2017

Gapless Symmetry-Protected Topological Order

Thomas Scaffidi
University of California, Berkeley

Daniel E. Parker
University of California, Berkeley

Romain Vasseur
University of Massachusetts Amherst, rvasseur@umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/physics_faculty_pubs
Part of the [Condensed Matter Physics Commons](https://www.scholarworks.umass.edu/cmpc)

Recommended Citation
https://doi.org/10.1103/PhysRevX.7.041048
Gapless Symmetry-Protected Topological Order

Thomas Scaffidi,1,† Daniel E. Parker,1,‡ and Romain Vasseur1,2,‡

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

(Received 15 May 2017; revised manuscript received 19 September 2017; published 29 November 2017)

We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT) edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d − 1) SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.

DOI: 10.1103/PhysRevX.7.041048

Subject Areas: Condensed Matter Physics, Magnetism, Topological Insulators

I. INTRODUCTION

An overarching goal of condensed-matter physics is to identify and classify new phases of matter. Since probing a system amounts to perturbing it and measuring how it reacts, understanding the physics of a phase reduces to the problem of identifying the low-lying excitations that perturbations can create. A natural dichotomy is to distinguish gapless phases, which possess excitations arbitrarily close to the ground state, from gapped ones, which have a finite spectral gap in the thermodynamic limit. Naively, this would suggest gapped systems are featureless at low energy.

Discoveries in recent decades have shown that the story is more subtle, as a large class of gapped phases can host gapless excitations localized to edges and defects. Such excitations are protected by a combination of symmetries and the topological properties of the bulk system. These topological phases include long-range entangled systems [1,2] with intrinsic topological order and bulk anyonic excitations, such as quantum Hall states or spin liquids [3]. They can be further enriched by symmetries [4–10].

Following the theoretical prediction and subsequent experimental discovery of topological insulators and superconductors [11–20], attention has turned to short-range entangled phases with topological edge modes protected by symmetry [21–30]. These symmetry-protected topological (SPT) phases may be realized in strongly interacting systems, like the experimentally accessible Haldane phase in quantum spin chains [31]. This shift in paradigm from a band topology analysis of noninteracting Hamiltonians [32,33] to strongly correlated systems led to the development of nonperturbative techniques, resulting in an essentially exhaustive classification of gapped bosonic [27,29,30,34] and, to some extent, fermionic SPT phases [24,35–39]. All these phases enjoy a bulk spectral gap, and indeed, this gap often plays a crucial role in understanding topological phases.

Must systems have a bulk gap to possess the properties of topological phases? Given the prevalence of gapless systems in nature, it is possible that many of the features ascribed to gapped topological systems are “hidden” around their edges [40]. As an example of a step in this direction, it was recently argued that topological phases can survive in nonequilibrium, highly excited states where there is no notion of a gap [41–43]. In the less-exotic realm of equilibrium physics at low temperatures, Weyl and Dirac semimetals with topologically protected Fermi arc surface states [44] are gapless systems with topological properties that have been experimentally confirmed in several materials [45–47]. Other examples related to free-fermionic systems include the A phase of superfluid 3He [48], power-law superconducting chains [49–52], and recent proposals for gapless topological insulators [53] and superconductors [54,55].

Examples of gapless topological systems [40] are, for the most part, restricted to noninteracting systems. Some exceptions include topological Mott insulators [56], topological Luttinger liquids [57,58], gapless spin liquids [4,59],...
the Gaffnian quantum Hall state [60], and the composite Fermi liquids in the half-filled Landau level [61,62]. However, the precise topological nature—and edge properties—of many of these systems remains controversial.

In this work, we present a general construction of strongly interacting, long-range entangled, quantum systems that are gapless in the bulk with topological edge modes protected by symmetry. These gapless symmetry-protected topological states of matter are generated via a systematic procedure that employs standard tools of gapped SPT phases, making their topological properties transparent. For conciseness, we refer to them as “gapless SPTs” (gSPTs). Just as normal SPTs can be thought of as “twisted” paramagnets, gapless SPTs can be obtained by twisting ordinary quantum critical points or critical phases. Some examples of gapless SPTs may be produced starting from an SPT and tuning a subset of the degrees of freedom (d.o.f.) to criticality.

In Sec. II, we outline the general construction based on the decorated domain-wall picture of gapped SPT phases [63]. This picture yields many examples, but we focus on several of them with the virtue of being exactly solvable: a topological critical Ising chain and a topological Luttinger-liquid phase in one dimension (Sec. III), and a topological gapless spin liquid in two dimensions (Sec. IV). In all cases, we start with the parent Hamiltonian, find the exact ground-state wave function, and demonstrate the presence of topologically protected edge modes that must be either gapless or symmetry broken. Despite the absence of a bulk gap, the topological edge modes in such gSPT systems are robust to arbitrary symmetry-preserving boundary perturbations and require no fine-tuning beyond closing the bulk gap. In particular, our general construction can be applied to both quantum critical points and gapless phases.

The topological edge modes of gSPTs can be interpreted as giving rise to exotic surface criticality [64]. Below, we show that this can take the form of anomalous edge magnetization or the appearance of ballistic dynamics at the edge of a diffusive system. Our construction therefore yields a host of gapless systems that blend the physics of quantum critical and topological systems.

II. GENERAL CONSTRUCTION

Consider a bosonic system in \(d\) dimensions composed of \(\sigma\) and \(\tau\) d.o.f. and symmetry group \(G_\sigma \times G_\tau\), with \(G_\sigma = \mathbb{Z}_2\). Our construction starts from the decorated domain-wall picture of SPTs [63]. In this picture, a “trivial” disordered phase [“trivial” paramagnets, Fig. 1(a)] is thought of as a gapped condensate of domain walls. Nontrivial SPT phases [“topological” paramagnets, Fig. 1(b)] are produced by “decorating” the domain walls of \(G_\sigma = \mathbb{Z}_2\) with \((d-1)\)-dimensional SPT phases protected by the symmetry \(G_\tau\). The protected edge modes appear naturally: Domain walls that end at a boundary carry the topologically protected edge mode of the lower-dimensional SPT.

To make a gapless system, we tune the domain-wall condensate to criticality (i.e., tune the underlying \(\sigma\) d.o.f. to criticality). When the domain walls are not decorated [the “gTrivial” case, Fig. 1(c)], this typically tunes the system to an ordinary quantum critical point. For example, in 1d, one can consider the domain walls of a critical Ising chain, and in 2d, one can use the domain walls of an Ising frustrated antiferromagnet. Generically, there is nothing protected about the edge of such gTrivial systems: They may or may not have additional gapless modes at their boundaries.

The crucial step is that one may decorate the gTrivial system with lower-dimensional SPT systems. This leads to a topologically distinct gapless state [called “gSPT,” Fig. 1(d)], which, in analogy to the gapped case, has the same properties as gTrivial in the bulk but completely different edge physics. Topologically protected edge modes appear in gSPT that can be gapped out only at the price of breaking the symmetry at the edge (either spontaneously or explicitly). In short, starting from a gapped SPT, one can generate a gapless SPT by making the domain-wall condensate critical while keeping the same domain-wall decoration.

