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Figure 3.10 EDEM1 IDRs contribute to its rapid turnover 

(Top panel) FLAG-tagged EDEM1-ΔIDR(N)/(C) and MLD  were transfected into 

HEK293T. Proteins were radiolabeled for 30 min with [35S]-Cys/Met, and cells were 

lysed in MNT buffer. Time points were collected at 0, 2, and 4 hr after the pulse. Proteins 

were resolved on reducing 8% SDS-PAGE. (Bottom panel) The amount of EDEM1 

protein remaining at 2 hr and 4 hr was quantified and normalized to the starting material 

(0 h) and averaged from three independent experiments. Statistical significance between 

MLD, EDEM1-ΔIDR (N) or (C) and EDEM1 (FL) at 4 hr was determined by an unpaired 

t-test, the measurement designated (**) has a p value of 0.005, and that of (*) is 0.012. 

Error bars represent mean ±S.E. 
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Figure 3.11 EDEM1 IDRs are required for the ERdj5 association 

FLAG-tagged EDEM1 (FL), EDEM1-ΔIDR(N), EDEM1-ΔIDR(C), MLD-FLAG, and 

empty plasmid (mock) were co-expressed with ERdj5-MYC in HEK293T cells. Cells 

were lysed in HBS buffer containing CHAPS. 10% of the lysate was collected for whole 

cell lysate (WCL), 40% for anti-FLAG and anti-MYC immunoprecipitation. Proteins 

were resolved on 8% reducing SDS-PAGE and immunoblotted against MYC, FLAG, and 

glucosidase II (GlucII). Gels are representative of three independent experiments. 
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Figure 3.12 EDEM2 exhibits thiol-dependent binding to Z/NHK and exposes 

reactive thiols 

(A) EDEM2-FLAG was co-expressed with WT A1AT, Z, Z C256S, NHK, NHK C256S, 

NHK NOG, and NHK NOG C256S in HEK293T cells. Cells were readiolabeled with  

[35S]-Cys/Met for 30 min and chased for 1 hr. Cells were lysed in MNT buffer 

containing Triton X-100. EDEM2 and A1AT variants were isolated using anti-FLAG and 

anti-A1AT immunoprecipitations, respectively. Proteins were resolved on 9% reducing 

SDS-PAGE. Asterisks denote background bands. (B) (Right panel) EDEM2-FLAG was 

expressed in HEK293T cells. Cells were pretreated with DTT (5 mM) where indicated 

(+/-). Cells were lysed in sample buffer containing 5 mM peg-maleimide (+ PEG-

Maleimide) or 20 mM NEM (- PEG-Maleimide). Proteins were resolved on 8.5% SDS-

PAGE and immunoblotted with FLAG antibody. (Left panel) Cartoon representation of 

EDEM2 Depicting signal peptide (green), MLD (cyan), Putative catalytic residues (red), 

Cys residues (yellow), predicted disulfides (*), and predicted IDRs (Red dashed box). 

Gels are representative of three independent experiments. 
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Figure 3.13 EDEM3 exhibits thiol-dependent binding to Z/NHK and exposes 

reactive thiols 

(A) EDEM3-FLAG was co-expressed with WT A1AT, Z, Z C256S, NHK, NHK C256S, 

NHK NOG, and NHK NOG C256S in HEK293T cells. Cells were readiolabeled with  

[35S]-Cys/Met for 30 min and chased for 1 hr. Cells were lysed in MNT buffer 

containing Triton X-100. EDEM2 and A1AT variants were isolated using anti-FLAG and 

anti-A1AT immunoprecipitations, respectively. Proteins were resolved on 9% reducing 

SDS-PAGE. Asterisks denote background bands. (B) (Right panel) EDEM3-FLAG was 

expressed in HEK293T cells. Cells were pretreated with DTT (5 mM) where indicated 

(+/-). Cells were lysed in sample buffer containing 5 mM peg-maleimide (+ PEG-

Maleimide) or 20 mM NEM (- PEG-Maleimide). Proteins were resolved on 8.5% SDS-

PAGE and immunoblotted with FLAG antibody. (Left panel) Cartoon representation of 

EDEM3 depicting signal peptide (green), MLD (cyan), protease-associated domain 

(purple), putative catalytic residues (red), Cys residues (yellow), predicted disulfides (*), 

and predicted IDRs (Red dashed box). Gels are representative of three independent 

experiments. 
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Figure 3.14 Structural model of the human EDEM1 MLD exhibits surface-

exposed hydrophobic patches  

(Left) Front view of the MLD surface model (Phyre 2.0) (1) depicting three putative 

catalytic residues (red), Cys residues (yellow), and hydrophobic residues (orange), and 

