Guiding sea lamprey with pulsed direct current

Nick Johnson
U.S. Geological Survey

Scott Miehls
U.S. Geological Survey

Alex Haro
U.S. Geological Survey

Lisa O'Connor
Fisheries and Oceans Canada

Gale Bravener
Fisheries and Oceans Canada

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Johnson, Nick; Miehls, Scott; Haro, Alex; O'Connor, Lisa; Bravener, Gale; and Barber, Jessica, "Guiding sea lamprey with pulsed direct current" (2017). International Conference on Engineering and Ecohydrology for Fish Passage. 21.
https://scholarworks.umass.edu/fishpassage_conference/2017/June20/21
Presenter Information
Nick Johnson, Scott Miehls, Alex Haro, Lisa O'Connor, Gale Bravener, and Jessica Barber

This event is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/fishpassage_conference/2017/June20/21
Guiding sea lamprey with pulsed direct current

Nick Johnson, Scott Miehls, Alex Haro: U.S. Geological Survey
Lisa O’Connor and Gale Bravener: Fisheries and Oceans Canada
Jessica Barber: U.S. Fish and Wildlife Service
Injured fish

Sea lamprey attachment point

Putative sea lamprey wounds
Existing Control Tools
Portable, Graduated, Pulsed Direct Current

Marker

Bouy

Steel Pipe electrode
NEMO – Portable Graduated Pulsed DC
Electrical guidance research for adult sea lamprey

Stage 1 – Pilot (2011)

Stage 2 – Define electric field parameters across a range of stream conditions (2012)

Stage 3 – Controlled field deployment (2013)

Stage 4 – Management-scale deployment & evaluation (2014-2015)
Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes

Nicholas S. Johnson *, Henry T. Thompson, Christopher Holbrook, John A. Tix

USGS, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI 49759, USA
• Operated independent of a barrier
• Operated 7 hours a day (2200 to 0500)
• Minimal non-target effects
 – 7 dead fish observed over two years
 – Large catches of non-target species upstream (thousands)
• Annual cost: $5,800 USD
Tools Under Development
GUIDING OUT-MIGRATING JUVENILE SEA LAMPREY (PETROMYZON MARINUS) WITH PULSED DIRECT CURRENT

N. S. JOHNSON* AND S. MIEHLS

USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, Michigan 49759, USA
Rainbow Trout
Critical Knowledge Gap
Electric Guidance System for Outmigrating Juvenile Sea Lamprey

Stage 1 – Pilot (Successful)

Stage 2 – Define electric field parameters across a range of stream conditions

Stage 3 – Controlled field deployment

Stage 4 – Management-scale deployment & evaluation
STAGE 2 – CONTE LAB

Scott Miehls
Nicholas Johnson
Alex Haro

USGS
science for a changing world
Study Location
USGS, S. O. Conte Anadromous Fish Research Laboratory
Connecticut River, Turners Falls, Massachusetts
Final Thoughts

• Fishes often respond to low voltage electric fields.
• Those fields can be used to guide and block fish with minimal injury.
• Designing and deploying the electric field is the most difficult aspect of the work.
• Partner buy in is important and can be challenging.
USGS, Hammond Bay Biological Station
Sea lamprey research in partnership with the Great Lakes Fishery Commission

njohnson@usgs.gov