The resulting gSPT systems are tuned to criticality in the bulk, while the edge modes are robust against symmetry-preserving perturbations acting near the edge. Even though
some of the examples we treat in this work correspond to critical points, as opposed to gapless phases, this is by no means a limitation of our construction. (To be clear, gapless SPTs are not “symmetry-protected gapless phases” [65–67]—the gaplessness of the bulk theory is not protected by symmetry.) As we show explicitly in Sec. III C, the same construction of applying the SPT decoration can be performed in gapless phases, such as Luttinger liquids in 1d [57] or gapless spin liquids in 3D [68], to obtain gapless SPT phases. More generally, gSPTs are as stable as their underlying gTrivial states before applying the decoration. In particular, gSPTs have exactly the same spectrum as their parent gTrivial systems on closed manifolds since they are related by a local unitary transformation.

III. ONE DIMENSION

This section provides a first example of a gapless SPT in one dimension, combining the features of a well-understood 1d gapped SPT and of the critical Ising model. Starting from a gapped SPT with \(Z_2 \times Z_2 \) symmetry, we bring one of the spin species to criticality and argue, in this exactly solvable limit, that the gapless system has topological edge modes. Going beyond this exactly solvable limit, we numerically demonstrate the robustness of the symmetry-protected topological edge modes against arbitrary symmetry-preserving perturbations.

A. Gapped \(Z_2 \times Z_2 \) SPT

To set the notation, we first recall the construction of a gapped SPT with \(Z_2 \times Z_2 \) symmetry in one dimension [30,43,63,69], which is closely related to the experimentally observable Haldane phase [31,70,71]. Consider a spin-1/2 chain with two alternating spin species: \(\sigma \) (on sites \(i \)) and \(\tau \) (on sites \(i + \frac{1}{2} \)), as shown in Fig. 2. We impose an inviolable \(Z_2 \times Z_2 = G_\sigma \times G_\tau \) global symmetry generated by \(C_\sigma = \prod_i \sigma_i^z \) and \(C_\tau = \prod_i \tau_i^z \). In 1d, \(Z_2 \times Z_2 \) is the minimal symmetry required to have a nontrivial SPT.

A trivial paramagnetic phase is obtained with the zero-correlation length Hamiltonian

\[
H_{\text{Trivial}} = -\sum_i \sigma_i^z + \sigma_{i-\frac{1}{2}}^z.
\]

with ground-state wave function

\[
|\Psi_{\text{Trivial}}\rangle = \sum_{\{\sigma^z\},\{\tau^z\}} |\sigma^z, \tau^z\rangle,
\]

where the sum runs over all \(\sigma^z \) and \(\tau^z \) configurations. This can be thought of as a gapped phase where domain walls have “proliferated.”

An exactly solvable example of a nontrivial SPT phase can then be made by “twisting” or “decorating” this Hamiltonian by a local unitary operator \(U_{1d} \) [30]. Define

\[
U_{1d} = \prod_i CZ_{i-1,i-1/2} CZ_{i,i-1/2},
\]

where \(CZ_{ij} = (-1)^{\delta_{ij}} \) is the control-Z two-qubit operator with \(\delta_{ij} = \frac{1}{4}(1 - \sigma_i^z)(1 - \tau_j^z) \), which gives a factor of \((-1)\) if the two spins are down and a +1 otherwise—see Fig. 2. Alternatively, \(U_{1d} \) can be thought of as attaching charges of one \(Z_2 \) symmetry to domain walls of the other \(Z_2 \) symmetry [72]. Under periodic boundary conditions, this unitary transformation commutes with the \(Z_2 \times Z_2 \) symmetry. Explicitly, the nontrivial SPT Hamiltonian \(H_{\text{SPT}} = U_{1d} H_{\text{Trivial}} U_{1d} \) reads

\[
H_{\text{SPT}} = -\sum_i \sigma_i^z \tau_{i-\frac{1}{2}}^z + \sigma_{i-1}^z \tau_{i-\frac{1}{2}}^z \sigma_i^z,
\]

with ground-state wave function

\[
|\Psi_{\text{SPT}}\rangle = U_{1d} |\Psi_{\text{Trivial}}\rangle = \sum_{\{\sigma^z\},\{\tau^z\}} e^{i\theta_{1d}(\sigma^z, \tau^z)} |\sigma^z, \tau^z\rangle,
\]

with \(e^{i\theta_{1d}(\sigma^z, \tau^z)} = \prod_i (-1)^{\delta_{ij}} \). The fact that \(H_{\text{Trivial}} \) and \(H_{\text{SPT}} \) lie in different SPT phases means that transforming one continuously into the other must either break the \(Z_2 \times Z_2 \) symmetry or close the gap. Both Hamiltonians are short-range entangled, gapped paramagnets, and they have the same spectrum with periodic boundary conditions.
However, with open boundary conditions, they differ at the edge: H_{gSPT} has spin-1/2 gapless edge excitations. We emphasize that the edge modes are topologically protected: They remain when arbitrary perturbations are added to Eq. (4), as long as the $Z_2 \times Z_2$ symmetry is preserved.

B. Gapless $Z_2 \times Z_2$ SPT

Starting from the trivial paramagnet of Eq. (1), one can drive the system to criticality by adding a ferromagnetic interaction for the σ spins. This can also be interpreted as driving the domain walls of G_{σ} to criticality. Explicitly,

$$H_{gTrivial} = H_{Trivial} - \sum_{i} \sigma^z_i \sigma^z_{i-1}. \quad (6)$$

This is a critical Ising chain for σ and a trivial paramagnet for τ. At low energy, one can ignore the gapped τ d.o.f., and the criticality is in the Ising universality class.

Using the same local unitary U_{1d} as above, we define a gapless SPT system as

$$H_{gSPT} = U_{1d} H_{gTrivial} U_{1d}^\dagger = H_{SPT} - \sum_{i} \sigma^z_i \sigma^z_{i-1}. \quad (7)$$

We show that, just as with $H_{Trivial}$ and H_{SPT}, $H_{gTrivial}$ and H_{gSPT} have the same bulk properties but differ at the edge. Namely, H_{gSPT} supports topological edge modes. This difference can also be interpreted as a difference of (conformally invariant) boundary conditions for the Ising conformal field theory (CFT): The edge modes of H_{gSPT} effectively lead to fixed boundary conditions (whereby the spins at the edge are held fixed, either up or down), while $H_{gTrivial}$ has a free boundary condition. Note that fixed boundary conditions for an Ising CFT normally require the symmetry to be explicitly broken at the edge. Obtaining such boundary conditions for an Ising-symmetric Hamiltonian is therefore highly unusual and a signature of the anomalous character of the boundary properties of H_{SPT}.

To see how this comes about, consider the exactly solvable case of H_{gSPT} on a semi-infinite chain $i \geq 0$ starting with σ_0. (For both H_{SPT} and H_{gSPT}, the term $\sigma^z_0 \tau_{1/2}$ is disallowed by symmetry, so we start with $\sigma^z_0 \tau^z_{1/2} + \sigma^z_0 \tau^z_{1/2} \sigma^z_{1/2}$.) This Hamiltonian has two exactly degenerate ground states indexed by the edge mode $\sigma^z_0 = \pm 1$, denoted $|\Psi_{gSPT}\rangle_{\pm}$. One easily finds that

$$|\Psi_{gSPT}\rangle_{\pm} = U_{1d} \left(|\text{Ising}\rangle_{\pm} \otimes \sum_{\{\tau\}} |\tau\rangle \right), \quad (8)$$

where U_{1d} is the unitary defined above restricted to $i > 0$ and where $|\text{Ising}\rangle_{\pm}$ are the critical Ising ground states for the σ d.o.f. with fixed boundary spin $\sigma^z_0 = \pm 1/2$. Since U_{1d} commutes with σ^z_i, the magnetization $m_i = \langle \sigma^z_i \rangle$ can be computed for the state $|\text{Ising}\rangle_{\pm}$, for which it is known to decay as $x^{-1/8}$, where $x \propto l$ is the distance from the edge [73]. Of course, the wave functions (8) break the $G_{\sigma} = Z_2$ symmetry at the boundary, and the true ground states will be symmetry-preserving cat states $|\Psi_{gSPT}\rangle_{+} \pm |\Psi_{gSPT}\rangle_{-}$. However, as in regular symmetry breaking, a minute boundary field $h_{\sigma} \sigma^z_0$ (or bulk field $h \sum_i \sigma^z_i$) is enough to pick either $|\Psi_{gSPT}\rangle_{+}$ or $|\Psi_{gSPT}\rangle_{-}$, thereby leading to a nonzero magnetization that decays into the bulk as $x^{-1/8}$.