Cys residue (yellow). (Right) Back view. 
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Figure 3.15 A1AT Cys256 is partially buried 

(Left) Ribbon representation of A1AT (PDB: 3DRM) depicting three glycosylation sites 

(green) and Cys256 (yellow). (Right) Surface model of A1AT showing partially buried 

Cys256 (arrow). 
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CHAPTER 4 

CONCLUSIONS AND FUTURE DIRECTIONS 

The ER is a complex organelle that copes with constant stresses due to an influx 

of nascent polypeptides, which it must process and sort in a crowded environment, all the 

while avoiding aggregation of misfolded proteins and maintaining proper protein 

homeostasis. As such, a network of regulated quality control components has evolved to 

serve as a system of checks and balances to promote protein folding and facilitate 

degradation. This system is centered around core chaperone proteins, each functioning in 

distinct ways that act on a variety of substrates ranging from fast folding proteins to slow 

folding bulky proteins that require multimeric assembly.  

A subset of this quality control machinery is specialized in folding, repairing and 

sorting glycoproteins. Determining the role of EDEM1 in ERAD has been an area of 

interest and goal for many groups. As more research has been conducted on ERQC 

ERAD and over the past two decades on EDEM1, we are beginning to uncover EDEM1’s 

unique modes of interaction and its overall function in ERAD. We have demonstrated 

that EDEM1 exhibits redox-sensitive substrate-binding properties as well as weak 

protein-protein interactions; further expanding our understanding of the many ways 

EDEM1 binds its partners. Additionally, we showed that both IDRs, which are 

responsible for the fast turnover rate of EDEM1, are required for ERdj5 binding but 

neither was required for NHK binding. Lastly, we demonstrated that the ability to 

preferentially interact with ERAD substrates and the redox-sensitive binding is an 

intrinsic property of the MLD.  
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Determining the oxidative state of EDEM1 and the implications of the redox-

sensitive binding 

Using detergents of varying strengths and in the presence of the reducing agent 

DTT, EDEM1 was found to bind NHK and Z through covalent and weak interactions 

(Figure 3.1).  The covalent interactions were mediated through the single Cys residue on 

NHK and Z (Figure 3.2). Although the Cys residue has previously been implicated in the 

ER retention and secretion of Z, this is the first time it has been reported to mediate 

binding to EDEM1 and the first time that a Cys-dependent substrate-binding requirement 

has been demonstrated for EDEM1.   

Many of the known ERAD clients possess Cys residues and some possess 

unpaired Cys. Like the WT α1-antitrypsin and the ERAD variants, WT transthyretin 

(TTR) and the ERAD substrate TTR (D18G) possess a single Cys residue that, for the 

WT, is required for stabilizing the TTR tetramer (Kingsbury et al., 2008). BASE457 is 

proposed to possesses unpaired Cys residues as suggested by aggregate formation upon 

treatment with the oxidizing agent diamide (Molinari et al., 2002). While the ERAD-

targeted ribophorin 1 (332) possesses no Cys. It would be of interest to see whether the 

Cys residues on these, particularly BACE457 as its interaction with EDEM1 has been 

established, and other ERAD clients, are involved in binding to EDEM family proteins. 

Furthermore, it would be interesting to see whether incorporating a Cys residue on TTR 

(D18G), which is not a known EDEM1 client, would promote its recognition by EDEM1. 

Another experiment of interest is to strategically incorporate Cys residues, in such a way 

that aberrant dimers are not formed, onto properly folded mature proteins like A1AT.  
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branches and the entire A-branch of N-linked glycans of proteins localized in the ER 

(Figure 1.2). Since there are three EDEM1 homologs and MAN1B1 in the mammalian 

ER, it is unclear whether these proteins act separately on individual branches or if they 

are not branch-specific but rather α1-2-linked mannose specific. Determining the branch-

specificity of EDEM1 in vivo can be addressed using a variety of gene manipulation 

techniques and knockout cell lines.  

Since the A-branch is critical for CNX/CRT binding, whether or not EDEM1 acts 

on this branch can be determined through a reglucosylation assay that is well established 

and routinely used in our lab (Pearse and Hebert, 2010; Tannous et al., 2015a). The 

mutant Chinese hamster ovary cell line, MI8-5, transfers unglucosylated (Man9GlcNac2) 

