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Table S1. Population codes, locations, sex ratios, and Hadena ectypa egg and caterpillar abundance at Silene vulgaris study sites. 
  
Population 
Code 

Location Latitude 
(° N) 

Longitude 
(° W) 

Year(s) 
Studied 

Sample 
Size  

Sex Ratio  
(% Female) 

# Eggs 
Observed  

# Caterpillars 
Observed 

NST Stamford, NY 42.39360 74.60000 2014 20 40 0 0 
 

MSH Sheffield, MA 42.08307 73.36524 2014, 
2015 

120 
(2014); 
160 
(2015) 
 

35 (2014) 71 (2014) 3 (2014) 

MFL Florida, MA 42.68278 73.01811 2014 20 25 7 3 
 

MBE Bernardston, 
MA 

42.68178 72.54431 2014 20 30 7 3 
 
 

VBE Bennington, 
VT 

42.85460 72.98096 2014 43 5 14 5 
 
 

VBR Bristol, VT 44.15323 73.04536 2014 66 6 14 8 
 
 
 
 
 



	 106 

Table S2. Silene vulgaris traits associated with oviposition by Hadena ectypa moths. 
Results are from likelihood ratio tests comparing binomial generalized linear models that 
differ in the presence of one predictor (trait). Non-significant traits were removed one by 
one from the model to arrive at a final model containing only traits that were significant 
predictors of oviposition. After the final model was determined, a test statistic (LR X2) 
and P-value for each non-significant predictor was obtained by comparing the final 
model (with flower depth and stem number as the only predictors) to a model containing 
the significant predictors and the non-significant term of interest; these values are 
reported in the table below for non-significant terms. Degrees of freedom = 1 for each 
test. 
Trait LR X2 P 
Flower depth 4.61 0.032 
Stem number 5.61 0.018 
Height 0.019 0.89 
Projected area 0.088 0.77 
Number of open flowers 2.38 0.12 
Flower width 0.85 0.36 
Plant sex 1.22 0.27 
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Table S3. Mean seed production by eight pairs of female and 21 pairs of hermaphroditic 
Silene vulgaris flowers at population MSH in 2015. Within a pair, both flowers were on 
the same individual plant and one flower had received an H. ectypa egg (egg-receiving) 
while the other had not (non-egg-receiving). The non-egg-receiving flower was selected 
as the flower on the plant that most closely matched the egg-receiving flower’s 
developmental stage. Only pairs of flowers where both the egg-receiving and non-egg-
receiving flowers produced seeds were included in these calculations.  
 
Flower Sex Oviposition Status Mean Seeds Produced  

(± 1SE) 
Female Egg-receiving 18.25 ± 5.99 

Non-egg-receiving 20.25 ± 6.05 
Hermaphrodite Egg-receiving 9.67 ± 3.40 

Non-egg-receiving 12.67 ± 3.92 
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Table S4. Results of statistical tests for sex bias in bud, petal, calyx, and ovary damage in 
July and August 2015 at population MSH. To obtain a P-value for each type of damage 
in each of the time periods, we used likelihood ratio tests to compare binomial 
generalized linear models that included plant sex as a predictor or included only an 
intercept. Petal damage was hermaphrodite-biased in July and calyx damage was 
hermaphrodite-biased in August. Degrees of freedom = 1 for each test. 
 
Time Structure 

Damaged 
LR X2 P 

July Bud 0.86 0.36 
Calyx 0.22 0.64 
Petal 7.74 0.0054 
Ovary 0.91 0.34 

August Bud  3.19 0.074 
Calyx  12.67 0.00037 
Petal 0.55 0.46 
Ovary 1.60 0.21 
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Methods for Silene vulgaris Greenhouse Study in Chapter 1 
 

Silene vulgaris plants were grown in a greenhouse at the authors’ institution from 

seed collected from population MSH in summer 2013. On December 11 and 12, 2013, 

seeds were planted into black plastic 128-plug trays, with one seed per cell (T.O. Plastics, 

Clearwater, Minnesota, USA) and maintained in a propagation house with natural light 

and a constant temperature of 23.89°C until December 21, 2013, when seedlings were 

transferred to a greenhouse with 14 hours of supplemental light (0600–2200h) and 

temperatures of 22.22°C during the day and 18.89°C at night. Between December 21, 

2013 and January 26, 2013, seedlings were transferred to another greenhouse with 14 

hours of supplemental light (0600–2200h) and temperatures of 23.89°C during the day 

and 18.33°C at night, where they were maintained for the rest of the study. On January 26 

and 27, 2014, seedlings were transplanted to individual 164mL Conetainers (model 

SC10R; Stuewe & Sons, Inc. Tangent, Oregon, USA). The substrate used at all stages 

was (by volume) 50% High-Porosity Promix® (Premier Tech Horticulture, Quakertown, 

Pennsylvania, USA), 25% autoclaved topsoil from the University of Massachusetts South 

Deerfield Farm, and 25% autoclaved washed, screened sand (Home Depot).  

