
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

November 2018 

Preparing Water Supply Systems for Climate Change: The Role of Preparing Water Supply Systems for Climate Change: The Role of 

Hydrologic Forecasting in the Northeast Hydrologic Forecasting in the Northeast 

Leslie DeCristofaro 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Other Civil and Environmental Engineering Commons 

Recommended Citation Recommended Citation 
DeCristofaro, Leslie, "Preparing Water Supply Systems for Climate Change: The Role of Hydrologic 
Forecasting in the Northeast" (2018). Doctoral Dissertations. 1432. 
https://doi.org/10.7275/12734870 https://scholarworks.umass.edu/dissertations_2/1432 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/257?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/12734870
https://scholarworks.umass.edu/dissertations_2/1432?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F1432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

 

 

Preparing Water Supply Systems for Climate Change: 

The Role of Hydrologic Forecasting in the Northeast 
 

 

 

 

 

 

 

 

 

A Dissertation Presented 

 

by 

 

LESLIE DECRISTOFARO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

September 2018 

 

Department of Civil and Environmental Engineering 

 

  

 



 

 

 

 

 

 

 

© Copyright by Leslie DeCristofaro 2018 

 

All Rights Reserved 



 

 

Preparing Water Supply Systems for Climate Change: 

The Role of Hydrologic Forecasting in the Northeast 
 

 

 

 

 

 

 

 

 

A Dissertation Presented 

 

by 

 

LESLIE DECRISTOFARO 

 

 

 

 

 

 

Approved as to style and content by: 

 

 

 

__________________________________ 

Richard Palmer, Chair 

 

 

__________________________________ 

David Ahlfeld, Member 

 

 

__________________________________ 

Anita Milman, Member 

 

 

 

 

__________________________________ 

Richard Palmer, Department Chair 

Department of Civil and Environmental Engineering 



 

 

 

 

 

 

 

 

 

 

To my “smart non-experts” 

including my mother, who gave me that advice. 

 

 



 v 

 

ACKNOWLEDGEMENTS 

 

First and foremost, I would like to thank my advisor, Rick Palmer, for his expertise and 

guidance in my work and education, and for his patience and flexibility as my projects strayed 

from what we originally imagined six years ago. 

Another thank you is owed to my committee members, David Ahlfeld, an incredible 

teacher, and Anita Milman, a master in the art of constructive criticism. 

For insight, feedback, data, modeling, and discussions ongoing over the course of years, I 

have the following people to thank: at UMass, Alex McIntyre, Katie Booras, Nick Rossi, Sarah 

Whateley, and Scott Steinschnieder; at the NYCDEP and at the City University of New York, 

Adao Matonse, Allan Frei, Don Pierson, Elliot Schniederman, Jim Porter, Nachi Acharya, and 

Mark Zion; at Hazen and Sawyer, Kinsey Hoffman. 

Funding for this work was provided by the Perrell Fellowship, the originators of which I 

had the pleasure to meet during my first year at UMass, and by the NOAA RISA Consortium for 

Climate Risk in the Urban Northeast, whose breadth of research was both fascinating and 

enriching. 

To UMass EWRE, thank you for being the very best at what you do. 

To everyone else, and there are a lot of you, I’d prefer to tell you how much you mean to 

me in person. 

  



 vi 

 

ABSTRACT 

 

 

PREPARING WATER SUPPLY SYSTEMS FOR CLIMATE CHANGE: 

THE ROLE OF HYDROLOGIC FORECASTING IN THE NORTHEAST 

 

SEPTEMBER 2018 

 

LESLIE DECRISTOFARO, B.S., WASHINGTON UNIVERSITY IN ST LOUIS 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Richard Palmer 

 

 

Fresh water is a resource strongly impacted by climactic conditions. Water supply 

systems in the northeastern United States will see the effects of climate change on their water 

quality and quantity in various ways, including changes in seasonality of flows, changes in the 

frequency and magnitude of extreme precipitation events, and changes in the variability of 

precipitation and water availability.  Five northeastern water supplies examined are expected to 

maintain at least 95% monthly reliability over a range of climates wider than the current 

projections.  However, model results indicate that turbidity levels in New York City's Ashokan 

Reservoir will change with changes in mean annual precipitation and temperature. 

Through a series of linked models of stochastic weather, hydrologic processes, and the 

supply system, Chapter 2 demonstrates the robustness of several adaptations available to the New 

York City Water Supply System to mitigate drought and manage water quality under climate 

change projections through the end of the century.  Results illustrate how reducing demand and 

managing storage and releases based on hydrologic forecasting reduce the frequency of drought 

warnings and emergencies and improve system reliability in all climate change scenarios 

investigated.  Through operations that limit turbidity propagation through the system and 

improvements to the Catskill Aqueduct to lower the minimum flow under conditions with high 
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turbidity, results demonstrate decreases lower turbidity loads and a reduction in emergency Alum 

use.  These options demonstrate cumulative benefits when used in combination.  

Chapter 3 seeks to quantify the amount of water supply system performance 

improvement that can be expected from improved forecasting in managing drought conditions.  

Using existing forecasts for Lancaster, PA, synthetic forecasts with varying quality, and a system 

model of the Baltimore, MD water supply system, this chapter demonstrated a method for 

quantifying improved system performance as a function of improved forecast quality, finding 

improvements in system performance to be approximately linear over a large range of forecast 

quality. 

Chapter 4 tests a new method for the creation of statistical first-order autoregressive 

streamflow forecasts by conditioning the parameters and ensemble variance on a “hydrologic 

regime,” defined in several different ways.  National Weather Service seasonal outlooks for 

precipitation are used as categorical forecasts of precipitation.  The forecasts are found to have 

small positive skill, and for two of three sites, this skill is enough to result in small gains in the 

CRPSS of the ensemble hydrologic forecast.  Utilizing perfect categorical forecasts indicates that 

adjusting the ensemble variance (rather than the autoregressive parameter) based on forecasted 

precipitation is responsible for the majority of improvements in skill for this method.  The method 

is limited by the difficulty of long lead-time precipitation forecasting. 
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CHAPTER 1 

INTRODUCTION: THE CLIMATE CHANGE OUTLOOK FOR NORTHEAST CITIES 

 

1.1 Introduction 

 Fresh water is a resource tied directly and immediately to the climate.  Large and small 

water supply systems throughout the northeast United States and throughout the world will see 

the effects of a changing climate in the coming century.  The Water Utility Climate Alliance, a 

collection of eleven water utilities across the United States, proposes a four-step process for 

adapting to climate change: understanding the science, assessing the water supply system’s 

vulnerabilities, incorporating climate change into planning, and implementing new methods, 

models, and adaptation strategies (Means et al. 2010).  In the framework of the Water Utility 

Climate Alliance, this dissertation includes a review of the state of the science for climate change 

and its effect on water resources, and details several experiments in water resource management 

on the effectiveness of climate change adaptations ranging from infrastructure projects to 

sophisticated water supply management strategies.  Sections 1.3 – 1.5 of this chapter summarize 

the results of three papers, currently published or in preparation, that I contributed to prior to the 

remaining chapters of this dissertation, following the first steps of understanding the science and 

assessing the effects of climate change on east coast water utilities. 

1.2 The link between climate change and water resources 

 The Intergovernmental Panel on Climate Change lists water resources as a major impact 

of climate change (Cisneros et al. 2014).  The National Climate Assessment discusses these 

impacts with regional specificity.  The IPCC’s technical paper on water (Bates et al. 2008) and a 

commentary in Science (Milly et al. 2008) were early suggestions that, for water resources 
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planning, past conditions may not capture variability, extremes, or even average conditions in the 

future. 

 Climate change will create changing patterns of water quality and availability.  Globally, 

a trend towards extremes is predicted, with greater prevalence of heavy precipitation and extreme 

drought (Bates et al. 2008).  Changes in precipitation and temperature will result in alterations in 

seasonality of flows.  Some water supply systems account for water storage in snowpack in their 

design, and reduced snow storage reduces the system’s capacity to deliver water.  Raw water 

quality will also be affected.  Warmer temperatures will result in increased and more widespread 

eutrophication, while an increase in heavy precipitation events will increase sediment and 

pollutant loads into surface waters.  The increased loads will overshadow the effect of dilution in 

many cases (Cisneros et al. 2014).  Supply system reliability and water quality are also influenced 

by non-climate drivers, including land use, demand, management strategies, and agricultural 

practices.  Changes in these additional factors make it harder to detect trends in streamflow 

(Cisneros et al. 2014). 

Adaptation strategies can incorporate all of these drivers.  No-regret, low-regret, or win-

win strategies seek actions that are beneficial under most or all of the possible climate futures, 

and decision support tools can explore various uncertainties associated with the changing climate 

and the results of possible actions (Mimura et al. 2014).  Risk is defined by the IPCC as the 

combination of exposure, vulnerability, and the likelihood of the weather event itself.  Reducing 

the risk from a particular event involves reducing exposure (the built environment exposed to an 

event), and vulnerability (the adverse effects of the event on those populations) (Cardona et al. 

2012). 