This result is in stark contrast to the $gTrivial$ case where the boundary condition is free, the ground state is non-degenerate, and the magnetization is zero, both at the edge and in the bulk [74]. Note that the bulk magnetization $m_{bulk} = (1/L) \sum_i m_i$ also vanishes for gSPT in the limit $L \to \infty$, although very slowly: $m_{bulk} \sim L^{-1/8}$ (L is the system size).

Using standard density matrix renormalization group (DMRG) techniques [75,76], we numerically compare the typical magnetization profile for gSPT and $gTrivial$ systems with open boundary conditions. We include small but arbitrary symmetry-preserving boundary perturbations and a small $g \sum_{i=1}^{L} \tau^z_{i-1/2} \tau^z_{i+1/2}$ term that gives a nonzero correlation length to the gapped τ spins. In the presence of a magnetic field much smaller than the CFT finite-size gap, we find a clear qualitative difference between gSPT and $gTrivial$ systems (Fig. 3).

The properties of H_{gSPT} are robust and not a product of fine-tuning. They are stable in the presence of any symmetry-preserving perturbations, as long as the τ gap is not closed and the σ spins remain critical. The entire phase boundary between the nontrivial SPT (paramagnet) to a ferromagnet has the character of a gSPT, and we expect our conclusions to broadly apply to more general phase transitions between SPT and broken-symmetry phases.

FIG. 3. Edge magnetization of the critical σ spins for typical gSPT and $gTrivial$ ground states as a function of a small magnetic field. The ground states were computed on $L = 200$ σ spins (and 200 τ spins) using DMRG, including small but arbitrary symmetry-preserving boundary perturbations. Inset: Spatial magnetization profiles for a field $h = 10^{-10}$.
We add several types of perturbations to $H_{g\text{SPT}}$ and consider the generalized Hamiltonian

$$H'_{g\text{SPT}} = U_1 d H'_{g\text{Trivial}} U_{-1} + d (\sigma_0^x + \tau_{-1}^x + \sigma_{L-1}^x + \tau_{L-1}^x),$$

where

$$H'_{g\text{Trivial}} = - \sum_i \sigma_i^x + g_\tau \sigma_i^x \sigma_{i+1}^x + u_\sigma \sigma_i^x \sigma_{i+1}^x - \sum_i \Delta_\tau (\tau_i^x + g_\tau \tau_i^x \tau_{i+1}^x + u_\tau \tau_i^x \tau_{i+1}^x) + \sum_i \gamma \sigma_i^x \tau_i^x.$$

(10)

Here, δ parametrizes additional terms at the edges, g_τ gives a nonzero correlation length for the τ spins, u_σ and u_τ are interaction terms for the σ and τ spins to take them away from integrable points, and γ couples the σ and τ sectors. The parameter Δ_τ controls the gap of the τ spins, which is used to improve finite-size convergence in exact diagonalization (ED). We choose the parameters u_σ, u_τ, g_τ, and γ so that the τ spins remain gapped, deep in their paramagnetic phase, and we tune a single parameter g_τ to bring the σ spins to criticality. Using exact diagonalization, we identify the location of the new critical point by studying the finite-size crossing of the gap of the system [see phase diagram in Fig. 4(a)]. We have verified that $H'_{g\text{SPT}}$ has gapless edge modes and anomalous magnetization for the parameter ranges $0 \leq u_\sigma, g_\tau, u_\tau, \delta \leq 0.2$ and $0 \leq \gamma \leq 1$.

Away from the exactly solvable limit described in the previous section, the exact degeneracy of the ground state is lifted by quantum fluctuations. There are two nearly degenerate ground states, which correspond to cat-state superpositions $|+1+L\rangle \pm |-1-L\rangle$ of the edge modes. The splitting between these two cat states with lowest energy remains generically protected by the gap of the τ spins and is exponentially small in system size, well below the finite-size CFT gap that scales as $\sim 1/L$. The first excited states are also cat states corresponding to the configurations $|+1-L\rangle$, $|-1+L\rangle$ of the edge modes. They are power-law split from the two ground states because the anti-aligned edge modes induce a change of boundary condition [Fig. 4(c)]. In the CFT language, this corresponds to the insertion of a boundary condition changing operators [77,78], which leads to a finite-size gap $\pi v_F/2L$ for a system of size L [79], with v_F the Fermi velocity. Figure 4(b) shows the anomalous magnetization of the low-lying eigenstates for nontrivial parameter values, consistent with the above picture.

In conclusion, this system provides an example of a $1 + 1d$ gapless SPT as a decorated critical Ising model. We showed that the anomalous edge properties of $H_{g\text{SPT}}$ are robust and do not require any additional fine-tuning beyond making the σ spins critical. This gSPT state can also be interpreted as a quantum critical point between a nontrivial SPT and a ferromagnet, although we emphasize again that our general construction also applies to gapless phases, including Luttinger liquids in 1d (see below). The presence of exotic edge properties at this transition stands in contrast to previous works on transitions between trivial and nontrivial SPTs [80–83]. This should admit straightforward generalizations to Potts models and parafermions in the case of a $\mathbb{Z}_N \times \mathbb{Z}_N$ symmetry.

Numerically, the anomalous edge magnetization even appears to survive disorder. Because of the unitary twist relating $H_{g\text{Trivial}}$ and $H_{g\text{SPT}}$, the stability of the gSPT critical point against disorder is determined by the Harris criterion for the gTrivial system (disorder is irrelevant if the correlation length exponent satisfies $\nu \geq 2/d$) and by the gap of the τ spins. Therefore, gSPTs should be as stable against disorder as their gTrivial counterparts before applying the unitary twist. Moreover, even if disorder is relevant, we expect that disordered examples of gSPT systems could be uncovered by studying the boundary physics of twisted infinite randomness critical points [84]. This could lead to “topological” random singlet phases both at zero temperature [84,85] and in the context of many-body localization [86–88]. Furthermore, the possible presence of a strong zero mode [89–91] in such models should be investigated.

C. $U(1) \rtimes \mathbb{Z}_2 \times \mathbb{Z}_2$ gSPT phase in 1d

The presence of a quantum critical point in the preceding example is a special case; our construction can be applied...
not only to gapless points but equally well to lines or phases. To emphasize the generality of our construction, we now present a gapless SPT phase in 1d.