A single observer assessed plant sex and measured calyx width on one flower per 

plant using digital calipers. Calyx width measurements were repeated twice and averaged 

for each individual plant. We assessed sexual dimorphism in calyx width by performing a 

likelihood ratio test in R (R Core Team 2016) on two general linearized models 

predicting calyx width: model one included a plant sex term and an intercept, while 

model two included only an intercept. We used a Gaussian error structure for both 

models.  
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These plants were part of an experiment on the effects of soil nutrients on plant 

traits, but we found no difference in calyx width between the high and low nutrient 

treatment groups (LR F1,40 = 0.13, P = 0.72), nor was there a sex-by-nutrient interaction 

(LR F1,38 = 2.50, P = 0.12), so we combined the calyx width measurements for high- and 

low-nutrient plants in our analysis of sexual dimorphism in calyx width. Plants received 

either 0.32g (low nutrient treatment) or 1.48g (high nutrient treatment) of Osmocote® 

14:14:14 controlled release fertilizer (The ScottsMiracle-Gro Company, Marysville, 

Ohio, USA) once during the experiment.  
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Computer Code for Simulation Model Reported in Chapter 4 

The following text is R code for a computer simulation modeling sex ratio 

evolution in gynodioecious plant populations under varying pollinator sex bias intensity, 

female fertility advantage, female progeny sex ratio, and hermaphrodite progeny sex ratio 

(in Chapter 4).  

 

#Here, I write a function called mysim that performs the simulations 

#The user specifies p, gen, inital.sr, pff, seq.length, fem.seeds, herm.seeds, fem.pref, 

herm.pref, num.runs 

# p is population size (# plants) 

# gen is number of generations 

# initial.sr is initial population sex ratio in terms of proportion hermaphrodite (ranges 

from 0 to 1) 

# pff is female progeny sex ratio in terms of proportion female (ranges from 0 to 1) 

# seq.length is the number of plants each pollinator visits 

# fem.seeds and herm.seeds indicate relative seed production by females and 

hermaphrodites. Setting fem.seeds and herm.seeds equal to 1, females and 

hermaphrodites produce the same number of seeds. Hold herm.seeds equal to 1 and 

increase fem.seeds to increase the number of seeds females produce relative to 

hermaphrodites.  

# fem.pref and herm.pref values together represent pollinator sex bias. Setting fem.pref to 

1 and varying herm.pref allows us to express a preference for hermaphrodites as a 

number greater than 1 and a preference for females as a number smaller than 1. 
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# num.runs is the number of times the simulation should be run over the specified number 

of generations with the given combination of parameter values 

 

#The mysim function calculates and returns sex ratio in next generation: 

mysim<-

function(p,gen,initial.sr,pff,phf,seq.length,fem.seeds,herm.seeds,fem.pref,herm.pref,num

.runs){ 

#calculate the proportion of female seeds that are hermaphrodite 

pfh<-1-pff #proportion of female offspring that are hermaphrodite 

#calculate the proportion of hermaphrodite seeds that are hermaphrodite 

phh<-1-phf 

#make a matrix where we'll put the sex ratio in each generation, in terms of proportion 

hermaphrodites 

#each column will list the sex ratios in each generation for each run of the model 

#each row will contain the sex ratio for that generation, starting with the initial sex ratio 

in the first row 

sex.ratios<-matrix(nrow=gen+1,ncol=num.runs+1) 

sex.ratios[1,]<-initial.sr #first generation sex ratio 

sex.ratios[,num.runs+1]<-seq(0,gen,1) 

sex.ratios.nextgen<-matrix(nrow=gen+1,ncol=num.runs+1) 

sex.ratios.nextgen[,num.runs+1]<-seq(0,gen,1) 

#set the number of moths 

m<-p*0.04 



	 115 

#for each of the number of runs that we want to repeat the model, 

#we'll do the following: 

for (irun in 1:num.runs){ 

#make a vector that will hold the number plants pollinated in each generation 

num.polld<-rep(NA,gen+1) 

### 

#within each generation, need to: 

# 1. create new population of plants based on sex ratio of plants pollinated in previous 

generation, combined with female vs. hermaphrodite propensity to make seeds and rules 

about what sex seeds from herms vs females can be 

# 2. draw a new sequence of plants for each moth to visit 

# 3. for each moth, determine which of those plants were pollinated 

# 4. determine the sex ratio of pollinated plants within the generation and use this to 

create the list of plants for the next generation 

# 5. store the sex ratio of the next generation 

 

#make a vector to put new sex ratio into for each generation 

new.sr<-rep(NA,gen) 

#make a vector to put new number of herms in for each generation 

herms.nextgen<-rep(NA,gen) 