In North America, adaptation and planning occur most often at the municipal level 

(Romero-Lankao et al. 2014).  In the northeast United States, issues of greatest concern include 

the effects of changes in temperature and precipitation on water quality, the effects of rising sea 

levels on coastal storm risk and freshwater water resources, and aging infrastructure vulnerable to 
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extreme events (Georgakakos et al. 2014).  The northeast has experienced the largest increase in 

heavy precipitation in the United States (Kunkel et al. 2013) and is projected to be the first region 

in the country to see an increase in average temperature of 2° C, 10-20 years before the global 

mean temperature reaches that level (Karmalkar and Bradley, 2017).  The northeast is a leader in 

planning for climate change and developing adaptation policies (Horton et al. 2014). 

1.3 Climate stress testing Northeast water supply: an assessment of vulnerabilities and 

climate risk exposure 

Combining projected changes in climate statistics and system-specific capacities and 

demands provides insight into the vulnerability of several large northeast water supplies: New 

York City, NY; Boston, MA; Springfield, MA; Hartford, CT; and Providence, RI.  The water 

supplies have experienced significant drought due to interannual variability with detrimental 

effects on the region’s water.  The drought of the 1960s resulted in significant water use 

restrictions and remains the drought of record for much of the region. 

The vulnerability of the region’s water supply to climate change can be explored by 

modeling a range of possible changes in climate statistics in conjunction with the water supply 

system itself.  The process includes three steps: 1) the creation of a set of weather time series with 

incremental changes in precipitation and temperature, 2) a rainfall-runoff model for translating 

those weather sequences into streamflow sequences, and 3) a model of the water supply system to 

simulate storage and supply.  This approach first determines the climate conditions in which a 

system would suffer major shortfalls, and then asks whether those changes are likely based on the 

most recent climate models. 

 Whateley et al (in preparation) applied a monthly time-step model to the water supplies 

of NYC, Boston, Springfield, Hartford, and Providence to determine water supply reliability in 

the future.  The systems showed greater than 95% reliability in most or all of the tested 

conditions, that is, in 95% or more of months, the full quantity of demand was delivered.  In 
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Springfield, reliability drops below 95% at approximately a 16% decrease in average annual 

precipitation, which is outside of the range of the Coupled Model Intercomparison Project Phase 

5 ensemble projection of climate change (Figure 1.1).  Only in a subset of the scenarios 

representing a worst-case of internal climate variability did other systems drop below 95% 

reliability or did Springfield drop below 95% reliability in the range of climate change projections 

(Figure 1.2) (Whateley et al. In Preparation). 

 Modeling water quantity on a coarse time-step, northeast water supply systems look 

fairly robust to changes in annual temperature and precipitation.  Therefore, a further search for 

the impacts of climate change on northeast water supply should explore the impacts of extreme 

events, utilize shorter time-steps, and incorporate water quality. 

 

 

 

Figure 1.1 Water supply reliability for all systems with the full range of natural variability. 

Incremental changes in temperature and precipitation make up the x and y axes, while the 

gradient represents modeled reliability. Points on the plot represent individual models 

within the CMIP5 dataset. 
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Figure 1.2 Water supply reliability in a worst-case realization of variability. 

1.4 Potential Impacts of Changes in Climate on Turbidity in New York City’s Ashokan 

Reservoir 

The effect of climate change on water quality is a key issue for the New York City Water 

Supply System.  The system is one of six water supply systems in the United States that has a 

filtration waiver from the EPA; they bypass an initial step of the treatment process in favor of 

protecting the environmental quality of their watersheds and thereby maintaining the quality of 

their source water.  Due to the geology of the area, one watershed exhibits a high level of erosion 

and sediment transport to the reservoir.  When high levels of turbidity are present, water is treated 

by alum addition in one of the city’s aqueducts to allow suspended sediment to settle out before 

the water reaches its destination.  This occurs infrequently and is considered an emergency 

condition, but the process is initiated by high flows, connecting it to the changing frequency of 

heavy precipitation. 

Rossi et al. (2016) applied the same three-model approach, used in section 1.3, to 

examine the effects of climate change on water quality in NYC’s Ashokan Reservoir.  Here, a 

similar setup of three models in sequence translates changes in temperature and precipitation to 
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the number of days reservoir turbidity exceeds a certain threshold.  Turbidity serves as a surrogate 

for suspended sediment, and is modeled to have a log-log relationship (Mukundan et al. 2013) 

with daily flow.  The use of a threshold metric represents trends in the frequency of actions 

needed, such as drawing more water from other source reservoirs to minimize turbidity in the 

mixed water downstream or, in extreme cases, the addition of alum to water withdrawn from 

Ashokan Reservoir. 

Rossi et al. (2016) found that in-reservoir turbidity scaled with precipitation for 10 NTU 

and 25 NTU thresholds in both basins over the range of climates tested (Figure 1.3).  Research 

results indicated that temperature had the greatest effect on turbidity in summer, where more 

water was lost to evapotranspiration in warm climates, resulting in lower flows and lower levels 

of turbidity.  Temperature had a minimal effect on turbidity in winter (Rossi et al. 2016).  The 

averages calculated mask the event-based nature of high turbidity.  This detail, and sensitivity to 

changes in the range of climate change projections, warrant further study into the extreme events 

themselves and into appropriate management strategies. 

 

Figure 1.3 Average number of days turbidity in the west basin of Ashokan reservoir exceeds 

25 NTU in February and in August. 
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1.5 Evaluating Stochastic Precipitation Generators for Climate Change Impact Studies of 

New York City’s Primary Water Supply 

Due to the event-based nature of high flows and high turbidity in Ashokan Reservoir, 

more detail should be paid to the methods of scenario generation for adaptation studies.  Synthetic 

time series of daily precipitation totals, as used in the previous two experiments, are generated in 

two steps.  First, a Markov chain is used to determine the occurrence or non-occurrence of 

precipitation.  Next, a quantity of precipitation is chosen based on a distribution or sampling 

method.  When interested in extremes, the choice of distribution makes a significant difference, 

as different distributions have significantly different behaviors near the tail.  Acharya et al. (2017) 

analyzed different Markov chain orders and different statistical distributions for their behavior in 

matching extreme precipitation statistics.  Metrics include the 95th and 99th percentile, and the 

annual one- and five-day maximum.  

 First, second, and third order Markov chains performed comparably in simulating dry and 

wet spell length, indicating that the most parsimonious precipitation generator should use a first 

order Markov chain.  Using a first order Markov chain for precipitation occurrence, five 

parametric distributions (exponential, gamma, skewed-normal, mixed exponential distribution, 

and a hybrid exponential and generalized Pareto), one resampling method (k-nearest neighbor), 

and one 2nd order polynomial-based curve fitting method, were used to generate precipitation 

amount.  Skewed normal, exponential, and k-nearest neighbor best captured the behavior of 

extreme events, with other methods under- or over-estimating the magnitude of extreme 

precipitation statistics when compared to the historic record (Acharya et al. 2017). 

 

1.6 Climate change adaptations through infrastructure, management, and hydrologic 

forecasting 

Based upon the results and insights of the research summarized in the three previously 

cited papers, the following chapters look in more detail at possible adaptations using case studies 
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of east coast water supply systems and watersheds.  Chapter 2 demonstrates win-win adaptations 

for the New York City Water Supply System, based substantially on projects already in the 

planning and implementation stages.  These system improvements and adaptations deal both with 

hydrologic drought and with the effects of extreme storms on water quality.  Chapter 3 proposes a 

method for quantifying the value of one of the adaptations included in Chapter 2: improved 

seasonal forecasts of streamflow for use in drought planning.  The chapter uses the City of 

Baltimore water supply system as a case study for determining the value of hydrologic forecasts 

of varying quality in drought planning.  Finally, Chapter 4 explores a method of improving 

statistical forecasts of streamflow using the National Weather Service’s seasonal precipitation 

outlooks.  The method is tested for six watersheds on the east coast, including those upstream of 

the New York City and Baltimore systems. 

 The Water Utility Climate Alliance suggests that successful climate change adaptation 

planning consists of four steps: understanding the science, assessing the risks, incorporating 

climate change into long-term planning, and implementing those plans (Means et al. 2010).  The 

research and experiments detailed in this and the following chapters follow this path, from 

examining the science and vulnerabilities of water resources in the northeast in this introductory 

chapter, through to examining adaptations and testing a new method of ensemble hydrologic 

forecast creation for use in water supply management.
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CHAPTER 2 

WIN-WIN STRATEGIES FOR MANAGING CLIMATE CHANGE EXTREMES: A 

CASE STUDY OF THE NEW YORK CITY WATER SUPPLY SYSTEM 

 

2.1 Abstract 

Water supply reliability is a function of the interactions between infrastructure, system 

operations, water demands, and hydrologic inputs.  As the short- and medium-term impacts of 

climate change become more apparent, operations will necessarily have to adapt to inflow and 

infrastructure constraints to maintain reliability.  Through a series of linked models of stochastic 

weather, hydrologic processes, and systems modeling, this paper demonstrates the robustness of 

several adaptations available to the New York City Water Supply System to mitigate drought and 

manage water quality under climate change projections through the end of the century.  Results 

illustrate how reducing demand and managing storage and releases based on hydrologic 

forecasting reduce the frequency of drought warnings and emergencies and improve system 

reliability in all climate change scenarios investigated.  With the goal of mitigating high turbidity, 

operations that limit turbidity propagation through the system and improvements to the Catskill 

Aqueduct (to lower the minimum flow under conditions with high turbidity) demonstrate lower 

turbidity loads and a reduction in emergency Alum use.  These options demonstrate the 

cumulative, combined benefits.  

