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Abstract: This paper describes an automatic mosaicking algorithm for creating large-scale
mosaic maps of forest height. In contrast to existing mosaicking approaches through using
SAR backscatter power and/or InSAR phase, this paper utilizes the forest height estimates
that are inverted from spaceborne repeat-pass cross-pol InSAR correlation magnitude.
By using repeat-pass InSAR correlation measurements that are dominated by temporal
decorrelation, it has been shown that a simplified inversion approach can be utilized to create
a height-sensitive measure over the whole interferometric scene, where two scene-wide
fitting parameters are able to characterize the mean behavior of the random motion and
dielectric changes of the volume scatterers within the scene. In order to combine these
single-scene results into a mosaic, a matrix formulation is used with nonlinear least squares
and observations in adjacent-scene overlap areas to create a self-consistent estimate of
forest height over the larger region. This automated mosaicking method has the benefit
of suppressing the global fitting error and, thus, mitigating the “wallpapering” problem in
the manual mosaicking process. The algorithm is validated over the U.S. state of Maine by
using InSAR correlation magnitude data from ALOS/PALSAR and comparing the inverted
forest height with Laser Vegetation Imaging Sensor (LVIS) height and National Biomass
and Carbon Dataset (NBCD) basal area weighted (BAW) height. This paper serves as a
companion work to previously demonstrated results, the combination of which is meant to
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be an observational prototype for NASA’s DESDynI-R (now called NISAR) and JAXA’s
ALOS-2 satellite missions.

Keywords: mosaicking algorithm; forest height; spaceborne; repeat-pass; InSAR;
correlation magnitude

1. Introduction

Large-scale mosaics of biophysical parameters (such as biomass and forest height) are important for
monitoring global carbon storage, as well as forest degradation. For this purpose, spaceborne missions
have the vantage point from space and are efficient platforms for remote sensing data collection. The
Shuttle Radar Topography Mission (SRTM), which carried a C-band synthetic aperture radar (SAR)
with an interferometric (InSAR) baseline of 60 m, was on-board the Space Shuttle Endeavor during
an 11-day mission in the year 2000. The data products from SRTM are processed into global mosaic
maps of digital surface models (DSM) [1]. When combined with field inventory and optical data, the
SRTM InSAR phase data has been utilized to generate national mosaic maps of both biomass and forest
height for the United States, which are provided by the National Biomass and Carbon Dataset (NBCD)
2000 [2]. In addition to this data, JAXA’s L-band JERS-1 (from 1992 to 1998; [3]) and ALOS/PALSAR
(2006 to 2011; [4,5]) have collected a large amount of SAR image data over the past decade.
Continental-scale mosaics of SAR backscatter intensity have been demonstrated and related to
both spatial and temporal forest characteristics [6–8]. Mosaics of polarimetric SAR backscattering
coefficients can either be converted to forest biomass maps through a regression method [9,10] or
classified into forest/non-forest maps [7,11], where the detailed forest structural characteristics can be
further obtained through image segmentation techniques [12,13].

A simple mosaicking method for SAR/InSAR observations makes use of ephemeris information from
the satellite and is a scene-by-scene approach that uses scene-overlap regions to estimate positional errors
in the scene locations. When implemented using a limited number of scenes as the reference location,
errors in the geometric locations are propagated away from the references as more scenes are added [14].
The errors in the geometric offsets of individual scenes can be considerably and simultaneously reduced
through the use of overlap areas between adjacent scenes when a matrix formulation of the geometric
transformation is established [1,6]. Terrain information from accurate DSM data (e.g., SRTM) is often
used in this context to correct both geometric and radiometric errors in the data [7,8].