We start from a ("gTrivial") gapless phase in 1d—a Luttinger liquid [94]. The systematic nature of our construction allows us to closely follow the gTrivial example above, but we enforce an additional U(1) symmetry on the gapless \(\sigma \) spins in order to lock them into a Luttinger-liquid phase. We start from the Hamiltonian

\[
H_{g\text{Trivial}}^{LL} = \sum_i \sigma_i^\alpha \sigma_{i+1}^\alpha + \sigma_i^\beta \sigma_{i+1}^\beta + \Delta \sigma_i^\gamma \sigma_{i+1}^\gamma \\
- \sum_i \tau_i^\alpha \tau_{i+1}^\alpha + g_t \tau_i^\tau \tau_{i+1}^\tau + u_r \tau_i^\tau \tau_{i+1}^\tau \\
+ \sum_i a \sigma_i^\alpha \tau_{i+1}^\alpha \sigma_{i+1}^\alpha,
\]

which describes gapless \(\sigma \) spins (XXZ model) coupled through the \(\alpha \) term to gapped Ising \(\tau \) spins deep in their paramagnetic phase (\(u_r \) and \(g_t \) are small). (Note that in contrast to the usual convention for the XXZ spin chain, \(\Delta \) adjusts the magnitude of the \(\sigma^\alpha \sigma^\alpha \) interaction to make the symmetries more convenient.) This case has a \(U(1) \times \mathbb{Z}_2^{(g)} \times \mathbb{Z}_2^{(t)} \) global symmetry, generated by \(U_\theta = \prod_i e^{i \theta \sigma_i^\alpha} \), \(C_\alpha = \prod_i \sigma_i^\alpha \), and \(C_\tau = \prod_i \tau_{i+1/2}^\tau \), respectively. Assuming that \(\alpha \) is small, the gapped \(\tau \) spins can be integrated out to renormalize the anisotropy parameter \(\Delta_{\text{eff}} = \Delta - \alpha \langle \tau^\alpha \rangle \). The resulting \(\sigma \)

spins are gapless for \(-1 < \Delta_{\text{eff}} \leq 1\) and form, at low energies, a (single-channel) Luttinger-liquid phase with effective Lagrangian

\[
\mathcal{L} = \frac{g}{4\pi} (\partial_\nu \phi)^2,
\]

with \(\Delta_{\text{eff}} = -\cos \pi \theta \), and \(\phi \) a compact boson with unit compactification radius. (We set the Fermi velocity to \(v_F = 1 \) for simplicity.)

Upon applying the unitary twist (3) and following the same steps as above, one can readily show that the twisted Hamiltonian \(H_{g\text{SPT}}^{LL} = U_{1d} H_{g\text{Trivial}}^{LL} U_{1d} \) has edge modes in the limit \(\alpha = g_t = u_r = 0 \) [95]. These topological edge modes are robust and persist away from this special limit as long as the gap of the \(\tau \) spins does not close. Similarly to the \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) example above, the edge modes can be thought of as inducing a spontaneous edge magnetization along the \(\bar{z} \) direction, which in turn induces a change of (conformally invariant) boundary conditions [96]. Using standard bosonization techniques, the edge modes can be seen to lead to a doubly degenerate spectrum of boundary critical exponents that can be obtained from the gTrivial case through the substitution \(g \rightarrow (1/4g) \) [93]. (Note that this is in sharp contrast with the \(\mathbb{Z}_2 \times \mathbb{Z}_2 \) gSPT discussed above, where the edge modes only led to degeneracies and did not modify the value of the critical exponents.) We have checked these predictions and the robustness of this
topological Luttinger-liquid (gSPT) phase using exact diagonalization and DMRG calculations [93] (See Fig. 5).

We emphasize that, contrary to other examples of topological Luttinger liquids previously discussed in the literature [52,57], our construction does not rely on the spin-charge separation property of Luttinger liquids. Instead, our decorated domain-wall construction provides us with a systematic way of generating strongly interacting gapless SPT phases while making their topological nature transparent in clear analogy with gapped SPT systems.

IV. TWO DIMENSIONS

To showcase the range of our general construction, our second example is a more involved system in subsequent sections. We first define the model and then proceed to analyze its behavior in subsequent sections.

This example has a $G_a \times G_z = Z_2 \times (Z_2 \times Z_2)$ symmetry, where the domain walls of $G_a = Z_2$ will be decorated with (gapped) one-dimensional SPT states protected by $G_z = Z_2 \times Z_2$. Let A be a lattice whose sites host σ spins, with symmetry $C_A = \prod_{a \in A} \sigma_a^\perp$. The τ spins live on the sites of the dual (face-centered) lattice of A, called A^*, which we assume to be bipartite so that $A^* = B \cup C$ with symmetries given by $C_B = \prod_{b \in B} \tau_b^\perp$ and $C_C = \prod_{c \in C} \tau_c^\perp$. We further assume a symmetry exchanging B and C. This can be realized either on triangular or Union Jack lattices, as shown in Fig. 2. A “trivial” paramagnetic state can be obtained as an equal-weight superposition of all classical configurations of spins, with parent Hamiltonian $H_{\text{Trivial}} = -\sum_{a \in A} \sigma_a^z - \sum_{a^* \in A^*} \tau_{a^*}^z$ and ground-state wave function

$$|\Psi_{\text{Trivial}}\rangle = \sum_{\{\sigma\},\{\tau\}} |\sigma^z, \tau^z\rangle.$$

Following the well-known construction [30,69], a parent Hamiltonian for a nontrivial Z_2^3 SPT is given by $H_{\text{SPT}} = U_{2d} H_{\text{Trivial}} U_{2d}$, where $U_{2d} = \prod_{\Delta_{ijk}} \text{CCZ}_{ijk}$ is a local unitary operator that applies a three-qubit operator on each triangle of three neighboring ABC sites (see Fig. 2). This control-control-Z operator gives a -1 for three down spins and $+1$ otherwise: $\text{CCZ}_{ijk} = (-1)^{\delta_{i,j}}$. One can check that, for each edge (jk) of A^* that hosts a σ domain wall, U_{2d} applies the two-qubit control-Z operator CZ_{jk} on the τ spins j and k. This unitary therefore applies U_{1d} to the τ spins living on each domain wall of the σ spins, thereby decorating them with a 1d SPT chain protected by a $Z_2 \times Z_2$ symmetry. Explicitly, we have

$$|\Psi_{\text{SPT}}\rangle = U_{2d} |\Psi_{\text{Trivial}}\rangle = \sum_{\{\sigma\},\{\tau\}} e^{i\theta_{2d}(\sigma^z,\tau^z)} |\sigma^z, \tau^z\rangle,$$

where the σ and τ spins are now coupled through the phase factor $e^{i\theta_{2d}(\sigma^z,\tau^z)}$, which takes care of the domain-wall decoration.

Here, the product is over the domain walls of σ^z, denoted by $\{\tau\}$, and $e^{i\theta_{2d}(\tau)}$ is defined in the previous section and applied to the τ spins living on a given domain wall.

For a region with an edge of B and C sites, U_{2d} does not modify the C_i symmetry generators C_B and C_C, but it does lead to additional boundary terms in $U_{2d} C_A U_{2d} = \prod_{a \in A} \sigma_a^z \prod_{d_{\tau}} \text{CZ}$, where CZ is a control-Z gate giving a -1 factor if two successive B and C boundary spins are down. We can write down the edge theory of this Z_2^3 SPT following Levin and Gu [28] by including all terms allowed by the symmetries, such as $\tau_{B,i-1}^z \tau_{C,i}^z + \tau_{C,i-1}^z \tau_{B,i}^z$, and $B \leftrightarrow C$ permutations.