2.2 Introduction 

Water supply management during extreme events, such as droughts and floods, is an 

established but evolving challenge made all the more urgent by our changing climate.  Both high 

flows and droughts are relevant to management of the New York City Water Supply System 
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(NYCWSS).  The region has experienced several severe droughts including the 1960s drought of 

record, and the NYCWSS has an additional obligation as one of the few large water supplies in 

the US that provides to its customers unfiltered water.  The EPA regulations that establish this 

allowance necessitate careful management of water quality (in NYCDEP’s case impacted by peak 

flows).  The NYCDEP’s extensive multi-reservoir system provides the opportunity for adaptation 

through operational changes, infrastructure, and conditional or permanent demand reduction, 

making it a prime example to demonstrate proactive long-term planning and robust adaptations to 

climate change. 

Non-stationarity, the concept that the historic climate is no longer the only tool necessary 

to estimate the probability of future hydrologic events, has been broadly accepted in water supply 

management (Stratus Consulting and Denver Water, 2015; Milly et al., 2008).  This recognition 

created a shift from “risk,” where the probability of an event is considered known and traditional 

cost-benefit analyses can be performed, to “uncertainty,” where probabilities of future events are 

unknown (Giuliani and Castelletti, 2016; Wilby and Dessai, 2010).  Various methods have been 

explored to deal with this new challenge, including decision scaling, robust decision making, 

information gap analysis, and dynamic adaptive planning pathways (Brown et al., 2011; Hine and 

Hall, 2010; Herman et al., 2015; Haasnoot et al., 2013).  These methods all require the 

identification of adaptation options that meet design criteria over a wide range of future climate, 

water management, and demand scenarios.  For example, existing operational case studies test 

alternative reservoir operations in mitigating the effects of climate change on system metrics 

including flood control, hydropower, and water supply (Culley et al., 2015; Arsenault et al., 2013; 

Eum and Simonovic, 2010; Payne et al., 2004).  Adaptations that improve system performance in 

present and projected future conditions are referred to as low-regrets (Field, 2012) or win-win 

(Lim, 2005) strategies.  

Observed and anticipated increases in the frequency and intensity of climate extremes 

provide further challenges to water supply systems.  The global historic record shows a trend in 
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increasing severity of droughts and floods (IPCC, 2012).  Further, increases in both precipitation 

extremes (Kunkel et al., 2013; Frei et al., 2015) and river flooding (Peterson et al., 2013) are 

particularly pronounced in the northeast US. 

This paper explores how best to evaluate strategies that reduce the impacts of droughts 

and peak flows associated with projected changes in precipitation and temperature in the form of 

a case study of the NYCWSS.  The case study uses a stochastic weather generator, a hydrologic 

model, and a systems operations model, similar to Borgomero et al., 2014.  Additionally, the 

paper illustrates the effectiveness of individual and combined actions.  In contrast to several of 

the approaches cited previously, where the adaptation is enacted at some future time, this paper 

assumes that actions are taken immediately, and each option is implemented permanently at the 

beginning of the model run.  This avoids the necessity of waiting for performance degradation or 

a damaging threshold event to begin implementing system improvements.  The adaptations 

considered, two for drought and two for water quality, are based predominantly on projects 

already under active consideration by the NYCDEP based on cost effectiveness and supported by 

studies of future reliability.  Unique to this study is the inclusion of the full range of climate 

change scenarios in conjunction with different combinations of operations or infrastructure 

projects for this system.  This chapter is organized as follows.  The Setting section contains a 

description of the NYCWSS and the historic challenges of drought and turbidity in the system.  

The Methods section includes a description of the models and inputs used, the management 

alternatives, and the experimental design.  The Results section presents the outcomes of these 

alternatives for different climate change projections through the end of the century.  The 

Discussion and Conclusion sections discuss the implications of the results and future research.  

The primary contribution of this paper is a long-horizon examination of climate change 

adaptation strategies for the New York City Water Supply System.  The study points to a 

promising outlook for the city and in the process, demonstrates a straightforward method of 

organizing scenarios to make such a comparison. 
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2.3 Setting 

The NYCWSS includes nineteen reservoirs and three lakes and provides water to 

approximately 9.5 million people in NYC and the surrounding areas.  Water demands for the 

system have decreased from approximately 1.4 billion gallons per day to the current water 

demand of 1 billion gallons per day.  This decrease in water demand, during a period of 

increasing population, has resulted from efforts in water conservation, general changes in water 

use, and in changes in water priciing  

The nineteen reservoirs can be considered as three subsystems: the Croton, the Delaware, 

and the Catskill systems.  The Croton system, built between 1842 and 1906, consists of twelve 

reservoirs and three lakes in Westchester and Putnam counties with a total capacity of 91.6 billion 

gallons (346.7 MCM).  A treatment plant for the Croton system was completed in 2015 and the 

system can provide up to 290 million gallons per day (MGD) (1.1 MCM per day) of high quality 

water to the city.  

A majority of the city’s water comes from six reservoirs west of the Hudson River 

(WOH), where extensive and strategic watershed protection measures have preserved the quality 

of the surface water source.  In response to the Clean Water Act (1972), the NYCDEP, along with 

several other major water utilities across the country, chose to invest in watershed protection and 

applied for a Filtration Avoidance Determination, relieving them of the requirement to filter water 

and allowing them to provide only disinfection to water from their WOH reservoirs.  Currently, 

Boston, MA; Syracuse, NY; San Francisco, CA; Seattle, WA; and Portland, OR, along with New 

York City, maintain their filtration waiver.  The NYCDEP’s permit has been renewed four times 

since 1993 and is currently in effect through 2027.  

The WOH reservoirs are grouped into two systems.  The first is the Delaware system, 

consisting of Cannonsville (95.7 billion gal (362.3 MCM)), Pepacton (140.2 billion gal (530.7 

MCM)), and Neversink (34.9 billion gal (1321 MCM)) at the headwaters of the Delaware River 

and Rondout Reservoir (49.6 billion gal (187.8 MCM)) used primarily as a transfer basin.  The 
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second group is the Catskill system, consisting of Schoharie (17.6 billion gal (66.6 MCM) and 

Ashokan (122.9 billion gal (465.2 MCM)) reservoirs, both on tributaries of the Hudson River.  

Water from Schoharie reservoir is routed through the Ashokan Reservoir before traveling to New 

York City via the Catskill Aqueduct.  Water from the Delaware Aqueduct is routed though the 

West Branch Reservoir, and water from both systems travels through Kensico Reservoir and then 

to New York City(Figure 2.1). 

The Delaware system provides approximately 60% of New York City’s water and has 

additional demands in the form of downstream releases.  The NYCDEP is required to release 

water from Delaware reservoirs to maintain cold-water fisheries below the reservoirs, to provide 

water for downstream states to meet the requirements of the 1954 Supreme Court Decree (New 

Jersey v. New York, 1954), and to mitigate saltwater intrusion in the lower Delaware River and 

Delaware Bay near Philadelphia. 

The Catskill reservoirs typically provide 30-40% of NYC’s water, and the Catskill 

watersheds are the primary source of sediment and turbidity in the system.  The Catskill 

 

Figure 2.1 Map of the West of Hudson portion of the New York City Water Supply System. 
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Mountain region contains highly erodible soils in and immediately adjacent to streams, and 

intermittent high turbidity occurs in the streams and reservoirs of the Catskill system during high 

flows.  Ashokan Reservoir was built with two basins and is operated to allow inorganic sediment 

to settle out in the west basin when necessary.  Water can be withdrawn from either the west or 

east basin of the reservoir. 

Total water demand for New York City peaked in the 1970s at approximately 1.5 billion 

gallons per day (5.7 MCM per day) and has been decreasing since then (NYCDEP, 2017).  This 

decrease is due to a decrease in per capita demand and mirrors the trend and peak of water 

withdrawals across the United States (Maupin et al., 2014).  New York City will continue to 

reduce demand, with a near-term goal of a 50 MGD reduction through efficiency programs and 

incentives, and distribution system optimization and repairs.  Additionally, New York City plans 

to expand the scope of temporary conservation measures.  Currently, conservation measures are 

in place to mitigate shortages caused by hydrologic drought.  Future conservation measures will 

also address shortages related to infrastructure repair projects, with the short-term reduced 

demand needed for a temporary outage of the Delaware aqueduct to bypass a major leak 

(NYCDEP, 2015). 

Both droughts and high (peak) flows are a concern for the city.  The system can store 

about 18 months of the city’s demand with no additional inflows, leaving New York City 

vulnerable to potential shortages during multi-year periods of low flow.  In addition to the 1961-

1963 drought of record, droughts of varying severity have occurred in 1980-1982, 1985, 1989, 

1991, 1995, and 2002 (NYCDEP, 2017).  During drought events, alternative sources are utilized, 

in combination with both voluntary and mandatory restrictions.  These restrictions range from 

outdoor uses for landscaping, pools, and fountains, to the mandatory posting of “please conserve 

water” notifications in public and multi-unit residential buildings (NYCDEP, 2012).  Voluntary 
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conservation and restrictions on non-essential use help prevent more serious consequences of 

water shortages. 