In contrast, this paper deals with a slightly different mosaicking problem, which comes from a
simplified forest height inversion model [15]. This model works through utilizing the spaceborne
repeat-pass InSAR correlation magnitude (neither InSAR phase nor SAR backscatter power, as
introduced above) measurements that are dominated by temporal decorrelation effects. Although
spaceborne single-pass InSAR systems are capable of extracting forest height information [16,17] from
volume scattering effects without encountering the dominant error of temporal decorrelation, results
from such systems have not been demonstrated over large areas.
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In order to make use of available repeat-pass InSAR measurements, where the temporal decorrelation
(due to both dielectric change and random motion) is the dominant factor, a repeat-pass InSAR scattering
model can be used to estimate forest height from this temporal decorrelation [15]. In this model, the
temporal change effects from both the dielectric change and the random motion among scatterers are
incorporated into the random volume over ground (RVoG) model [16,17], which is adapted to repeat-pass
InSAR correlation measurements. The dielectric change effect is included as a height-independent
term (and, thus, independent of the volume scattering), while the random motion effect has a Gaussian
height-dependent profile, and is found to be tightly coupled with the volume scattering. Therefore,
as long as there is a vegetation-height dependence for temporal decorrelation, it is possible to utilize
this temporal decorrelation to invert forest height, even without volume decorrelation, which is
accomplished by assuming that: (1) the temporal change effects and forest backscatter profile/extinction
coefficient follow some mean behavior across each interferogram; (2) there is minimal ground scattering
contribution for HV-polarization; and (3) the interferometric vertical wavenumber is small. Under these
assumptions, it is noticed that the temporal change effects dominate, and therefore, a simplified inversion
approach is developed to link the observed HV-polarized InSAR correlation magnitude to forest height
through the use of some known ground validation height data (e.g., LiDAR). The introduced model
parameters of the inversion approach are: Sscene (0 ≤ Sscene ≤ 1), which characterizes the correlation
component of dielectric change, and Cscene (usually 0 ≤ Cscene ≤ 20 for ALOS scenes), which primarily
describes the level of random motion. The model parameters derived from this supervised regression
at the ground validation site consisting of 44,000 hectares in central Maine are used as the basis for
propagating the estimates of forest height to available interferometric pairs (through the overlaps between
adjacent InSAR scenes) for the entire state (about nine million hectares), thus creating a state-mosaic
map of forest height.

The mosaicking procedure used in [15] is outlined in Figure 1 for 37 ALOS/PALSAR scenes spanning
over the entire state of Maine. Each scene is named by its ALOS orbit number followed by its frame
number, with the color implying the stage of the above-mentioned manual mosaicking process, while
each directed edge shows the direction of propagation through the overlap areas. There exists a small
strip of Laser Vegetation Imaging Sensor (LVIS) [18] data over the Howland Forest in the central Maine
area (marked in “red” and named “119_890”). Data from the overlap between the InSAR height
model and the LVIS-measured height are then manually propagated by sequentially going through
the adjacent-scene overlap areas, which leads to the mosaic map of forest height for the entire state
of Maine.

This manual mosaicking approach is prone, however, to what can be termed as the “wallpapering”
problem (that is, by fixing one or two points of the wallpaper and gradually attaching the remaining part,
larger deviation will occur as distance from the fixed points increases). Here, scenes that are farther
away from the ground validation sites result in larger uncertainty in the determined estimates of the
model parameters. In addition to this effect, the propagation path/sequence is non-unique, leading to a
non-unique solution in determining the model parameters. The solution to this problem is to introduce an
automatic mosaicking algorithm that estimates the desired model parameters simultaneously and arrives
at a solution that is mathematically traceable and has a globally-minimized error.
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Figure 1. The outline of the mosaicking scheme. Each interferogram is represented by
“orbit#_frame#”. The mosaicking process starts from “119_890” (marked in “red”) in the
central Maine area, where Laser Vegetation Imaging Sensor (LVIS) LiDAR data exists, and
propagates the analysis, as well as the derived forest height by sequentially going through
the interferograms marked in “green”, “yellow”, “blue”, “magenta”, “pink”, “cyan”, “violet”
and, finally, “grey”.

The paper is organized as follows. Section 2 describes the proposed automatic mosaicking algorithm,
including the nonlinear least squares representation of the fitting problem, the example of a three-scene
mosaicking problem along with the simplified nonlinear least squares solution and the matrix formulation
of the mosaicking algorithm generalized for multiple scenes. Section 3 demonstrates the mosaicking and
validation results, as well as the associated discussions. In particular, a new mosaic map of forest height
will be generated for the U.S. state of Maine through utilizing the mosaicking algorithm, compared with
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ground validation height maps over the Howland forest in the central Maine area and the entire state of
Maine and, finally, improved with the use of a forest/non-forest map as a simple data fusion task.