Using standard duality arguments, the edge theory can be thought of as two coupled Ising models tuned to their self-dual critical points (also known as the Ashkin-Teller model [97]). After bosonization, the edge excitations can be described by a Luttinger liquid [94] with central charge $c = 1$ at the electromagnetic self-dual point

$$L_{\text{edge}}^\text{SPT} = \frac{1}{4\pi} \left(\partial_\mu \phi \right)^2 - \lambda (\cos 2\phi + \cos 2\theta),$$

where ϕ, θ are compact conjugate bosonic fields with unit compactification radius. The edge is protected by the symmetries $\phi \rightarrow \pm \phi + \pi$, $\theta \rightarrow \pm \theta + \pi$, and $\phi \leftrightarrow \theta$ (note that the last symmetry is generated by the symmetry exchanging B and C spins). The vertex operators $\cos 2\phi$ and $\cos 2\theta$ correspond to products of the energy operators of the two Ising models. They are marginal perturbations that can be absorbed by renormalizing the Luttinger parameter and the sound velocity [98].

A. gSPT wave function

Now, we tune the σ spins to criticality by imposing the constraint that the domain walls of the σ^z spins must be fully packed loops (FPL) [99,100]. On the triangular lattice, this corresponds to a natural physical constraint: The allowed σ^z states are the maximally antiferromagnetic ones, which, because of frustration, are known to have extensive degeneracy and power-law correlations [101]. On the square lattice, the FPL constraint is equivalent to the ice rule of the six-vertex model [102]. For concreteness, we focus on the triangular lattice, for which the fully packed loops live on the dual honeycomb lattice. For a given site $\alpha \in A$, let P_α be the projector onto allowed configurations (i.e., configurations that respect the constraint for the six triangles surrounding α), and let P'_α be the projector onto allowed configurations for which α is “resonant” (i.e., configurations that would still respect the constraint after flipping σ^α_α). Since P_α and P'_α are only functions of the σ^z operators on α and its neighbors (on the A lattice), they are local operators. Then, the gTrivial Hamiltonian is (still with $G_a \times G_z$ symmetry)
where \(\Lambda \to \infty \) is an energy cost to penalize configurations that do not respect the constraint. To find the exact ground state, note that the \(\tau \) spins are completely decoupled from the \(\sigma \) spins. For the \(\sigma \) d.o.f., we can follow the standard argument from Rokhsar and Kivelson [103]. The \(\sigma \) part of \(H_{g\text{Trivial}} \) is a sum of projectors and is therefore positive semi-definite. Thus, the (unnormalized) state

\[
|\Psi_{g\text{Trivial}}\rangle = \sum_{\{\sigma^c\}, \{\tau^c\}} |\sigma^c, \tau^c\rangle,
\]

an equal-weight superposition over all \(\sigma^c \) states that satisfy the constraint (denoted \(\{\sigma^c\} \)) times a paramagnetic state for the \(\tau \) spins, has zero energy under the \(\sigma \) part of \(H_{g\text{Trivial}} \) and is hence an exact ground state. Equal-time \(\sigma^c \)-correlation functions in the ground state are described by correlation functions in the 2d FPL model with loop fugacity \(n = 1 \) [99,100] or, equivalently, by correlation functions in the zero-temperature, triangular-lattice, Ising antiferromagnet [101].

Using standard mappings onto dimers and height models [99,100], the continuum limit of the 2d FPL model can be identified as a \(c = 1 \) compact boson CFT \(\mathcal{L} = (g/4\pi) (\nabla \varphi)^2 - \gamma \cos 3\varphi \), with \(g = \frac{1}{2} \) and \(\varphi \equiv \varphi + 2\pi \), so the perturbation \(\cos 3\varphi \) has scaling dimension \(\Delta = 9 \) and is irrelevant. Following Refs. [104–106], we quantize this theory to identify the 2 + 1d effective field theory describing the low-energy physics of \(H_{g\text{Trivial}} \) as the \(z = 2 \) quantum Lifshitz model (QLM) with (Euclidian) Lagrangian density

\[
L_{\text{QLM}}^{\text{bulk}} = \frac{1}{2} \left[(\partial_x \varphi)^2 + k(\nabla \varphi)^2 + k^2(\nabla^2 \varphi)^2 \right] - \gamma \cos 3\varphi
\]

tuned to \(k = 0 \) with \(\kappa = \frac{1}{8\pi} \) to reproduce the equal-time antiferromagnetic spin correlations on the triangular lattice. This constitutes an effective field theory for the \(g\text{Trivial} \) order on a closed manifold and is manifestly gapless. Equivalently, one can also think of this quantum critical point in terms of a dual \(U(1) \) gauge theory with a quadratic photon mode [106].

The stability of this quantum critical point has been studied in various contexts [105,107,108] and depends on crystalline symmetries, with the important relevant perturbations in our case being magnetic operators breaking the FPL constraint and \(k(\nabla \varphi)^2 \), which makes \(\cos 3\varphi \) relevant and opens up a gap [this can be equivalently interpreted as the instability of the deconfined phase of \(U(1) \) gauge theories in \(2 + 1d \) [109].] In the following, we assume the bulk is tuned to this quantum Lifshitz critical point. The \(\mathbb{Z}_2 \) symmetry discussed above acts trivially on \(\varphi \), but the theory (19) has additional crystalline symmetries corresponding to threefold rotations \(\varphi \to \varphi + 2\pi/3 \) and inversion \(\varphi \to -\varphi \). A similar field theory can be obtained on the square lattice [110].

An example of \(2 + 1d \) gapless SPT order is now obtained by decorating \(H_{g\text{Trivial}} \).

\[
H_{g\text{SPT}} = U_2 d H_{g\text{Trivial}} U_{2d}.
\]

Its ground state is simply

\[
|\Psi_{g\text{SPT}}\rangle = U_2 d |\Psi_{g\text{Trivial}}\rangle = \sum_{\{\sigma^c\}, \{\tau^c\}} e^{i\theta_{2d}(\sigma^c, \tau^c)} |\sigma^c, \tau^c\rangle.
\]

We now argue—crucially—that the critical wave function \(|\Psi_{g\text{SPT}}\rangle \) has an extra gapless edge mode compared to \(|\Psi_{g\text{Trivial}}\rangle \) and that this edge mode is protected. This behavior is a hallmark of SPT order and must be treated with care in this gapless context. We therefore present three independent arguments for it: (1) effective field theory and boundary renormalization group (RG), (2) bulk-boundary correspondence, and (3) entanglement spectrum calculations with numerics. Each argument separately confirms a gapless \(c = 1 \) edge in the \(g\text{Trivial} \) case and a gapless \(c = 2 \) edge in the \(g\text{SPT} \) case.