The New York City system is also significantly impacted by extreme precipitation and 

the impacts on water quality associated with high streamflows resulting from these storms.  

Because of the terms of the Filtration Avoidance Determination and a 5 NTU upper limit on 

turbidity, sediment and turbidity management in the Catskill system is essential.  In the vast 

majority of cases, operations in anticipation of storms and subsequent settling time in the west 

basin allow the water withdrawn from the east basin to meet or exceed all water quality standards.  

However, in cases of extremely high flow, turbid water can spill from the west basin over the 

dividing weir into the east basin.  When highly turbid water spills to the east basin, it may be 

necessary to treat the water withdrawn with aluminum sulfate in the Catskill Aqueduct upstream 

Kensico Reservoir, allowing the sediment to settle at the aqueduct’s outlet before it reaches New 

York City.  Since 1987, more than 21 million pounds (9.5 million kg) of alum has been added to 

Catskill Aqueduct water during ten high flow incidents (NYCDEP, 2014).  

In 2010, an advanced data network and systems model, the Operations Support Tool (OST), was 

created for the NYCDEP to provide real-time data for more effective management of both of 

these challenges (NYCDEP, 2010).  Position analysis (Hirsch, 1979) based on near real time data 

and ensemble hydrologic forecasts, has influenced reservoir release decisions and allowed the 

NYCDEP to meet demand, storage objectives, and downstream requirements (Porter et al., 2015).  

In addition to the incorporation of more sophisticated forecasts and modeling for near-term 

decision-making, New York City has taken an active role in preparing for climate change.  The 

Second New York City Panel on Climate Change met in January of 2013 and subsequently 

published “Building the Knowledge Base for Climate Resiliency: New York City Panel on 

Climate Change 2015 Report.”  This report presents observed trends and downscaled General 

Circulation Model (GCM) outputs for New York City and the surrounding area.  Projections were 

drawn from 35 GCMs and representative concentration pathways (RCPs) 4.5 and 8.5 as included 
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in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Horton et al 2015).  These 

projections, representing changes from historic temperature and precipitation, are used in this 

paper as the possible range of future climates for the 2020s through the end of the century (Table 

2.1).  This paper integrates water supply system modeling and the New York City climate change 

projections in a long-term evaluation of system performance. 

 

Table 2.1 NYC Climate Projections 

Air Temperature Baseline 

 (1971 – 2000) 54 °F 

Low-estimate  

(10th percentile) 

Middle range  

(25th to 75th percentile) 

High-estimate  

(90th percentile) 

2020s +1.5 °F +2.0 °F to 2.9 °F +3.2 °F 

2050s +3.1 °F +4.1 °F to 5.7 °F +6.6 °F 

2080s +3.8 °F +5.3 to 8.8 °F +10.3 °F 

2100s +4.2 °F +5.8 to 10.4 °F +12.1 °F 

Precipitation Baseline  

(1971 – 2000) 50.1 inches 

Low-estimate  

(10th percentile) 

Middle range  

(25th to 75th percentile) 

High-estimate  

(90th percentile) 

2020s -1 percent -1 to +8 percent +10 percent 

2050s +1 percent +4 to +11 percent +13 percent 

2080s +2 percent +5 to 13 percent +19 percent 

2100s -6 percent -1 to +19 percent +25 percent 

2.3 Methods 

The research framework and models used in this paper demonstrate the effects of 

projected climate change and adaptations on metrics that quantify the impacts of drought and 

turbidity on the NYCWSS.  Climate altered inflows test a range of adaptations in a screening-tool 

level model of the system.  We ask how these adaptations perform across the changes in climate 

projected for the next century. 
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2.3.1 Models 

This framework incorporates appropriately selected hydrologic and systems operations 

models.  A stochastic weather generator, a hydrologic model, and a water supply systems model 

operate in series.  The weather generator allows variation in climate statistics, while the systems 

model includes current or alternative operations and infrastructure (Figure 2.2). 

A stochastic weather generator model (Steinschneider and Brown, 2013) is applied to create a 

wide range of weather scenarios to create representative climate futures.  The weather generator 

uses a first-order auto-regressive framework to generate annual climate, and a Markov chain and 

K-nearest neighbors resampling algorithm for daily weather variables to preserve correlation 

between locations within the study basin.  The choice of a stochastic weather generator utilizing 

an auto-regressive lag-1 annual series is particularly appropriate for the New York region, as 

most multi-year wet and dry periods are the result of local atmosphere dynamics rather than 

tropical teleconnections (Seager et al., 2012).  The model is calibrated to the gridded historic 

dataset created by Maurer et al. (2002) for data from January 1, 1950 to December 31, 1999.  

Analysis of calibration statistics used for the weather generator can be found in Rossi et al., 2016. 

Monthly changes in temperature (additive) and precipitation (multiplicative) are applied to the 

generated sequences to represent climate change scenarios (further discussed in later sections). 

The synthetically generated weather sequences serve as input into a hydrologic model.  

The Generalized Watershed Loading Function-Variable Source Area (GWLF-VSA) model 

applied here is a watershed-scale model capable of simulating streamflow and water quality based 

on an adaptation of the GWLF to account for the dominance of saturation excess runoff (via use 

of VSA) over infiltration excess runoff (an assumption of the Soil Conservation Service’s Curve 

Number method) (Schneiderman et al., 2007).  VSA, compared to the curve number method, is a 

more accurate representation of the shallow, permeable, well-vegetated soils in sloping 

watersheds typical of the northeastern US and the Catskill Mountain region (Walter et al., 2000).   
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Figure 2.2 The experiment uses three models in sequence, a weather generator, a hydrologic 

model, and a water resources system screening tool, to determine the effects of climate 

change statistics and adaptations on drought and turbidity in the New York City Water 

Supply System. 

 

The model was calibrated independently for the watersheds upstream of each of the six WOH 

reservoirs by NYCDEP researchers (Schneiderman et al., 2002).  Additionally, modeled flows 

show expected changes in quantity and timing when driven with incremental changes in 

temperature or precipitation (Rossi et al., 2016).  The turbidity load to Ashokan reservoir, where 

turbidity has historically been a concern, is modeled separately from the GWLF-VSA model as 

Mean Daily Turbidity (MDT) as a function of streamflow, season, and antecedent dry days and 

based on existing statistical analysis of 27 storm events over an 8 year period between 2003 and 

2011 (Mukundan et al., 2013).  Turbidity is a proxy for suspended sediment, and turbidity “load” 

is calculated as the product of turbidity and flow rate, MGD-NTU. 
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Multiple 50-year sequences are created with the weather generator representing an 

ensemble of climate projections.  These weather sequences are then translated to reservoir inflows 

via the GWLF-VSA model.  Due to the large number of inputs and scenarios in this method, the 

use of the OST was not considered possible and an alternative screening-level model of the 

NYCWSS was created to allow these scenarios to be tested efficiently. In the screening model the 

operating rules, regulations, forecasts, and sediment dynamics are simplified compared to 

NYCDEP’s OST used in daily operations planning.  The model (denoted as the Screening Tool 

Assessment of Turbidity and Supply, STATS) is coded as a daily water and sediment balance 

model in Vensim DSS (Ventana Systems Inc.) with the six WOH reservoirs modeled individually 

and operated conjunctively.  Operations are incorporated into the model as a series of rules, rather 

than chosen via optimization.  These rules are based on interviews with the NYCDEP staff and 

publicly available Federal and State regulations.  Comparisons of the screening tool with the 

more complex OST were made to ensure reservoir storages and turbidity from the screening 

model were similar using correlation and Nash Sutcliffe Efficiency (Rossi, 2014).  This screening 

model is sufficiently detailed to capture the nuances of supply operations and the basic physics of 

the turbidity process.  Thus, changes in operations and infrastructure and the resulting changes in 

water quality and availability can be captured.  The screening model includes multiple adaptation 

options. 

2.3.2 Adaptations 

A first category of adaptation addresses drought management.  NYCWSS strives to 

provide ample water to the city during drought.  As demands increased over time, the city’s 

infrastructure increased in size and complexity to the system of the present day.  Now, planning, 

monitoring, maintenance, and improvements maintain the system’s reliability.  Two of these 

drought management adaptations are tested for robustness under climate change projections 

through the end of the 21st century. 
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Adaptation 1 investigates the importance of streamflow forecasts in improving the 

system’s ability to provide water reliably.  The NYCWSS typically refills annually, after the 

summer drawdown.  In most years, the system is near full and/or spilling by late spring or early 

summer, when snowmelt is completed and before high summer demands and low summer 

inflows begin.  Late spring streamflow forecasts (based on snowpack and other antecedent 

conditions) offer the opportunity to advise managers on how best to balance reservoir levels 

across the system and to determine appropriate releases to the lower Delaware River.  A primary 

operating objective in the past has been to forecast the likelihood of refill by June 1 of each year.  

In the model, forecasts are used to balance storage across the system and determine releases from 

the Delaware reservoirs.  Reliable forecasts with lead-times of weeks to months can anticipate 

lower than average flows at one extreme and prevent unwanted spill on the other.  In Adaptation 

1, operations that utilize a perfect forecast, created by summing future model input inflows 

leading up to the upcoming June 1st and issued on a monthly basis, are compared to a baseline 

operating policy: the use of the 1950 – 2000 historic streamflow record.  The decision-making 

structure within the system model necessitates a single trace forecast.  A perfect forecast was 

chosen for simplicity and availability and to provide a significant contrast to the historic record. 