2. Methods

In order to propagate the inverted forest height through scene overlap areas, it is necessary to explicitly
define a fitting metric given any pair of overlapping forest height estimates. In particular, a nonlinear
least squares problem is formulated to characterize the fitting metric. We then investigate the solution for
a three-scene mosaicking problem that serves as a simplified scenario and, finally, generalize the matrix
formulation for multiple overlapping scenes.

2.1. Nonlinear Least Squares Fitting Metric

To begin, a comparison is made between two sets of forest height estimates in their overlapping
region. According to [15], the observed repeat-pass HV-polarized InSAR correlation magnitude, |γHV

v&t|,
due to the coupled effects of volume scattering and temporal change, is related to the desired forest
height estimate hv as,

|γHV
v&t| = Sscene · sinc

(
hv

Cscene

)
, for hv < πCscene (1)

where Sscene (unitless; 0 ≤ Sscene ≤ 1) characterizes the dielectric fluctuation of the volume scatterers
(perhaps due to moisture change, e.g., rainfall; a smaller Sscene indicates a bigger dielectric change),
while Cscene (in meters; Cscene > 0) represents the random motion of volume scatterers (perhaps due to
wind; a smaller Cscene implies a higher level of motion). Only the main lobe of the sinc function is used
in Equation (1). Through inverting Equation (1), the forest height estimates can thus be considered as a
function of the correlation measurements |γHV

v&t| and the fitting parameters (Sscene and Cscene).
Suppose there exist two sets of forest height estimates in an overlap area with the height estimates

inverted as below,

hv1 = f(|γHV
v&t1
|, Sscene1 , Cscene1) = f1(Sscene1 , Cscene1) (2)

hv2 = f(|γHV
v&t2
|, Sscene2 , Cscene2) = f2(Sscene2 , Cscene2) (3)

Here, f is the above-mentioned implicit function performing the forest height inversion, where we
further omit the variable |γHV

v&t| to keep the notation concise, since the correlation magnitude is invariant
in the process of data fitting. Subscripts i = 1, 2 are used to differentiate the forest height estimate, as
well as the model parameters from the i-th set.

To proceed, it can be assumed that the inverted forest heights from the repeat observations, on average,
are comparable to each other, and therefore, a metric is desired so that the difference between hv1 and hv2
can be minimized. In [15], a fitting metric comprised with two parameters was used that was comprised
of the slope k and offset b. These are illustrated in Figure 2.
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Figure 2. Geometric illustration of the comparison between two sets of forest height
estimates. The data cloud is considered as an ellipse, with the angle between the major
axis and the horizontal axis denoted by φ and their average heights denoted as m1 and m2.

In Figure 2, the two sets of forest height estimates are considered as the horizontal and vertical axes
with the data cloud illustrated as an ellipse. The slope parameter k describes the slope of its major
axis, while the offset parameter b represents the relative difference between the average forest height
estimates. In particular, k and b are written as:

k = tan(φ) (4)

b =
m1 −m2

m
with m =

m1 +m2

2
(5)

where φ is the angle between the major axis and the horizontal axis and m1 and m2 are the average
forest height estimates. The calculation of these parameters is obtained through a principle component
analysis-based method, as described in [15].

In order to have hv1 and hv2 match one another, a nonlinear least squares criterion is used to seek
the proper model parameters Sscenei and Cscenei (i = 1, 2), such that the following residual error can be
minimized, i.e.,

T = (k − 1)2 + (b− 0)2 (6)

During a non-automated mosaicking process [15] (shown in Figure 1), for a particular overlap area,
one set of forest heights is always known prior to the inversion of the other, and thus, Equation (6) is
repeatedly used as the residual error that is minimized in order to achieve the optimal estimates of the
model parameters (and, thus, forest heights) for the other InSAR scene. In other words, only the estimates
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Figure 9. The mosaic map of the NBCD BAW height for the state of Maine, U.S. This
mosaic is also color-coded as indicated (“blue” being 0 m and “red” being 45 m). All of the
values over water bodies have been removed by using NLCD2006.

