – Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV)
Beacon Tag Locations
Results – Orion Training

- In total – 2,644,990 beacon tag hits and 517,881 known false positives

<table>
<thead>
<tr>
<th>Classified</th>
<th>False</th>
<th>True</th>
<th>NPV: 0.93</th>
<th>PPV: 0.98</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Negative</td>
<td>479,349</td>
<td>38,532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>True Positive</td>
<td>39,745</td>
<td>2,605,245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity:</td>
<td>0.92</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity:</td>
<td>0.99</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NPV: Negative Predictive Value
PPV: Positive Predictive Value
Results – Lotek Training

- In total – 2,215,818 beacon tag hits and 331,612 known false positives

<table>
<thead>
<tr>
<th>Classified</th>
<th>False</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Negative</td>
<td>298,927</td>
<td>32,685</td>
</tr>
<tr>
<td>True Positive</td>
<td>5,073</td>
<td>2,210,745</td>
</tr>
</tbody>
</table>

Specificity: 0.98
Sensitivity: 0.99

![Graphs showing data distributions](image-url)
Results – Orion Classification

575,548 study tag detections
- 503,347 true
- 72,201 false positive
14% False Positive removal rate
Results – Lotek Classification

131,088 study tag detections
- 106,693 true
- 24,395 false positive
23% False Positive removal rate
Conclusion

• Once the algorithm is up and running it takes minimal supervision
 – ~ 15 minutes every hour
 – Computationally, detection history creation most time consuming part
• Does a great job of removing garbage detections with minimal effort
• Does not do a good job at discriminating position when receiver detection zones overlap
• From raw data through statistical analysis with 300 tagged at 14 stations – 2 weeks
Future Research

• Investigate lag time between detections
 – Good detections = stable lag
 – Bad detections = varying lag
• Utilize network/graph topology and investigate ways to pinpoint fish in space & time
 – 2nd round data classification
• Make training data better

Thank you

Kevin Nebiolo, PhD.
Kevin.Nebiolo@kleinschmidtgroup.com

Ted Castro-Santos, PhD.