Dec 12th, 1:30 PM - 3:10 PM

Energy efficient fish attraction

Patrik Andreasson
Luleå University of Technology

Johan Westin
Vattenfall AB

J. Gunnar I. Hellström
Luleå University of Technology

Eric Lillberg
Vattenfall AB

David Aldvén
Vattenfall AB

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
EFFISHENT ENERGY EFFICIENT FISH ATTRACTION

International Conference on River Connectivity (Fish Passage 2018), 10th - 14th December 2018

Patrik Andreasson1,2, Johan Westin1, J. Gunnar I. Hellström2, Eric Lillberg1, David Aldvén1

1. Vattenfall AB, R&D, Älvkarleby, Sweden
2. Division of Fluid and Experimental Mechanics, Luleå University of Technology, Luleå, Sweden
Vattenfall: selected facts (2017)

- Power Company owned by the Swedish State
- Electricity generation: 31 200 MW (127 TWh)
- Whereof hydro: 11 700 MW (36 TWh)
- >100 hydro power plants
- Hydro mostly in Sweden
Two straight 25 m test sections
Cross section: 2×4 m
Max flowrate: 16 m³/s (2 m/s)
Fish ladder:
- 77 steps
- 350 m long

Attraction water:
- May 20 – Sept. 30
- 10 – 23 m³/s
- Corr. to 7-17 MW

STORNORRFORS
599 MW, 75 m head

Perforated floor
Fish ladder with additional 8 m³/s attraction water (0.6 MW)

Lilla Edet HPP (46 MW, 7.3 m head)
Better use of water for attraction?

Case Lilla Edet
- Head 7.3 m
- 8 m³/s
- Velocity <1 m/s

Typical Swedish HPP
- Head 25 m
- 8 m³/s
- Velocity <1 m/s

0.6 MW

0.6 MW

2.0 MW

-99.3% <4 kW

-99.8% <4 kW
Ejector

- **Q2** Suction fluid (low pressure, higher flowrate)
- **Q1** Motive fluid (high pressure, low flowrate)

- **Nozzle**
- **Mixing chamber (throat)**
- **Diffuser**
- **Outlet**

- **Q1 + Q2**

- **No movable parts**
- **High pressure flow may be used to accelerate low pressure flow**
Use reservoir head to accelerate water below dam
Ejectors in Lilla Edet HPP?

Free surface
From fish ladder
Perforated floor

2+8 m³/s

Q₁
Q₂
Q₁+Q₂
Losses after Ejectors?

Hydraulic losses were estimated with CFD to 0.3 m head over the domain above (dotted line).

Velocities (speed) at a plane parallel with the perforated bottom just downstream fish ladder (at grey arrow heads)

2+10 m³/s
Efficiency of ejectors: Flume experiments
Civil Engineering design of “ejector house”

Flow rate: Q_1 20/36 l/s ($U_{vena\,contracta} = 4/7 \text{ m/s}$)
Throat length: TL 400/1000 mm
Throat height: TH 80/100/200 mm
Diffuser angle: α 2°/4°
Also "no roof"
Example of experimental results

"Lift height" (ΔH) vs. flow

\[
\frac{\Delta H}{\frac{U_{\text{jet}}^2}{2g}}
\]

Efficiency η (%)

1D theory:
See Cunningham equations in Karassik et al. (2001) or ESDU (1985)

1D theory, typical loss coeff
1D theory, adjusted loss coeff

- 2018-02-21, TL=1000: Q1=20
- 2018-02-21, TL=1000: Q1=36
- 2018-03-13, No roof, Q1=20
- 2018-03-13, No roof: Q1=36

See Cunningham equations in Karassik et al. (2001) or ESDU (1985)
CFD validation (symmetry plane in mid channel, volume of fluid, standard k-ε)
Conclusions

Savings
• Even a non ideal "civil engineering" design of ejectors still gives major savings of spill for attraction water
• Ejectors may be used to reduce spill flow for attraction water by 67-70%
• By better design of ejector and/or in-feeding of attraction water: 80% is reachable…
• Lower investment in tunnel/tube from reservoir correspondingly (smaller dimensions)

Design
• CFD may be used in design (close to experimental results)
• Primarily design of diffusor part of ejector could be improved
• Technique best suited when downstream main river is adjacent to fish ladder
• Pump for Q_1 may replace spill entirely (or be used for entire attraction flow)

Typical Swedish and Lilla Edet HPP case
• For a typical Swedish HPP (25 m head) savings of 1.5 – 1.6 MW is possible
• For Lilla Edet HPP with complex attraction water in-feeding savings of 0.4 MW is possible
References

Report on results from experiments, etc. Contact main author for possible pdf-copy: johan.westin@vattenfall.com (or presenter patrik.andreasson@vattenfall.com)
Reserve:
Hydraulic test
"attraction raft"
Reserve:
Pictures of components