Temporal decorrelation (farmlands and urban area) 

Inherent bias of NBCD BAW height 

Figure 10. Quantitative comparison result between the mosaic of forest height inverted
from ALOS InSAR correlation magnitude (i.e., Figure 5) and the mosaic of the NBCD
BAW height (i.e., Figure 9) for the entire state of Maine, U.S. Each point corresponds to a
500 m× 500 m forest area through multi-pixel averaging. The data points that are affected by
the inherent bias of the NBCD BAW height and by the temporal decorrelation of the ALOS
InSAR data (e.g., farmlands and urban area) are indicated by dashed circles, respectively.
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Overestimation of forest height from the ALOS InSAR correlation magnitude-inverted height, due
to the temporal decorrelation in urban areas, farmlands etc., is evident in the upper right-hand corner
of Figure 5. This part of the state of Maine consists of scattered farmlands and shows up as the colors
“orange” and “red” in the imagery, indicating heights of 35 m and taller, which is much larger than
average tree heights in the region. While this may be a useful tool for detecting change, even within a
forest (e.g., selective logging), here, it is considered a primary source of error, which can be improved by
combining the mosaic with a land cover database that differentiates forested and non-forested regions.
Typical forest/non-forest maps have already been derived from the ALOS SAR backscatter power, as
demonstrated in [7,11]. However, as noticed in this work, another resource for such a classification can
be the NBCD BAW height mosaic, where any non-forest region is identified with the use of a flag value.
The refined mosaic map is illustrated in Figure 11. Comparing with Figure 5, it can be seen that the
overestimated height values over the non-forest regions (shown as “orange” and “red” spots in Figure 5)
have been removed in the updated forest height mosaic.
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Figure 11. The refined mosaic map after removing the height estimates over non-forest
regions by using the NBCD mosaic. This mosaic is also color-coded as indicated (“blue”
being 0 m and “red” being 45 m). All of the values over water bodies have been removed by
using NLCD2006.

3.3. Discussion

In this work, there are several practical concerns that should be considered with the proposed
improvements that are related to the implementation of this forest height inversion approach and its
automated mosaicking process.
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First, temporal decorrelation (e.g., harvesting over farmlands, urban activities) is noticeable and
embodied as overestimated height values over the non-forest regions in the mosaic map. One practical
approach is to remove the non-forest regions through the use of a forest/non-forest map. For example,
in this work, the NBCD mosaic map has been utilized to serve as a forest/non-forest map. However,
forest/non-forest maps derived from SAR backscatter power [7,11] can alternately be used so that
SAR/InSAR observations from the same spaceborne mission are fully exploited (i.e., InSAR correlation
magnitude data are used to generate a forest height mosaic, while SAR backscatter power is used to create
a forest/non-forest map). This would alleviate the need for external maps. Further, a forest/non-forest
classification map can be applied to the InSAR coherence map prior to the forest height inversion, instead
of being a post-processing step to the mosaic results, as in this paper, so that the accuracy of the forest
height inversion can thus be improved by precluding non-forest regions being used in overlap regions.
Note that the forested plots that are affected by selective logging and/or forest degradation cannot be
removed by using the forest/non-forest map and will also embody themselves as overestimated “large”
forest heights, which could be an interesting result all by itself and useful for monitoring the global
forest change.

Second, because of the repeatable nature of SAR data collections, there are often many scenes
available over the same area, but separated in time by weeks, if not months. However, due to the
unreliable nature of the temporal decorrelation effects, only a few of them are suitable for the use of
forest height inversion. Compared to a stable weather condition, a windy and/or rainy day will decrease
the observed InSAR correlation magnitude by a great amount. Although the data with smaller correlation
magnitude still have the vegetation structural and temporal change information that could be utilized for
forest height inversion, this bit of information is often masked by correlation sampling noise [21], making
the inversion much noisier and less robust. Furthermore, if the weather condition changes non-uniformly,
such as a regional rainfall, the temporal change effects may vary across each InSAR scene, so that the
model parameters cannot be assumed constant over the whole scene any more. In this paper, and in
previous work [15,22], through a careful selection of ALOS InSAR scenes over the same study area,
only one or two out of the dozens of available scenes are best suited for forest height inversion. It is
recommended and desired to have more reliable spaceborne repeat-pass InSAR data with moderate (less
than a month; 12 days for NISAR [23] and 14 days for ALOS-2 [24]) or large (on the order of months;
46 days for ALOS) temporal baselines, so that the best InSAR scene(s) can be selected and utilized to
generate a reliable forest height mosaic.