Adaptation 2 explores the importance of demand on system reliability.  Like many older 

water supply systems, NYCDEP’s infrastructure suffers from system leaks (estimated to be 35 

million gallons per day (132,000 m3/day) from the Delaware Aqueduct alone).  A leak repair 

program is in progress and anticipated to be completed by 2023 as part of the Water for the 

Future program (NYCDEP, 2015).  Repairing these leaks essentially increases system capacity 

and enhances system performance during drought.  Adaptation 2 explores the results of the 

Delaware Aqueduct repair and models the outcome as a 35 million gallon reduction in daily 

demand. 

 Metrics for evaluating Adaptations 1 and 2 are annual reliability and the frequency of 

water use restrictions (drought warnings and drought emergencies).  These water use restrictions 
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are based on reservoir storage defined by the probability of water year refill based on historic 

flows and demands. 

The second category of adaptations is associated with high flows into Ashokan reservoir 

that create high concentrations of suspended sediment and turbidity.  Adaptations 3 and 4 

illustrate the relative importance of rules, infrastructure, and climate in determining system 

turbidity.  

Adaptation 3 includes operations of the existing system.  Recent renovations to the 

Ashokan Release Channel allow manipulation of storage and void.  The Interim Ashokan Release 

Protocol, that has been in effect since 2013 (NYCDEP/ NYSDEC, 2011), identifies operation for 

turbidity and spill management.  The proposed procedures include introducing a rule curve to 

create a space (or volume or void) in the reservoir for the portion of the year when high flows and 

high turbidity are more likely to occur, and using the Ashokan release channel to release turbid 

water and prevent spill to the east basin.  The model simulates the release of water from the west 

basin of Ashokan reservoir to meet the storage objective.  

Adaptation 4 addresses the improvement of existing stop shutters along the Catskill 

aqueduct.  Installing stop shutters reduces the total flow required for adequate aqueduct pressure 

to serve communities along the aqueduct, but their implementation is currently difficult and time 

consuming.  Reducing the minimum required aqueduct flow results in the ability to combine a 

greater amount of higher quality water from the Delaware system with a smaller amount of turbid 

Catskill water.  Improving stop shutter operation will allow their incorporation into normal 

operations (NYCDEP, 2014).  This is alternative is modeled as a reduction in the Catskill 

aqueduct minimum flow.  

 Metrics used to evaluate Adaptations 3 and 4 are annual days of alum use and the annual 

peak turbidity export (MGD-NTU) withdrawn for use from Ashokan reservoir, both averaged 

across each 50 year run.  Here, alum use is initiated when turbidity export peaks above 5000 
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MGD-NTU and continues until the 5-day average export drops below 4000 MGD-NTU.  All of 

the adaptations explored and metrics are summarized in Table 2.2. 

Table 2.2 Summary of adaptations and metrics 

Adaptations 

Adaptation 1 - Perfect streamflow forecasting 

Adaptation 2 - Leak repair (35 MGD demand reduction) 

Adaptation 3 - Turbidity management operations 

Adaptation 4 - Improved stop shutters 

Metrics 

Drought Warning – Combined Delaware system storage lower than rule curve, lower than 33% 

chance of water year refill based on historic flows and demands 

Drought Emergency - Combined Delaware system storage lower than rule curve, likelihood 

that without action, system will experience shortages based on historic flows and demands 

Annual Reliability - Percent of years in which all demand is met  

Turbidity Export – Peak annual turbidity load (MGD-NTU) as a proxy for sediment load. 5000 

MGD-NTU is an approximate upper limit before alum use 

Alum Use – Annual number of days. When the turbidity and quantity of water withdrawn from 

Ashokan Reservoir exceeds the 5000 MGD-NTU limit, Alum is added to the water supply  

 

2.3.3 Scenarios 

The combination of adaptations and climate statistics create scenarios, and these scenarios 

provide insight into the impact of climate changes on system performance under different 

operational futures.  Multiple combinations of adaptations are tested.  For drought metrics, a 

baseline of no adaptation, Adaptation 1 alone, Adaptation 2 alone, and Adaptations 1 and 2 in 

combination create 4 possible drought management possibilities.  For turbidity metrics, a baseline 

of no adaptation, Adaptation 3 alone, Adaptation 4 alone, and Adaptations 3 and 4 in combination 

create 4 possible turbidity management possibilities (Table 2.3).  

Four sets of climate inputs reflect four different decadal ranges of multi-model ensemble 

climate projections.  For each decade, each operational possibility is modeled, resulting in 32 

scenarios, 16 for water quality and 16 for drought.  For each decade, 70 sets of monthly 

precipitation and temperature changes from 35 climate models and 2 representative concentration 

pathways represent the range of climate change projections for the decade (Horton et al., 2015).  
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For each of these changes, ten 50-year stochastic weather sets represent and reduce the influence 

of internal climate variability.  This framework results in 700 50-year sequences of daily weather 

and hydrology for each decade. 

 

Table 2.3 Summary of scenarios 

Scenarios Metrics 

Baseline all 

Adaptation 1 Drought Warning,  

Drought Emergency,  

Annual Reliability 

Adaptation 2 

Adaptations 1 & 2 

Adaptation 3 Turbidity Export,  

Alum Use Adaptation 4 

Adaptations 3 & 4 

2.4 Results 

The results of climate change and adaptations are presented first those associated with 

drought, then those associated with high flow events.  The modeled effects of these adaptations 

over multiple climate scenarios through the end of the century illustrate the adaptability of the 

NYCWSS and the potential strategies available for system improvements. 

2.4.1 Drought 

Between 1960 and 2010 in NYC, drought warnings were declared in 14 years and 

drought emergencies were declared in 5 years (NYCDEP, 2017).  Total water demand has 

dropped significantly since those droughts (from a peak of 1500 MGD around 1980 to an average 

demand of around 1000 MGD today).  In model runs utilizing stochastic weather with historic 

climate statistics and current water demand, the occurrence of drought warnings and drought 

emergencies is less frequent than the historic occurrences.  This confirms that reduced demand 

plays a role in system reliability. 

The frequency of future drought warnings and drought emergencies across all climates 

and adaptations illustrates several trends (Figure 2.3).  The effect of climate on the occurrence of 
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drought warnings and drought emergencies is demonstrated by a single adaptation possibility 

through time, thereby controlling for infrastructure and management state.  Though an overall 

wetter climate is projected in many scenarios, a few GCMs project drier climates or seasonal 

shifts in precipitation that result in a greater frequency of drought, with the extreme scenarios 

occurring at the end of the century.  This does not necessarily indicate an increase in precipitation 

variability of future climates, but rather an increase in the spread of climate models and greater 

uncertainty when projecting farther into the future. 

Meanwhile, scenarios implementing one or both adaptations result in reduced frequency 

of drought warning and drought emergency.  Adaptation 1 and the resulting operations and timely 

conservation are more effective than a single constant reduction in demand (Adaptation 2) when 

implemented alone, though a less than perfect forecast or greater reduction in water lost to leaks 

may change this.  The joint application of both adaptations is most effective in reducing the 

occurrence of low storages.  Together, a perfect monthly streamflow forecast with up to 11 

months lead-time and a small reduction in total demand reduce the occurrence of drought 

emergency to less than 1 in 50 years in the majority of scenarios.  Decreases in drought 

emergencies (the most severe classification) do not result in increases in the length or frequency 

of drought warning (a less severe classification).  All drought levels are reduced with each 

adaptation.  In plotting individual scenarios, storages with forecasting remained higher when 

experiencing extended droughts but allowed the system to draw down lower in years where refill 

occured, both in logical anticipation of the upcoming conditions. 

For figure 2.4, a standardized metric of annual reliability allows for the comparison of 

water supply systems with very different infrastructure.  Annual reliabilities of US water supply 

systems generally fall in the range of 97% - 98.5% (Vogel et al., 1999) and a 2013 study of the 

NYCWSS under current conditions and climate change placed the system near the top of that 

range (Matonse et al., 2013).  The results here (Figure 2.4) match these previous probabilistic 

results.  Here, the number of years in a 50-year trial in which the system fails to meet daily 
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demand is modeled for each climate scenario and each alternative.  In the base case, reliability 

remains at or above 98% in 75% of scenarios.  The remaining scenarios increase in shortfall 

frequency with climate change; these scenarios are ones in which the climate gets drier but 

operations remain based on the historic, wetter, record.  The two adaptations individually increase 

the reliability of the system.  With the two adaptations combined, very few climate scenarios 

show reliabilities lower than 100%, even under projected 2100 climates.  These special cases 

would be handled by managers on a case by case basis and would take advantage of water 

sources and management options not represented in the model.  Any long term forecast provides 

insight on whether the system will need to implement water restrictions in order to meet demand 

over the longer term.  A perfect forecast allows this decision with certainty, which is different in 

two major ways from an existing forecast.  For any uncertain forecast, a more conservative 

decision would be made, and the ensemble would have to be analyzed on a case by case basis.  

The “complete drawdown” scenario (that used in a safe yield calculation) is undesirably risky.  