N-linked glycans, which can then acquire a single glucose moiety on the terminal 

mannose of the A-branch through the activity of UDP-Glc:glycoprotein 

glucosyltransferase 1 (UGT1) (Hebert et al., 1995). Levels of A-branch reglucosylation 

can be monitored by inhibiting glucosidase II (Figure 1.3), which removes the glucose 

moiety added on by UGT1, and subjecting the lysates to affinity pull-down using GST-

calreticulin. If EDEM1 acts on the A-branch, then more reglucosylated ERAD substrates 

will accumulate upon knockout of EDEM1/MLD or EDEM1/MLD (3K).  Conversely, 

lower levels of reglucosylation will be observed in cells overexpressing EDEM1. We 

have obtained preliminary evidence that a mannosidase may be responsible for extracting 

substrates from calnexin/calreticulin folding cycles in these cell lines, as mannosidase 

inhibition through KIF or DMJ resulted in increased reglucosylation (Tannous, 2015). 
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Since the MI8-5 cell line is derived from mutant hamster cell lines, acquiring the 

nucleotide sequence of the EDEM1gene-for RNAi purposes may be challenging; 

therefore it would be ideal to perform these experiments in human cells. We have just 

acquired CRISPR/Cas9 knocked out alg6 HEK293 cell that we still need to verify 

(Figure 4.2). Human cell-line that transfers glycans composed solely of the A-branch 

through ALG3/ALG12 can be generated through CRISPR/Cas9 knockout. These mutant 

cell-lines can then be used to monitor reglucosylation upon EDEM1 overexpression or 

knockdown, as well as look at mannose trimming through gel mobility shifts to see if 

EDEM1 acts on the A-branch.  

Whether EDEM1 acts on the B-branch can be addressed by creating ALG12 

knockout cells, which will transfer N-linked glycans lacking the C-branch. Determining 

whether Man6 glycoforms accumulate in cells overexpressing EDEM1, can be addressed 

using a pull-down assay using Os9 or Yos9p, or through HPLC mediated glycomics.  

Similarly, whether EDEM1 acts on the C-branch can be determined via ALG3 

knockout cells, which will transfer N-linked glycans lacking the B-branch. The effects of 

EDEM1 on the C-branch can be addressed using a GST-fusion with the OS-9 mannose-6-

phosphate receptor homology domain (GST- OS9MRH), since OS-9 possesses high 

affinity to glycans exposing the C-branch α1,6-linked mannose (Hosokawa et al., 2009).  

Lastly, since ALG12/ALG9 knockout will generate glycoforms lacking the 

terminal mannose on the C-branch we can then determine whether this mutation bypasses 

the need for EDEM1 by monitoring if substrates still get targeted for degradation in the 

absence of EDEM1 (ex. EDEM1 CRISPR/Cas9 knockout). If not, it possible that that 



 

96 

 

EDEM1 is required to act on the A-branch or that it also functions as a lectin that 

recognizes the α1-6-linked mannoses to target the ERAD substrate for degradation.  

Determining whether the EDEM1 or the MLD preferentially binds untrimmed 

glycoforms on ERAD machinery such as SEL1L or on ERAD targeted misfolded 

substrates can also be accomplished using the cell lines MadIA214 which transfer 

Glc1Man5GlcNAc2 en bloc and the B3F7 which transfer Glc3Man5GlcNAc2 en bloc 

(Ermonval et al., 2001; Stoll et al., 1988; Foulquier et al., 2004). Although these hamster 

cell-lines have been previously used for ERAD studies, it is not clear that ERAD is 

functional, as every glycoprotein, including ERAD machinery, would appear to exhibit 

extensively demannosylated glycans which are thought to be signals for degradation. 

Lastly, genomic editing can also be utilized to create human cell lines depleted of 

EDEM2 and EDEM3, individually or in combination, as has been done in chicken cell 

lines (Ninagawa et al., 2015). Glycans from these cell lines can be subjected to glycomics 

to identify the most abundant glycoform from each condition.  

Determining the substrate binding properties and characteristics of endogenous 

EDEM1 

Our research has further expanded our knowledge on EDEM1 and its ability to 

use different binding modalities to interact with substrates or machinery. We also 

demonstrated mannosidase activity of the EDEM1 MLD. However these conclusions are 

derived from studies in which EDEM1 is overexpressed, as such they may promote 

binding and glycan trimming due to the increase in local EDEM1 concentration. This is 
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especially true when considering that the relative abundance of EDEM1 in mammalian 

cell is low until it is upregulated by the unfolded protein response. Thus, in order to fine-

tune the precise role of EDEM1 in ERAD and ERQC, it is important to study the function 

and properties of endogenously expressed EDEM1.  

Since commercially available antibodies of EDEM1 do not appear specific, as 

those that we tested either appear to recognize a non-glycosylated protein (~75kD) that 

does not shift upon treatment with PNGaseF treatment, do not recognize the 

overexpressed EDEM1, or the protein that is recognized does not appear upregulated by 

ER-stress. Ideally, monoclonal antibodies with a strong specificity toward EDEM1 

should be carefully and strategically generated in order to better study endogenous 

EDEM1. Since generating antibodies is a time consuming and difficult task that does not 

guarantee positive results, a more streamlined way to study the binding properties and 

catalytic activity of EDEM1 is by introducing a C-terminal tag on the endogenous loci 

using CRISPR/Cas9.  