4. Conclusions

In this paper, an automatic mosaicking algorithm for creating large-scale mosaics of forest height
using spaceborne repeat-pass cross-pol InSAR correlation magnitude data is demonstrated. In order to
invert forest height from repeat-pass InSAR data, two model parameters (Sscene andCscene) are estimated
for each InSAR scene. This method improves on a manual mosaicking approach [15] used previously,
that propagates information and error from the validation sites throughout adjacent scenes. This manual
mosaicking approach creates an effect of increasing errors as the distance of estimates from the validation
site increases, an effect termed as the “wallpapering” problem.
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The automated method derived in this paper has the benefit of equalizing errors across the mosaic,
simultaneously, and minimizing them globally. This is achieved by formulating two fitting parameters
(slope k and offset b), which describe the differences between the height estimates from two overlapping
InSAR scenes, and minimizing the differences using a nonlinear least squares fitting routine. In order
to determine the global minimum of this nonlinear least squares problem with multiple InSAR scenes, a
Gauss-Newton successive minimization algorithm is used. The proposed mosaicking algorithm was
applied to 36 ALOS InSAR scenes, with relatively high correlation magnitude and uniform model
parameters across each scene, and a new mosaic map of forest height was generated for the U.S. state of
Maine. It was noticed that the convergence of the model parameters was achieved after the third iteration
of the Gauss-Newton algorithm.

This forest height mosaic was compared with both LVIS and NBCD BAW heights over the Howland
Forest in the central Maine area and also compared with the NBCD mosaic over the entire state of Maine.
The validation results show that the ALOS InSAR correlation magnitude-inverted heights correspond
with the LVIS and NBCD BAW heights; however, the NBCD BAW heights have a much shorter dynamic
range and are mostly limited to heights below 15 m. Finally, the ALOS InSAR correlation-derived
mosaic map of forest height was refined by utilizing the NBCD mosaic as a forest/non-forest map.

The potential limitations about this forest height inversion approach and its mosaicking method
involve the temporal decorrelation over non-forest regions, as well as the forest disturbance, such as
selective logging. As discussed in Section 3.3, this limitation could be partially avoided by incorporating
a forest/non-forest classification map to mask out the non-forest regions, while the forest disturbance
cannot be removed (however, this shows a way for forest change detection, an interesting result all by
itself). Another limitation would be the unreliable nature of the temporal change effects in repeat-pass
InSAR observations. This error could be reduced through the collection of more spaceborne repeat-pass
InSAR observations made with a shorter revisit period (less than the ALOS-1 46-day period). With
shorter revisit periods, further improvement could be achieved through the incorporation of a volumetric
component in the InSAR model. This would require a non-zero baseline and would nominally be
balanced against the temporal decorrelation signature used here.

By noting and managing these limitations properly, the techniques proposed in this paper
in combination with its companion paper [15] are an efficient tool for creating a state- and/or
continental-scale mosaic of forest height from spaceborne repeat-pass cross-pol InSAR correlation
magnitude. Importantly, this method demonstrates an approach for using archival repeat-pass InSAR
observations (e.g., JERS-1, ALOS, ALOS-2, NISAR) to map vegetation height over large regions,
potentially at a continental scale, and, to our knowledge, is the first method that successfully utilizes
spaceborne repeat-pass InSAR data to create large-scale forest height mosaics in the InSAR vegetation
community. The algorithms described here can be implemented with reasonable computational cost and,
thus, serve as an observational prototype for repeat-pass InSAR missions, like ALOS-2 and NISAR.
The present approach also serves as an alternative and complementary tool for other PolInSAR inversion
techniques when single-pass InSAR and/or full-polarization data may not be available.
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