B. Edge field theory

We first consider the edge modes of the (topologically trivial) gapless state \(|\Psi_{g\text{Trivial}}\rangle \), Eq. (18), for which Eq. (19) describes the bulk behavior of the \(\sigma \) spins. Because the boundary conditions for the spins are free, we consider Neumann boundary conditions for the field \(\varphi \). [Note that Dirichlet boundary conditions \(\varphi|_{\partial} = 0 \) for the QLM are RG unstable and flow to Neumann, as the normal derivative boundary perturbation \((\partial_x \varphi)|_{\partial} \) has scaling dimension \(\Delta = 2 < z + 1 = 3 \) and is therefore relevant.] However, it is important that even though the relativistic \(z = 1 \) term in Eq. (19) is tuned to \(k = 0 \), such quadratic terms have no reason to be set to zero at the edge without additional fine-tuning. At the boundary, one should therefore add a lateral derivative boundary term \(V \sim \delta^2 \int \partial_x \partial_{\xi}^2 \partial_{\xi} \varphi^2 \) to the action. Here, \(x_{||} \) is the coordinate along the edge and \(\delta \) is a nonuniversal parameter. The boundary perturbation \(\partial_{\xi} \varphi^2 \) is relevant, and we conjecture that, in the IR, it endows the edge with \(z = 1 \) dynamics (forgetting the slower \(z = 2 \) bulk dynamics). This result leads to the effective low-energy action for the edge theory of the QLM,
where the dots represent less RG-relevant terms. This is the action of a $1 + 1d$ compact boson CFT with central charge $c = 1$. We emphasize that the effective Luttinger parameter is nonuniversal and set by the value of δ, which, depending on microscopic parameters, could lead to a gapped edge because of the cosine terms dropped in Eq. (22). The existence of this edge has nothing to do with the SPT, and indeed, the symmetries (C_A, C_B, C_C) act trivially on ϕ. The σ spins therefore have a $z = 2$ bulk with diffusive dynamics and can have a $z = 1$ edge with ballistic dynamics. To our knowledge, edge modes for gapless systems have very rarely been discussed in the literature [111–115]. The presence of an edge is confirmed numerically below.

We now turn to the edge theory of the gSPT wave function (21). Upon integrating out the gapped r d.o.f., we expect the bulk low-energy theory to be described by Eq. (19), with $k = 0$, where the boundary actions (16) and (22) (both with nonuniversal Luttinger parameters) are coupled through all symmetry-allowed perturbations. The essential point is that the SPT Z_3 symmetry acts trivially on ϕ, so perturbations such as $\cos(\phi - \sigma)$ that could generically gap out the edge are not allowed by symmetry. Intuitively, coupling the two edge theories does not increase the number of symmetry-allowed perturbations since they are protected by distinct symmetries. There is therefore a finite range of Luttinger parameters for which the edge is gapless with central charge $c = 2$. Moreover, the SPT part of the edge, described by Eq. (16), is symmetry protected as it can only be gapped out by condensing ϕ or θ, thereby spontaneously breaking the Z_3 symmetry. A related mechanism for noninteracting gapless topological superconductors and insulators has been discussed in Ref. [115].

Investigating to what extent these edge modes leak into the gapless bulk is a complicated task. In analogy with the $1d$ case, at least the τ component of the edge should be exponentially localized despite the critical bulk. Even though the domain walls themselves are critical, the $1 + 1d$ SPT chains that live on them are still gapped. Therefore, when a domain wall ends at a boundary, there is a free spin-1/2 living at the end point (see Fig. 1) whose only way to move towards the bulk is along the domain wall, which is forbidden by the $1 + 1d$ SPT gap. We thus expect the free edge spins to be exponentially localized, where the localization length is given by the gap on the $1 + 1d$ SPT chains.

C. Bulk-boundary correspondence

The bulk-boundary correspondence for fractional quantum Hall (FQH) states [116–119] is a powerful technique whereby a FQH wave function is written as a correlator in a CFT. When it is unitary, the CFT also gives the edge and entanglement spectra [120–122]. This correspondence was recently extended to SPT wave functions [123] (see also Ref. [124]), and we build on this result in this section.

Starting from a SPT wave function, a convenient way of identifying its underlying CFT is to compute the “strange correlator theory” $Z_{\Psi_{\text{SPT}}} \equiv \langle \Psi_{\text{Trivial}} | \Psi_{\text{SPT}} \rangle$ [125]. The idea behind this theory is that correlators of the type $\langle \Psi_{\text{Trivial}} | O_1 O_2 | \Psi_{\text{SPT}} \rangle$ measure observables on an edge in imaginary time between a trivial and a nontrivial SPT and can therefore probe the edge physics. To complete the analogy with the FQH bulk-boundary correspondence, it was shown in Ref. [123] that $\langle \Psi_{\text{SPT}} \rangle$ can be written in terms of correlators in the $Z_{\Psi_{\text{SPT}}}$ CFT.

We now calculate Z_{Ψ} for both the gapped and gapless SPT. Let us first briefly review the gapped case [123,125]. We focus on the triangular lattice, but the results generalize straightforwardly to the Union Jack lattice. Starting from Eqs. (14) and (15), one can use the fact that $e^{i \theta_{dw}}$ factors over domain walls to analytically sum the r d.o.f. over each domain wall separately. This yields [123]

$$Z_{\Psi_{\text{SPT}}} = \sum_{\{\sigma^r, \tau^r\}} e^{i \theta_{dw}(\sigma^r, \tau^r)} \propto \sum_{\{d \omega\}} n_{d \omega}^{N_{d \omega}} \chi_{d \omega}^{L_{d \omega}},$$

with $L_{d \omega}$ the total length of domain walls, $N_{d \omega}$ the total number of domain walls, $x^{-1} = \sqrt{2}$, and $n = 2$. Since domain walls form closed, nonintersecting loops, this can be identified as a dense (but not fully packed) loop model on the honeycomb lattice with loop fugacity $n = 2$ and loop tension $x^{-1} = \sqrt{2}$ [126]. For these parameters, this loop model is exactly solvable and is given by the $SU(2)$ CFT with central charge $c = 1$ [126], in agreement with the edge field theory given in Eq. (16).

The strange correlator theory for the gapless case can be calculated analogously by restricting to fully packed loop configurations $\{d \omega\}$. This leads to

$$Z_{\Psi_{\text{gSPT}}} = \sum_{\{\sigma^r, \tau^r\}} e^{i \theta_{dw}(\sigma^r, \tau^r)} \propto \sum_{\{d \omega\}} n_{d \omega}^{N_{d \omega}},$$

with $n = 2$ again. This loop model is also known to give a CFT but with $c = 2$ instead [100]. Hence, the bulk wave function of gSPT can be written as a correlator in a $c = 2$ CFT, which is good evidence for a $c = 2$ edge. It is remarkable that this imaginary-time edge picture holds for a nonrelativistic bulk theory with $c = 2$. Notice that our analysis has provided us with a natural way of interpolating from the gapped SPT to the gapless SPT by tuning the loop tension x^{-1} from $\sqrt{2}$ to zero. In the following section, we give further evidence by showing that the entanglement spectrum is given by a $c = 2$ theory as well.

D. Entanglement spectrum

A useful property of entanglement cuts in systems that obey the area law for entanglement entropy [127,128] is that the corresponding entanglement Hamiltonian can be interpreted as an “edge” Hamiltonian [120]. This correspondence between entanglement and edge Hamiltonians has been shown rigorously in certain cases [122] and has
been very useful in the numerical identification of various topological phases of matter. While so far this technique has been mostly used for systems that are gapped in the bulk, we emphasize that this is not an inherent limitation. As long as the area law is respected, it is always possible in practice to interpret the entanglement Hamiltonian as an edge Hamiltonian (see, for example, Ref. [112], where a gapless chiral spin liquid is shown to have an entanglement spectrum described by a CFT).

