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Fig. 11: Locations on floor GHC7 where the localization
estimates of the CoBots were reset over all the deployments.
These include a) the startup locations of the CoBots, b)
locations where the CoBots switched maps after taking the
elevator, and c) locations with localization errors.

horizontally and 40� vertically. Due to its relatively nar-
row field of view, the depth camera sensor observes fewer
features for localization compared to the laser rangefinder,
resulting in higher uncertainty of localization. However, by
performing plane filtering on the depth images (Section 3),
map features like walls can easily be distinguished from
moving and movable objects like people and chairs, thus
dramatically reducing the number of false data associations
for localization [Biswas and Veloso, 2013]. The depth images
also allow the robot to effectively avoid hitting obstacles, like
chairs and tables with thin legs that are missed by the laser
rangefinder.

Neither the laser rangefinder, nor the depth camera sensors
on the CoBots, are rated for use in direct sunlight. As a
result, occasionally, when the CoBots encounter direct bright
sunlight, they detect false obstacles and the obstacle avoidance
algorithm brings the robots to a stop.

2. Localization

The sensors used for localization on the CoBots have limited
sensing range, and cannot observe the entire length of the
hallway that the CoBot is in, for most of the time. Therefore,
it is up to the localization algorithms to reason about the

Fig. 12: Error rates of localization for the CoBots on floor
GHC7. Locations with no errors (including locations not
visited) are shown in black, and the error rates are color-coded
from blue(lower error rates) to red(higher error rates).

uncertainty parallel to the direction of the hallway. This is
in stark contrast to a scenario where a robot with a long-
range sensor (like the SICK LMS-200 laser rangefinder, with
a maximum range of 80m) is able to observe the entire length
of every hallway (the longest hallway in the GHC building
is about 50m in length), and hence is able to accurately
compute its location with a single reading. The decision to use
inexpensive short-range sensors is partly motivated by cost,
since we wish to eventually deploy several CoBots, and also
because we wish to explore whether it is possible to have
our algorithms be robust to sensor limitations. Despite the
limitation of the sensor range, the CoBots repeatedly stop
at exactly the right locations in front of office doors, and
always follow the same path down hallways (when there are
no obstacles). In fact, in a number of hallways, the repeated
traversal of the CoBots along the exact same paths has worn
down tracks in the carpets.

The CGR algorithm (Section 5) is largely to credit for the
repeatable accuracy of localization. When traversing down
hallways, CGR correctly distributes particles along the di-
rection of the hallway (as governed by the motion model),
and correctly limits the spread of the particles perpendicular
to the hallway (due to the observations of the walls). This
effectively reduces the number of dimensions of uncertainty
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of localization from three (position perpendicular to the hall-
way, position parallel to the hallway, and orientation) to two
(position parallel to the hallway and the orientation), thus
requiring much fewer particles than would have been required
for the same degree of accuracy by MCL-SIR. CGR also
allows quicker recovery from uncertain localization when new
features become visible. For example, when travelling through
an area with few observable features, the particles will have a
larger spread, but when the robot nears a corridor intersection,
CGR is able to effectively sample those locations that match
the observations to the map, thus quickly converging to the
true location.

There are occasional errors in localization, and most of
these errors are attributed to erroneous data association of the
observations, as discussed earlier (Section 7.5.3). Open areas,
where most of the observations made by the robots consist
of movable objects, remain challenging for localization. In
such areas (like cafes, atria, and common study areas in our
buildings), even if the map were updated by the robot to reflect
the latest locations of the movable objects (e.g., chairs, tables,
bins), the next day the map would again be invalid once the
locations of the objects changed.

3. Navigation

In our experiences with extended deployment of the CoBots,
we have come to realize that a conservative approach to
navigation is more reliable in the long term as compared
to a more unconstrained and potentially hazardous approach.
In particular, the obstacle avoidance algorithm (Section 6)
uses a local greedy planner, which assumes that paths on
the navigation graph will always be navigable, and can only
be blocked by humans. As a result, the planner will not
consider an alternative route if a corridor has a lot of human
traffic, but will stop before the humans and ask to be excused.
Furthermore, due to the virtual corridors, the robot will not
seek to side-step obstacles indefinitely. While this might result
in longer stopped times in the presence of significant human
traffic, it also ensures that the robot does not run into invisible
obstacles (Section 7.2) in the pursuit of open paths. Although
there exist many hallways with glass walls, the robot has never
come close to hitting them, thanks to its reliable localization
and virtual corridors.

One drawback of the constrained navigation is that if the
localization estimates are off by more than half the width
of a corridor intersection (which is extremely rare, but has
occurred), the obstacle avoidance algorithm will prevent the
robot from continuing, perceiving the corner of the walls at the
intersection as an obstacle in its path. In such circumstances,
issuing a remote command to the robot (via its telepresence
interface) to turn and move to the side is sufficient for the robot
to recover its localization (by observing the true locations of
the walls), and hence the navigation as well.

4. System Integration

As an ongoing long-term project, the CoBots require sig-
nificant automation in order to ensure continued reliable
operation. During deployments, the CoBots are accessible

remotely via a telepresence interface that allow members of
the research group to examine the state of the robot from the
lowest (sensor) levels to the highest (task execution) levels.
When a CoBot is blocked for task execution due lack of human
responses to interaction, it automatically sends and email to
the research group mentioning its latest location estimate, task
status, and reason for being blocked.

The sensor feeds of the robot (except the depth camera
images, since they are too voluminous) are logged, along
with the estimated state of the robot, task list, and any
human interactions. During robot startup, several health and
monitoring checks are performed automatically on the robots,
including:

1) Auto-detecting the serial and USB ports being used
by all the devices, including the sensors and motor
controllers,

2) Checking that all the sensor nodes are publishing at the
expected rates,

3) Checking the extrinsic calibration of the sensors by
performing consistency checks and detection of the
ground plane,

4) Checking that the central task management server is
accessible and is responding to requests for task updates,
and

5) Verifying that the robot battery level is within safe limits.
There are several nightly scripts that execute on the robots as
well as the central server, including:

1) Compressing and transferring the deployment logs of the
day from each robot to the central server,

2) Running a code update on all the robots to pull the
latest version of the code from the central repository
and recompiling the code on the robot,

3) Processing the deployment logs on the server to generate
synopses of the locations visited, distance traversed, and
errors encountered (if any) during the day by all the
robots, and

4) Emailing the synopses of the day’s deployments to the
developers.

We are currently at the point where the physical intervention
required to manually unplug the charger from the robot is
the bottleneck in deploying the CoBots. Therefore we are
exploring designs for an automatic charging dock that will
be robust to small positioning errors of the robot, durable in
order to withstand thousands of cycles per year, and yet be
capable of transferring sufficient power to charge the robot
base as well as the laptop at the same time.

9. CONCLUSION

In this article, we have presented the localization and
navigation algorithms that enable the CoBots to reliably and
autonomously perform tasks on multiple floors of our build-
ings. The raw sensor observations made by the CoBots during
the long-term autonomous deployments have been logged,
and these logs of the CoBots demonstrate the robustness
of the localization and navigation algorithms over extensive
autonomous deployments. Despite the presence of dynamic
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obstacles and changes to the environment, the CoBots demon-
strate resilience to them, save some infrequent errors. These
errors are confined to a few areas, and we will be exploring
strategies for autonomously recovering from such instances in
the future.
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