Another unanswered question is how are the soluble MLD and ΔIDR constructs 

retained in the ER? Full-length EDEM1 exhibits dual topology and exists as a soluble and 

membrane-bound substrate (Tamura et al., 2011). A preliminary experiment 

demonstrated that all constructs, which possess the same signal peptide/transmembrane 

segment as full-length EDEM1, also exhibit dual topology (Figure 4.3). Hence, the ER 

retention of soluble EDEM1 is inherent to the MLD and possibly mediated through 

binding to auxiliary proteins; however, which protein and how this is mediated has not 

yet been determined. This can be addressed through gene silencing, or conditional 
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silencing, of EDEM1 ER-resident binding partners and monitoring the localization of 

EDEM1.   

Lastly it is not clear if the EDEM1 IDR regions possess machinery-binding 

properties on their own. Expressing tagged versions of these construct and testing their 

ability to bind ERdj5 is one way to address this issue. Additionally, these regions could 

be used as baits to trap and identify EDEM1 binding partners through mass spectrometry. 

However, these experiments may be problematic as it is likely that the disordered regions 

could bind proteins non-specifically. 

Summary 

 In this study, we have identified a novel redox-sensitive binding modality on 

EDEM1, which is employed in the interaction with the ERAD substrates NHK and Z. 

Specifically, the interaction exhibits characteristics of a covalent interaction and is 

mediated through the lone Cys residue on NHK. We demonstrated that EDEM1 possess 

reactive thiols at steady state. However, none of these unpaired Cys are involved in the 

interaction with NHK/Z. Instead, the Cys that are likely paired appeared involved and 

possibly through an oxidoreductase other than ERjd5. Future work is required to 

determine the identity of this oxidoreductase.  

In addition to the redox-sensitive binding, we also show that the interaction 

between EDEM1 and NHK/Z involves weak protein-protein interactions of an 

undetermined nature. We have confirmed the presence of two intrinsically disordered 

regions on EDEM1. Both disordered regions are required for maintaining the interaction 
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with ERdj5. The intrinsic disordered properties of the IDRs contribute to the short half-

life of EDEM1.   

Lastly, we successfully expressed and characterized the EDEM1 mannosidase-

like domain (MLD) in mammalian cells. The MLD not only promotes glycan trimming 

on NHK, but also exhibits the same redox-sensitive substrate binding properties as that of 

the full-length protein. Moreover, showing that the MLD alone retains all the substrate 

binding and catalytic characteristics of EDEM1 sets the stage for future work for 

examining the biophysical properties of the functional MLD in vitro, as attempts to do so 

in the past with the full length protein have proven unsuccessful.    
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Figure 4.1 EDEM1 MLD sedimentation differs upon addition of DTT   

HEK293T cells were transfected with FLAG-tagged EDEM1 MLD and incubated for 48 

hr. DTT (5mM) was added for 1 hr prior to lysis. Cells were lysed in MNT buffer, and 

samples were layered on top of a continuous 10-40 % sucrose gradient in MNT buffer 

prior to ultracentrifugation. Fractions were collected from the top of the gradient, and 

proteins were precipitated with trichloroacetic acid. Proteins were resolved on 8.5% SDS-

PAGE and immunoblotted against FLAG.  
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Figure 4.2 Partial schematic of mammalian genes (ALG) responsible for the 

biosynthesis of the B- and C-branches of ER glycans.  

The Man5GlcNAc2 structure is synthesized on a dolichol group (black rectangle). Left to 

right, ALG3 and ALG9 synthesize the B-branch while ALG12 and ALG9 create the C-

branch.  ALG6, ALG8, and ALG10 are responsible for adding on the three glucoses (blue 

circles) to the terminal mannose (green circles) on the A-branch. Red α1,6 linkages 

denote mannoses recognized by the Os9/Yos9p and XTP3B lectins.  
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Figure 4.3 EDEM1 FL, ΔIDR (N), ΔIDR (C) and MLD exhibit dual topology and 

are found in membrane and soluble fractions.       

HEK293T cells expressing FLAG-tagged EDEM1 FL, ΔIDR(N), ΔIDR(C) and MLD 

were homogenized, fractionated and subjected to alkaline extraction. The fractions 

collected were whole cell lysate (WCL), nucleus (N), cytosol (C), total membrane (TM), 

as well as supernatant (S) and pellet (P) fractions upon alkaline extraction of the TM. 

Samples were resolved by reducing 8.5% SDS-PAGE. Asterisks denote non-specific 

bands.  
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