2.4.2 Turbidity  

Tudbidity in the New York City Water Supply System is a quantity that will change with 

climate change.  Peak streamflows are linked by existing conditions, management decisions, and 

the modeled adaptations to the turbidity load in the Catskill Aqueduct. 

The adaptation alternatives can be effective in reducing peak turbidity (Figure 2.5).  

Export, or turbidity as MGD-NTU withdrawn to meet demand, increases or stays approximately 

the same for all climate projections with all adaptations.  Adaptations 3 and 4 reduce the peak 

turbidity by an increasingly large margin, relative to the conditions that would otherwise occur, as 

the projected climate gets warmer and wetter in the future.  Annual averages with Adaptation 3 

and Adaptation 4 remain near or below a 3000 MGD-NTU until 2050 projections.  Averages for 

all scenarios except for the base case of no adaptation remain below 5000 MGD-NTU.  

Results for historical climate, not plotted in Figure 2.4, are also noteworthy.  Utilizing the historic 

record of flows and a different systems model, NYCDEP’s OST, this combination of adaptations 
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was able to reduce alum use to zero (NYCDEP, 2014).  Using the same methods and models of 

this paper, combined use of the two adaptations eliminates alum use in 88% of stochastic 

realizations of baseline climate, giving credence to these adaptations as “wins,” or beneficial 

adaptations in present conditions as well. 

In all climate scenarios, the combination of Adaptations 3 and 4 greatly reduced the 

average number of days of alum use.  Adaptation 3 alone performs better than Adaptation 4.  

Note that these results are averages.  In reality and in the model runs, alum use occurs every few 

years for several times the average length, rather than every year for the average length; high 

turbidity and the resulting alum use is episodic and correlated rather than an annual occurrence. 
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Figure 2.3 Frequency of drought warning (top) and drought emergency (bottom) statuses 

declared based on low reservoir storage. The range of each boxplot shows the frequency of 

drought warning (drought emergency) modeled as years-in-50 for each climate change 

scenario. For example, one outlier point represents one GCM output resulting in a higher 

frequency of drought warning. The same set of climate scenarios are used for each decadal 

grouping of alternatives. The set of scenarios change in each decade to represent climate 

change over time. Four adaptation scenarios are shown in each decade. 
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Figure 2.4 Annual reliability. The range of each boxplot shows system reliabilities in each 

climate change scenario. For example, one outlier point represents one GCM output 

resulting in lower annual reliability of the system. The set of scenarios change in each 

decade to represent climate change over time. Four adaptation scenarios are shown in each 

decade. 

 



 29 

 

Figure 2.5 The average annual peaks of turbidity load in the Catskill Aqueduct. The range 

of each boxplot shows the average annual peak export for each climate change scenario. For 

example, one outlier point represents one GCM output resulting in a higher peak turbidity 

load. The same set of climate scenarios are used for each decadal grouping of alternatives. 

The set of scenarios change in each decade to represent climate change over time. Four 

adaptation scenarios are shown in each decade. 
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Figure 2.6 Average annual days of Alum addition in the Catskill Aqueduct for different 

climates and adaptations. The range of each boxplot shows the frequency of alum addition 

for each climate change scenario. For example, one outlier point represents one GCM 

output resulting in higher annual average alum use. The same set of climate scenarios are 

used for each decadal grouping of alternatives. The set of scenarios change in each decade 

to represent climate change over time. Four adaptation scenarios are shown in each decade. 

 

2.5 Discussion 

2.5.1 Implications 

Climate change studies, with projections extending to 2100, show a long-term but 

uncertain picture of the New York City water supply system’s future.  It is generally accepted that 

climate models perform much better at estimating changes in temperature than precipitation, and 

changes in precipitation patterns will have significant impacts on both high flows and drought.  In 

addition to the annual precipitation and temperature in New York State, social, political, and 

infrastructure changes will occur over the next 80 years.  However, a long-horizon study holding 

these other factors constant gives information about the system that managers can utilize during a 

short planning horizon. 
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In this paper, the relative value of Adaptation 1 (forecasts) and Adaptation 2 (leak repair) 

for reducing drought in the Delaware River Basin reservoirs are shown to be effective in reducing 

the impacts of drought.  The water demand reduction that has occurred in recent years is also an 

effective method in managing drought.  Though the demand reduction modeled here represented 

a leak repair project in progress, initiatives to reduce the city’s consumption on a municipal level 

are further steps towards maintaining reliability.  Forecasting (here, perfect forecasting) was most 

effective in future climates, and the following chapters explore current forecast skill and 

incremental improvements in system performance for a given improvement in forecast skill in 

detail.  This knowledge, displayed quantitatively, can encourage the development of forecasting 

tools at the right spatial and temporal scale for water managers. 

The relative value of Adaptation 3 (operational changes) and Adaptation 4 (specific 

infrastructure improvements) for managing turbidity in the Catskill system are explored.  The 

research suggests that while increased precipitation will result in increased turbidity load to the 

system based on historic rating curves, operations and infrastructure improvements in 

combination are able to reduce the length of average alum addition to levels similar to historic 

levels even under extreme projections.  Though not included in the study, watershed and riparian 

land management, as discussed in multiple iterations of NYCDEP’s Filtration Avoidance 

Determination Reports, can also serve to reduce inflow turbidity starting from its hydrogeologic 

source.  

With the exception of perfect forecasting, this case study shows a variety of real options 

successful in both present and future climates, with other options unmodeled but available, 

showing a promising outlook for the water supply system.  The monetary cost of implementing 

these adaptations is not considered when showing an adaptation as beneficial.  Additionally, these 

options, particularly the operational changes utilizing the Ashokan release channel, have an effect 

on the wider community that would be considered in implementation.  However, the dramatic 
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improvements shown can motivate further investigation of these changes, their costs, and their 

benefits for NYCDEP, and encourage similar studies for other water supply managers. 

2.5.2 Limitations 

As in all climate studies, there are limitations and uncertainty in using climate forecasts.  

In evaluating adaptations, there is a tradeoff between number of scenarios tested and complexity 

of modeled system operations, and the choice to simplify the operations rather than reduce the 

scenarios was deliberate.  This research contains three important simplifications that made the 

examination of a large number of climate scenarios possible.  In reality, managers utilize 

forecasts and current conditions while applying their judgment in determining system operations.  

Here, decisions are driven by a set of deterministic rules. Additionally, perfect monthly forecasts 

were incorporated into the model to determine operations.  The sources of error and the error 

structure of current River Forecast Center products is beyond the scope of this project but will be 

an important consideration in future work.  The largest limitation in the individual models is the 

treatment of turbidity in Ashokan Reservoir.  The model accounts for turbidity in each basin as 

two independent, completely mixed systems.  In reality, turbidity is spatially variable throughout 

each reservoir and can travel in a plume from the inlet to the outlet.  A second reservoir model, 

developed on a daily or sub-daily time-step, would improve turbidity modeling at the expense of 

simulation time. 

Finally, utilizing three models in series allows error to propagate through the model.  This 

error is unquantified, but effort is made to show the effects of the method of incorporating GCM 

inputs, show the range of outcomes, and ensure that these outcomes are in general agreement with 

past observations and models whenever possible.  Acknowledging this, the study presents its 

findings as comparative results rather than absolutes. 
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2.6 Conclusion 

Decisive action concerning large capital investments is often difficult due to uncertainties 

in the future.  Accurate forecasts of water demands are an example of an important planning 

variable that has proven to be more sensitive to pricing, technological change, and consumer 

perceptions and values than originally estimated.  Climate change, another uncertain variable, 

increases the magnitude of uncertainty in projections and the range of model outputs available.  It 

is true that the effects of the most extreme projected climates in the coming century overshadow 

the capacity of current mitigation projects.  However, these results indicate that sensible 

adaptation options can successfully manage drought and turbidity impacts for the majority of 

projected climates and that win-win strategies in anticipation of climate change are possible. 

 In drought management, seasonal forecasting, as monthly sums with lead-times of 1 to 11 

months, proved to be most effective in reducing the number of days under drought conditions for 

NYCDEP when drought is defined as a reservoir storage threshold.  Since this provides a large 

benefit under both current and projected conditions, forecast development should be an area of 

focus in collaborations between scientists and water managers.  Meanwhile, the benefits from a 

small reduction in total demand demonstrate that efforts to improve efficiency and maintain 

infrastructure will be a crucial tool in mitigating drought should drier climates manifest. 

 In turbidity control in the NYCWSS, operations and infrastructure are complementary.  