Consider $|\Psi_{g\text{Trivial}}\rangle$ and $|\Psi_{g\text{SPT}}\rangle$ on cylinders of circumference ℓ and infinite length. We make an entanglement cut transverse to the cylinder, which splits it into two semi-infinite regions, and we compute the reduced density matrix $\rho = e^{-\mathcal{H}\ell}$. As explained in the Appendix, using special properties of our exact ground state wave-functions, it is possible to show that they satisfy the area law [129], to find the exact Schmidt decomposition, and hence compute the entanglement spectrum by numerical exact diagonalization of a two-dimensional transfer matrix. The reduced density matrix has support only on the entanglement cut, so it naturally describes a 1d system. Moreover, it has the form of a transfer matrix for a 2d statistical model, so the quantum-classical mapping provides H_E as a local operator.

We find that for both $g\text{Trivial}$ and $g\text{SPT}$, the spectral gap of H_E goes like $1/\ell$, indicating the edges are indeed gapless (see the Appendix for details). To identify the CFT described by H_E as a 1 + 1d theory on a circle, we compute the entanglement entropy $S(x)$ of the ground state of H_E for cuts of length x. We then apply the standard result of Cardy and Calabrese to extract the central charge [130,131]:

$$S(x) = \frac{c}{3} \ln \sin \frac{\pi x}{\ell}.$$ \hspace{1cm} (25)

Figure 6 shows $S(x)$ for the $g\text{Trivial}$ and $g\text{SPT}$ cases. As $\ell \to \infty$, this converges from below [132] to Eq. (25).

In the inset, the central charges are seen to converge to $c = 1$ and $c = 2$ for the $g\text{Trivial}$ and $g\text{SPT}$ orders, respectively.

We may thus conclude, having shown it by three independent and consistent methods, that the gapless trivial state has an edge mode with central charge $c = 1$, while the gapless SPT case has $c = 2$—recall, however, that only half of this edge is protected by the Z_2^2 symmetry. These ballistic edge modes ($z = 1$) in a diffusive ($z = 2$) quantum critical system should have dramatic consequences for transport properties.

V. Conclusions

Gapless symmetry-protected order was proposed as a class of quantum matter. We provide a general construction for many gSPT systems by decorating the domain walls of gapless systems. To concretely understand gSPTs, we focused on two analytically solvable examples: a simple 1d system that extends the Ising model and a gapless spin liquid in two dimensions. These examples demonstrate that gSPTs not only extend the crucial topological feature of SPTs—robust gapless edge modes—but also permit generalizations of tools developed for the gapped case, such as the bulk-boundary correspondence and the use of the entanglement spectrum as a probe of the edge. Both systems also exhibit exotic boundary behavior, including anomalous edge magnetization in the 1d example and, for 2d, $z = 1$ edge dynamics for a $z = 2$ system. Both in 1d and 2d, the gapless edge modes appear to be exponentially localized by the gap of the τ spins, even though they induce an algebraic disturbance for the σ spins into the critical bulk.

These are by no means the only gSPTs. To wit, in the 1d example, one could straightforwardly replace the Ising spins with parafermions or a Potts model; the 2d example should permit a gapless topological state with relativistic Majorana edge modes using Majorana chains as decoration [133,134], and it might be possible to find 3D gapless spin liquids where analytic control over the decoration is possible [135–137]. Two-dimensional gSPT states could also be realized in realistic strongly correlated electronic systems [68,83].

More broadly, some of our examples can be interpreted as “twisted” quantum phase transitions between SPT and broken-symmetry phases, which are expected to be more generic than direct transitions from trivial to SPT phases [80–82]. Even if the bulk universality class of such twisted transitions is the same as for quantum critical points between trivial paramagnets and symmetry-broken phases (and hence described by conventional Ginzburg-Landau theory), our results indicate that twisted transitions differ from regular transitions in terms of surface criticality, in agreement with recent Monte Carlo results [64]. From a field theory perspective, trivial paramagnets and gapped SPTs can be understood as nonlinear sigma models in their gapped, disordered phase, the only difference being that the latter has a topological θ term with $\theta = 2\pi$ [34,70].

FIG. 6. Entanglement entropy of the $1 + 1d$ ground state of the entanglement Hamiltonian $H_E = -\log \rho$, with ρ the reduced density matrix for a bipartite cut on an infinite cylinder of circumference ℓ. Blue points are for $|\Psi_{g\text{Trivial}}\rangle$, and red points are for $|\Psi_{g\text{SPT}}\rangle$. Data are offset so that $S(1/2) = 1$.

...
It would be interesting to study the role of this θ term on the transition to symmetry-broken phases.

We also emphasize that our construction leads to gSPT states that are just as stable as the underlying gTrivial wave functions before applying the decoration. In particular, our construction yields stable gSPT phases by decorating Luttinger liquids in 1d (see Sec. III C) or U(1) gauge theories in 3D (left for future work). It would also be interesting to relate gSPTs to other gapless topological states of matter, including gapless fractionalized states [65,138,139], in particular, by partially gauging the symmetries [28]. We leave these directions for future work, and we hope that gapless SPTs might provide a useful starting point to systematically study gapless topological matter.

ACKNOWLEDGMENTS

We thank S. Parameswaran, A. C. Potter, Z. Ringel, S. Simon, and B. Ware for insightful discussions, and Y.-M. Lu, A. Nahum, A. C. Potter, Z. Ringel, and Y.-Z. You for useful comments on the manuscript. We acknowledge support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation (T.S.), NSF DMR-1507141 (D.P.), and the Department of Energy through the Quantum Materials program of LBNL (R.V.). R.V. also acknowledges support from the Emergent Phenomena in Quantum Systems and sets notation.

APPENDIX: ENTANGLEMENT SPECTRUM ON THE CYLINDER

This appendix computes the entanglement spectrum of the 2 + 1d gapless states introduced in Sec. IV. Below, we explicitly calculate the reduced density matrix for both the “gapless trivial” and “gapless SPT” systems and show it may be written in terms of a transfer matrix for a gapless 1 + 1d system, which we interpret as the edge theory. Using techniques of 1 + 1d CFT [130,131], we demonstrate that this edge theory has c = 1 for the gapless trivial case but c = 2 for the gapless SPT case.

Consider a cylinder with a circumference of ℓ and infinite length (see Fig. 7). The analytic results below are general for any geometry, but for numerical convenience, we work on the (tilted) Union Jack lattice. The circumference ℓ is defined so that every column is composed of ℓ sites. Let us consider an entanglement cut transverse to the cylinder, which divides the cylinder into a left (L) and right (R) side. Figure 7 shows the geometry and sets notation.

With notation from Fig. 7, the gSPT wave function Eq. (21) can be written more explicitly as

$$|\Psi_{\text{gSPT}}^L\rangle = \frac{1}{\sqrt{Z}} \sum_{\{\ell\},\{\tau\}} e^{i\theta(L)} e^{i\theta(R)} e^{i\partial(L)} e^{i\partial(R)}$$

$$\times |\sigma_L, \tau_L, \partial_L, \sigma_R, \tau_R, \partial_R\rangle \otimes |\sigma_L, \tau_L, \partial_L, \sigma_R, \tau_R, \partial_R\rangle,$$

where the sum runs over all configurations of the σ^I spins whose domain walls are FPL and over all τ^I spins. Z factors into the partition function of the FPL model for σ and a trivial normalization factor for τ:

$$Z = \sum_{\{\sigma\},\{\tau\}} 1 = 2^{|\tau|} \sum_{\{\sigma\}} 1,$$

with #τ the number of τ spins. For a domain D, the phase factor e^{iθ(D)} gives a factor of −1 for each triangle strictly included in D with three down spins. The triangles that cross the cut and contribute to e^{iθ(∂L,∂R)} are highlighted in green in Fig. 7.