 

#make a vector to put new number of females in for each generation 

fems.nextgen<-rep(NA,gen) 
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for (igen in 1:gen){ 

#make vector of individual plants listing an id number for each plant up to the number of 

plants present in the population 

id<-seq(1,p,1) 

 

#make a vector of plant sexes the length of the number of plants in the population 

sex<-rep("F",p) 

 

#bind the id and sex columns 

d<-cbind.data.frame(id,sex) 

 

d$sex<-factor(d$sex,levels=c("F","H")) 

num.herms.polld<-rep(NA,gen) 

num.fems.polld<-rep(NA,gen) 

 

#number of hermaphrodites in current generation 

herms<-(sex.ratios[igen,irun]*p) 

 

#fill in "H" for to make the right number of plants hermpahrodites 

d$sex[1:herms]<-"H" 

 

# 1. draw a sequence of plants for each moth to visit 
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#first make a vector containing the female and hermaphrodite numbers (f & h) 

corresponding to the order of sexes in the plant dataframe 

d$bias<-rep(0,p) 

 

if (herms>0) d$bias[1:herms]<-herm.pref 

if (herms<1000) d$bias[(herms+1):p]<-fem.pref 

 

#make a column that has the fem or herm preference value divided by the total of all the 

preference values 

d$bias.prop<-d$bias/(sum(d$bias)) 

 

#make a column that cumulatively adds each preference proportion 

d$cum.prop<-cumsum(d$bias.prop) 

 

vis.seq.matrix<-matrix(nrow=seq.length,ncol=m) 

 

for (imoth in 1:m){ 

ivisit<-1 

while (ivisit<=seq.length){ 

chosen<-runif(1) 

 

proposal<-which(d$cum.prop>chosen)[1] #returns first element that had cum.prop > 

choose value 
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if (is.element(proposal, vis.seq.matrix[,imoth])==FALSE){ 

vis.seq.matrix[ivisit,imoth]<-proposal 

ivisit<-ivisit+1 

} 

} 

} 

 

 

#return matrix of plant sexes, to determine which plants were pollinated... 

sexes.seq<-as.data.frame(matrix(nrow=seq.length,ncol=m)) 

 

for (i in 1:m){ 

sexes.seq[,i]<-d$sex[vis.seq.matrix[,i]] 

} 

 

# within each moth's visit sequence, need to figure out if each plant was pollinated 

herm.indicator<-sexes.seq[1:(seq.length-1),]=="H" 

 

polld.candidates<-vis.seq.matrix[2:seq.length,] #first row can never be pollinated 

 

pollinated<-polld.candidates[herm.indicator] #pollinated if previous plant visited was a 

hermaphrodite 
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d$polld<-rep(0,length(d$id)) 

d$polld[pollinated]<-1 

 

#how many plants were pollinated this generation? 

num.polld[igen]<-sum(d$polld) 

 

#pull out pollinated plants 

next.gen<-d[d$polld==1,] 

 

if (num.polld[igen]==0) break 

 

#what is the sex ratio of hermaphrodites vs. females pollinated? 

#number of herms 

num.herms.polld[igen]<-sum(next.gen$sex=="H") 

new.sr[igen]<-num.herms.polld[igen]/num.polld[igen] 

 

num.fems.polld[igen]<-num.polld[igen]-num.herms.polld[igen] 

 

hh<-sum(rbinom(num.herms.polld[igen],1,phh)) 

hf<-num.herms.polld[igen]-hh 

 

ff<-sum(rbinom(num.fems.polld[igen],1,pff)) 
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fh<-num.fems.polld[igen]-ff 

 

herms.nextgen[igen]<-((herm.seeds*hh) + (fem.seeds*fh)) 

 

fems.nextgen[igen]<-((fem.seeds*ff) + (herm.seeds*hf)) 

 

#put new sex ratio into sex ratio matrix 

sex.ratios.nextgen[igen,irun]<-

herms.nextgen[igen]/(herms.nextgen[igen]+fems.nextgen[igen]) 

sex.ratios[igen+1,irun]<-herms.nextgen[igen]/(herms.nextgen[igen]+fems.nextgen[igen]) 

 

if (sex.ratios[igen+1,irun]==0) break 

} 

} 

return(sex.ratios) 

} 

 

To call the function (run the simulation), follow this format, specifying values of p, gen, 

initial.sr, pff, phf, seq.length, fem.seeds, herm.seeds, fem.pref, herm.pref, and num.runs 

as desired: 

 

t.1<-

mysim(p=1000,gen=1000,initial.sr=0.5,pff=0.5,phf=0.2,seq.length=20,fem.seeds=1.2,he
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rm.seeds=1,fem.pref=1,herm.pref=1.5,num.runs=1) 

 

The t.1 object will then contain the sex ratios across generations of the simulation. 
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