The two options investigated, west basin operations and Catskill aqueduct stop shutter 

improvements, address turbidity mitigation in different parts of the process.  West basin 

operations including the use of the Ashokan reservoir release channel manage west basin and east 

basin turbidity by allowing additional settling time, preventing spill, and reducing the amount of 

sediment transferred between basins.  Meanwhile, aqueduct improvements reduce turbidity load 

by reducing the minimum flow rate in the aqueduct and therefore the amount of water required 

from Ashokan reservoir’s east basin in times of high turbidity. 
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 Within the limitations of this study, all of the options provided the intended benefits 

under all climate change scenarios; none were significantly less effective or detrimental in any 

scenario.  Additionally, for both drought and turbidity management, combining options showed 

cumulative benefits.  Despite climate uncertainty, adaptations anticipating the general trend of 

projected climate change (in this geographic area, increases in both temperature and annual 

precipitation) will likely be robust, effective, and complementary to additional adaptations into 

the future. 
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CHAPTER 3 

INTERPRETING AND EVALUATING ENSEMBLE HYDROLOGIC FORECASTS FOR 

WATER RESOURCE MANAGEMENT 

 

3.1 Abstract 

A challenge to the adoption of seasonal streamflow forecasts in water resource system 

management is the lack of a standard method to quantify improved system performance as a 

function of improved forecast quality.  This paper proposes and tests a method of determining 

operational improvement with forecasts that: 1) illustrates the use of ensemble forecasts, 2) 

supplements the National Weather Service’s Ensemble Verification System, and 3) provides 

flexibility in the system performance metric.  The method utilizes the “Mean Capture Rate 

Diagram” and the “Probability Score metric” to quantify synthetic forecast quality and utilizes 

iterative system modeling to determine the effect of forecast quality on system performance.  The 

City of Baltimore’s Water Supply System is used as a case study.  The results illustrate the 

relationship between 90-day forecast quality and a composite performance metric including costs 

and reservoir drawdown.  These relationships are shown to be linear for a range of forecasts and 

that an upper limit exists for the benefit of forecasts, particularly in managing one- to two-year 

hydrologic droughts.  In addition to the system-specific results in the case study, insight is gained 

about the method itself and its possible use for other systems bridging the gap between forecast 

verification and forecast adoption. 
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3.2 Introduction 

Despite more than 30 years of experience in generating streamflow forecasts, seasonal-

scale ensemble predictions are frequently underutilized by water supply managers.  Many 

challenges in forecasting remain, such as a lack of adequate data collection (Pagano et al. 2014), 

inconsistent verification methods (Schaake et al. 2007), and a lack of agreement on the best 

methods for quantifying uncertainty.  Additionally, barriers to adoption in practice are numerous 

and significant.  Notable among these are a profession-wide disincentive to innovate (due to the 

high value placed on reliability and the high visibility of undesirable outcomes) and limitations in 

our ability to quantify improved system performance when incorporating forecasting (Rayner et 

al., 2005).  

To address this last point, this paper proposes a methodology to explore the relationship 

between forecast skill and system performance, that: 1) allows the use of ensemble forecasts, 

rather than single-trace forecasts, to accommodate the move towards ensemble forecasts and 

quantified uncertainty, 2) supplements the National Weather Service’s Ensemble Verification 

System (Brown et al., 2010), and 3) provides flexibility in its system performance metric, 

allowing for its application to water resources systems with a variety of goals. 

With the goal of quantifying performance improvement as a function of forecast skill, 

this method utilizes the Mean Capture Rate Diagram and the Probability Score metric.  

Resampled forecasts are created with varying levels of error according to the probability score, 

and a system model is implemented with a predefined metric describing system performance.  

After iterative simulations of the system model, results characterize the relationship between 

forecast error and system performance, including a possible threshold of diminishing returns for 

improved forecasts.  This approach addresses a central question associated with streamflow 

forecasts: what amount of water supply performance improvement (e.g. delivering water reliably 

at a low cost) can be expected from improved forecasting and how can this be quantified? 
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3.3 Background 

3.3.1 Forecast Evaluation 

Forecast evaluation measures, in various ways, how well a forecast of a quantity, in this 

case a time sequence of streamflow, reflects what will occur in the future.  Forecasts may assume 

a variety of forms: deterministic (single trace), probabilistic (categorical with a likelihood 

assigned to each outcome), or ensemble forecasts (multi-trace) (a collection of multiple time 

sequences).  Each evaluation metric is some function of the joint distribution of forecasts and the 

corresponding observations.  For example, for a deterministic forecast, the absolute error of a 

forecast is the difference between the forecast and the observed value.  Forecast “quality” refers 

to any independent metric (e.g. root mean square error - RMSE), while forecast “skill” compares 

a forecast to a reference forecast (e.g. Nash-Sutcliffe efficiency - NSE); a positive value of 

forecast skill indicates that the new forecast performs better than the reference for a given metric.  

The specific metrics chosen for an analysis should be appropriate to the forecast type and its 

intended uses (Katz and Murphy, 1997).  Attempts at verification in practice require the creation 

of new forecasts over a past time period as though they were being issued at that time, allowing a 

comparison of the forecasts to the observed data.  The new forecasts are verified by calculating 

metrics evaluating quality for both the new and previous versions and/or by calculating skill 

scores.  

Past verification of forecast quality and skill for hydrologic forecasts is sparse and 

inconsistent in approach, evaluation time-frames, and metrics.  Pioneering methods in data 

assimilation, hydrologic modeling, and statistical methods for forecasting are evaluated as they 

develop.  For example, as part of their hydrologic forecast development process, the National 

Weather Service (NWS) has evaluated their hydrologic ensemble forecasts, for four basins for a 

14 day lead-time (Brown et al., 2014).  In general, new methods show incremental improvements 

over previous methods, though flow extremes and flows at long lead-times remain a challenge 

(Bennet et al., 2014a; Bennet et al., 2014b; Rosenberg et al., 2011; Block et al., 2009; Franz et al., 
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2003).  Verification standards (through the Hydrologic Ensemble Prediction Experiment) 

(Schaake et al., 2007) and software (NWS’s Ensemble Verification System, EVS) (Brown et al., 

2010) have been created to standardize the process and make verification results easier to 

implement, share, and compare between sites and studies. 

Additional research has investigated the use of forecasts in water resource systems 

operations by using computer models of the systems.  Experiments using perfect forecasts, 

including the study in Chapter 2, found operational benefits, while experiments using existing or 

reforecast products had mixed results (Sankarasubramanian et al., 2009a; Maurer and 

Lettenmaier, 2004; Ritchie et al., 2004).  The majority of studies considering forecast-use use 

synthetic imperfect forecasts created by adding error to the streamflow record, and these error-

added forecasts also lead to mixed results (Anghileri et al., 2016, Sankarasubramanian et al., 

2009b; Georgakakos and Graham, 2008, Mishalani and Palmer, 1988).  In addition to modeling 

studies, a few real world examples are available.  Though snowpack-based forecasts have been 

used successfully in the western United States, poor forecasts for the Yakima River Basin in 

1977, due in part to an improperly applied hydrologic model, resulted in large unnecessary 

agricultural losses and subsequent litigation (Glantz, 1982).  Overall, the studies demonstrate both 

regional and use-based differences in hydrologic forecast quality and value, partially due to 

infrastructure, utilization, and goals, and partially due to the predictability of climate and 

hydrology in that region. 

3.3.2 Forecast Types 

Contemporary hydrologic forecasts are delivered as collections of possible future 

streamflow series, termed ensembles.  Forecast generation methods fall on a spectrum between 

forecasts based on numerical weather prediction and hydrologic models and forecasts based 

solely on statistical processes.  In the United States, the NWS introduced ensemble forecasts 

utilizing a watershed model, Ensemble Streamflow Prediction (ESP) in 1985 (Day, 1985).  These 

forecasts used observations of the weather and watershed as initial conditions and used each year 
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of the historic weather record as equally-likely future forcings, resulting in an ensemble of future 

streamflow traces.  This was particularly effective in basins where snow pack is considered in 

initial conditions during winter and spring (Shukla and Lettenmaier, 2011).  More recently, these 

hydrologic models have utilized the outputs of numerical weather prediction models as inputs, 

replacing the historic record at short lead-times.  Additionally, more sophisticated methods of 

quantifying the sources of uncertainty (sources including choice of hydrologic model parameters 

and imperfect observations of current conditions) are being incorporated into these forecasts.  The 

current NWS forecasts are part of the Hydrologic Ensemble Forecasting System (HEFS) that 

includes ensemble bias-corrected weather forecasts, hydrologic forecasts, and verification 

methods (Demargne et al., 2014).  This paper incorporates the hydrologic forecasts produced as 

HEFS forecasts. 

Statistical methods for streamflow forecasts vary widely in methods and inputs.  In early 

work in this field, Hirsch (1979) proposed creating ensemble forecasts by fitting a lag-1 auto 

regressive model (AR1) to the monthly streamflow record to create an ensemble forecast 

beginning with the observed flow and consisting of variations on the historic record.  The 

ensemble is created by fitting an AR1 model to the historic record, running the AR1 model from 

the current observed streamflow, and then adding each year’s error series back to the AR1 

generated flows (instead of randomly generating an ensemble of error series).  This process has 

since been expanded to a daily model to work with daily-time-step system models.  In this 

method, each year’s daily pattern of flows, in addition to the monthly error series, is incorporated 

into to the AR1 generated series.  This paper utilizes these forecasts as AR1 forecasts. 