Define wave functions on the left side for each possible choice of spin configurations at the left boundary (denoted ∂L) by

$$|\Psi_{\text{gSPT}}^L(\sigma_{\partial L}, \tau_{\partial L})\rangle = \frac{1}{\sqrt{Z_L(\sigma_{\partial L})}} \sum_{\{\tau_L\}} e^{i\theta(\partial L)} |\sigma_L, \tau_L, \sigma_{\partial L}, \tau_{\partial L}\rangle,$$

where Z_L is the partition function on the left side, and it is independent of τ_L. Define |Ψ_{gSPT}^R(\sigma_{\partial R}, \tau_{\partial R})\rangle analogously on the right side. In a dual picture, the domain walls of the σ spins are isomorphic to configurations of the six-vertex model. This local constraint would allow an exact Schmidt decomposition following Ref. [140]. However, different cuts make physical sense with domain walls instead of spins. (Indeed, using the domain walls leads to a factorization of the density matrix as a product of the σ and τ d.o.f.)
Therefore, we emphasize that one must work with the actual spins. Conveniently, one may still use the local constraint on the σ spins together with the zero correlation length of the τ spins to find an exact Schmidt decomposition.

We may rewrite the entire wave function as

$$\psi_{\text{SPT}} = \sum_{\sigma_{0L}, \sigma_{0R}} \left(\frac{Z_L[\sigma_{0L}]Z_R[\sigma_{0R}]}{Z} \right)^{1/2} e^{i\theta(0L,0R)} T_{\sigma_{0L},\sigma_{0R}} \psi_{\text{SPT}}(\sigma_{0L}, \tau_{0L}) \otimes \psi_{\text{SPT}}(\sigma_{0R}, \tau_{0R}),$$ \[(A4)\]

where the sum over σ_{0L} and σ_{0R} is now unconstrained. Here, T is the transfer matrix for the fully packed loop model with loop fugacity one. Its role is to enforce the FPL constraint between the left and right sides. In the following, we use the orthogonality property

$$\langle \psi_{\text{SPT}}^L | \sigma_{0L}', \tau_{0L}' \rangle \langle \psi_{\text{SPT}}^R | \sigma_{0R}, \tau_{0R} \rangle = \delta_{\sigma_{0L}, \sigma_{0L}'} \delta_{\tau_{0L}, \tau_{0L}'}.$$

Starting from the density matrix $\rho = |\psi_{\text{SPT}}\rangle \langle \psi_{\text{SPT}}|$, we may use Eq. (A4) to immediately write the reduced density matrix on the left side:

$$\langle \psi_{\text{SPT}}^L | \sigma_{0L}, \tau_{0L} \rangle \rho_L | \psi_{\text{SPT}}^L | \sigma_{0L}', \tau_{0L}' \rangle = (S^L)_{\sigma_{0L}, \tau_{0L}}^{\sigma_{0L}', \tau_{0L}'}.$$ \[(A6)\]

where we used the above orthogonality property and where S is a transfer matrix from the left to the right side,

$$S_{\sigma_{0L}, \tau_{0L}, \sigma_{0R}, \tau_{0R}} = \left(\frac{Z_L[\sigma_{0L}]Z_R[\sigma_{0R}]}{Z} \right)^{1/2} T_{\sigma_{0L},\sigma_{0R}} e^{i\theta(0L,0R,0R)}. $$ \[(A7)\]

The reduced density matrix manifestly depends only on the d.o.f. at the entanglement cut, whereas generically, it might depend on all the spins on the left side. If we define the entanglement Hamiltonian via $\rho_L = e^{-H_E}$, then H_E describes a $1 + 1d$ system on the boundary d.o.f. To compute the spectrum of H_E on the cylinder, we use the fact that

$$Z_L[\sigma_{0L}] = \lim_{N \to \infty} \sum_{\sigma} \langle \sigma | T^N \langle \sigma \sigma_{0L} \rangle$$

$$= \lim_{N \to \infty} \sum_{\sigma} \langle \sigma | R \rangle \lambda^N \langle L \sigma_{0L} \rangle,$$ \[(A8)\]

where, by the Perron-Frobenius theorem, $T^N \to |R\rangle \lambda^N \langle L\rangle$, with λ the largest eigenvalue of T, and $|R\rangle$ and $|L\rangle$ the corresponding right and left eigenvectors. The sum runs over all configurations of σ^2 on one column. This implies

FIG. 8. Entanglement spectral gaps for the gTrivial and gSPT for entanglement cuts of the $2 + 1d$ example on the cylinder of circumference ℓ'. The vertical axis is rescaled to be able to directly read off the operator dimensions of the excitations (up to a nonuniversal sound velocity). Only the first few excitations are well converged for this range of ℓ'.

$$S_{\sigma_{0L}, \tau_{0L}, \sigma_{0R}, \tau_{0R}} = \left(\frac{\langle L | \sigma_{0L} \rangle \langle \sigma_{0R} | R \rangle}{\langle L | R \rangle \lambda^{2\ell}} \right)^{1/2} e^{i\theta(\sigma_{0L}, \tau_{0L}, \sigma_{0R}, \tau_{0R})}. $$ \[(A9)\]

One can check that this is properly normalized: $\text{Tr} \rho_L = 1$.

We now employ exact diagonalization. At size ℓ', S is a $2^{3\ell'/2} \times 2^{3\ell'/2}$ matrix, making exact diagonalization practical for $\ell' = 4, 8, 12$. We restrict to the case where ℓ' is a multiple of 4 in order to stay in the symmetric ground-state sector of the loop model. Since the τ part of the matrix is dense, larger sizes are impractical. However, in the gapless trivial case, we may discard the x part and work on larger systems. For both the gapless trivial (where $e^{i\theta} \equiv 1$) and gapless SPT cases, the spectral gap for H_E goes as $1/\ell'$, which indicates gaplessness with dynamical exponent $\zeta = 1$. This is shown in Fig. 8.

By looking at the ground state of $H_E |0\rangle = e_0 |0\rangle$, we may determine the central charge of H_E by making entanglement cuts in the $(1 + 1d)$ edge system and comparing to the Cardy-Calabrese equation (25). For each ℓ', a one-parameter fit to the Cardy-Calabrese result was performed to extract the central charge. Figure 6 shows that the central charge converges to $c = 1$ in the gapless trivial case and $c = 2$ in the gapless SPT case.

As always, when discussing symmetry breaking, one should specify how the limits $L \to \infty$ and $h_B \to 0$ (or $h \to 0$) are taken. Strictly speaking, if the boundary field h_B decays slower than $1/\sqrt{L}$, an edge magnetization can occur in the thermodynamic limit due to the fact that a boundary field is a relevant boundary perturbation [73]. This is mainly irrelevant in practice to distinguish gSPT and gTrivial since
even a field that decays exponentially with L is enough to produce a magnetization in the gSPT case.

[95] Note that the $U(1)$ symmetry also becomes twisted in the process.

[110] For fully packed loops on the square lattice, one can use a mapping onto a six-vertex model with anisotropy parameter $\Delta = -\frac{1}{2}$, which can be described by a free boson CFT with parameter $g = \frac{1}{2}$. This theory has an additional symmetry $\varphi \rightarrow \varphi + \pi$ due to the bipartite nature of A that corresponds to flipping every other spin on the A lattice.