3.4 Methods 

3.4.1 The Mean Capture Rate Diagram and the Probability Score 

The Mean Capture Rate Diagram (MCRD) is an illustration of the ensemble forecast’s 

distribution (Brown et al., 2010).  The diagram illustrates how much of the ensemble falls within 
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a given range around the observation.  Having more of the forecast traces within a given absolute 

error indicates a better forecast.  The underlying metric in the MCRD is the Probability Score 

(PS). Wilson et al. (1999) defined the probability score as 

 

𝑃𝑆(𝑓𝑌 , 𝑥
0, 𝑤) = ∫ 𝑓𝑦(𝑌)𝑑𝑦

𝑥0+0.5𝑤

𝑥0−0.5𝑤
               (Equation 3.1) 

 

 

for a single observation x0, an ensemble forecast Y with PDF fY, and an interval w.  Figure 3.1 

illustrates the PS for a single forecast/observation pair.  As an evaluation metric, the PS is 

averaged across all available forecast/observation pairs.  The MCRD plots the interval “w” as a 

function of the probability score, and w is referred to as absolute error (Figure 3.2).  The 

probability score is located on the x-axis and ranges from 0 to 1; the absolute error w is plotted on 

the y-axis and ranges from 0 to the largest error value found in the ensemble forecast. 

 

 

Figure 3.1 Illustration of the Probability Score. The PS calculates what fraction of the 

ensemble forecast falls within a given range (w) around the observed value. 
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Figure 3.2 Illustration of the Mean Capture Rate Diagram. The MCRD plots the absolute 

error (1/2 w) as a function of the non-exceedance probability (the probability (score). 

 

 

3.4.2 Determining Forecast Value  

Results of the MCRD are useful for demonstrating the spread of forecasts and for 

comparing forecasts across sites.  Two insights are gained by combining the MCRD, the 

probability score, and a system model: the Probability Score can become a use-specific forecast 

evaluation metric, and the relationship between forecasts and system performance can be 

quantified.  To turn the Probability Score into a use-specific metric for a particular site, the 

parameter ½w (absolute error) can be defined based on target values or thresholds for a relevant 

system metric.  Two, the same modeling approach can quantify the gains in system performance 

achieved through improved forecasts, which is the central intention of this paper.  In this research, 

the experimental design and the method proposed is described in the following paragraphs. 
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Forecast ensembles with varying absolute error are created by sampling traces from a 

pool of existing HEFS and AR1 forecasts and from the historic record.  Next, for each time-step, 

an ensemble forecast is issued.  Then the system model tests multiple operating options for each 

forecast trace i and then calculates the expected value E of each action j using a single or 

composite metric C measuring system performance.  A decision based on minimizing or 

maximizing the expected value is implemented until the next forecast is issued.  The expected 

value of a course of action is defined as: 

 

𝐸𝑗 =
1

𝑛
∑ 𝐶𝑖
𝑛
𝑖=1      (Equation 3.2) 

 

with Ej the expected value of the j-th operating choice, n the number of forecasts, and C the value 

of the composite metric.  The metric C is then evaluated for the entire trial period.  The process is 

repeated using sets of forecasts with different absolute error values, resulting in a set of C values 

as a function of absolute error.  

3.4.3 Case Study Setting 

The City of Baltimore receives its drinking water from a surface water reservoir system 

and in some cases, from the Susquehanna River.  Baltimore’s water supply system consists of 

Prettyboy, Loch Raven, and Liberty Reservoirs with a total of 76 billion gallons of usable storage 

and a drainage area of 467 square miles in two small basins on the Chesapeake Bay between the 

Susquehanna and the Potomac Rivers (Figure 3.3).  Annual precipitation for the region is 40 

inches annually, distributed approximately equally throughout the year and with minimal snow 

accumulation.  Surface reservoirs are operated to balance water sources and to deliver an average 

of 225 million gallons per day (mgd) to 2 million people.  Water demand varies seasonally, with 

higher demands in the summer.  The City of Baltimore Department of Public Works also 

maintains a connection to the Susquehanna River.  During severe drought, the city can pump  
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Figure 3.3 Watersheds and reservoirs of the City of Baltimore Water Supply. 

 

 

water from the Susquehanna River to supplement their supply, but pumping cost, fees, and 

additional treatment costs make this an expensive option and it is not implemented unless it is 

truly necessary (Reimer, Muegge, & Associates, Inc., 2000).  Medium-term drought forecasting 

can contribute to improving the quality of pre-treatment water, maintaining reservoir storage, and 

avoiding water use restrictions.  This research applies HEFS and AR1 ensemble forecasts, along 

with the historic streamflow record as an ensemble forecast, for nearby Lancaster, PA in the 

context of operating the Baltimore water supply system.  HEFS forecasts are not available for 

sites immediately upstream of the reservoirs; the section “Forecast Sources” below elaborates. 

To evaluate forecast skill, this research selected Baltimore’s composite metric, as defined 

in the previous subsection, with three terms, designed to give reservoir storage and economic 

losses equal weighting.  This metric attempts to capture the trade-offs between the economic 

costs and losses from pumping and water use restrictions during drought, and the risk and poorer 
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water quality resulting from drawing down reservoir storage levels.  The equation resulting is as 

follows. 

 

 

C = C restrictions + C pumping + C minimum storage “cost”       (Equation 3.3) 

 

The water demand for Baltimore consists of residential, commercial, and municipal use, 46% of 

which is considered elastic (City of Baltimore Department of Public Works 2002) and can be 

reduced at a cost by voluntary and mandatory restrictions. The cost of restrictions, C restrictions, 

is  

 

𝐶𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =
𝑒𝐷

1+
1

𝜂

× [𝑄𝑚
1+

1

𝜂 − 𝑄𝑑
1+

1

𝜂]          (Equation 3.4) 

 

Where Qm is the maximum demand Qd is the demand delivered, η is the price elasticity, and D is 

the demand constant, including the price of water P, defined as: 

 

𝐷 = ln(𝑃) −
ln(𝑄𝑚)

𝜂
                               (Equation 3.5) 

 

(Jenkins et al., 2003).  Monthly maximum demands, the maximum amount of water that would be 

used at the current price with no water-use restrictions in place (normal of non-drought 

conditions), are taken as average historic uses.  The monthly price elasticities used were (J) -0.1; 

(F) -0.1; (M) -0.1; (A) -0.2; (M) -0.3; (J) -0.3; (J) -0.3; (A) -0.3; (S) -0.3; (O) -0.2, (N) -0.1; and 

(D) -0.1 (McIntyre et al., 2017). 

 The City of Baltimore Water Supply has a permit to withdraw as much as 250 MGD from 

the Susquehanna River and a current infrastructure capacity to pump 137 MGD.  The cost of 
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using this source is the sum of the cost of pumping the water (itself a function of energy price, 

flow rate, and head) and a consumptive use fee of $0.33 per 1000 gal.  The cost of operating the 

pumps, Coperating in equation 3.6, is $58.20 per million gallons to pump 80 MGD and $66.40 per 

mil gal to pump 137 MGD (McIntyre et al., 2017).  

 

𝐶𝑝𝑢𝑚𝑝𝑖𝑛𝑔 = 𝑄𝑝𝑢𝑚𝑝𝑒𝑑(𝐶𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 + 𝐶𝑓𝑒𝑒)           (Equation 3.6) 

 

Finally, a penalty for low storage is added to the cost equation as 

 

𝐶𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑠𝑡𝑜𝑟𝑎𝑔𝑒"𝑐𝑜𝑠𝑡" = 𝑊(1 − 𝑆𝑒𝑛𝑑𝑖𝑛𝑔)
2
         (Equation 3.7) 

 

The weighting factor W is $3.9x107 (per fraction of storage squared) and the ending storage Sending 

is the fraction of total storage in the reservoirs at the end of each 90-day forecast period.  The 

weighting factor reflects modeled tradeoffs of 24 different operating policies evaluated in 

McIntyre and Palmer (2017), a previous study using the same system and data.  In that study, 

outcomes ranged from a minimum storage of 9% and no economic loss in a policy that prioritized 

costs, to a minimum storage of 80% and 6.5% of annual revenue lost in a plan that prioritized 

maintaining high storage, the use of restrictions, and the use of Susquehanna water.  These ranges 

were used to define the minimum storage “cost” term such that the composite metric would have 

the same value for those two extremes of experimental operating policies.  A quadratic storage 

term resulted in more realistic actions than a linear term.  Operating decisions are made based on 

minimizing the composite metric C, the expected total “losses.” 

A model of the Baltimore system is used to determine the effect of varying absolute error 

in forecasts on system outcomes.  The model includes reservoir water balances and several 

possible actions (Table 3.1), coded in R as a set of ordinary differential equations.  The composite 
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metric defined above is used as an objective.  The full ensemble of forecasts is used to make an 

operating decision; instead of using the forecast mean or median to simplify the process, each 

forecast trace is run through the system model testing each possible drought mitigation action.  

Forecast traces are equally weighted, and the expected value of the composite metric is calculated 

for the 90-day period.  The action with the lowest expected loss is implemented for 5 days, until 

the subsequent set of forecasts is issued (Figure 3.4).  For this experiment, the model is run using 

the historic inflow record from 2/5/2001 to 12/27/2010. 

The same composite metric (with minimum storage in place of ending storage) is plotted 

as a function of the resampled forecasts’ absolute error to quantify the relationship between 

improved forecasts and improved system performance.  

 

Figure 3.4 Diagram of iterative system modeling for decision-making. There are a total of 

seven possible actions modeled for the Baltimore water supply system. 

  

 

 

Table 3.1 List of drought mitigation actions 

Action Susquehanna River Pumping (MGD) Water Use Restrictions 

1 0 none 

2 0 voluntary 

3 80 none 

4 80 voluntary 

5 80 mandatory 

6 137 voluntary 

7 137 mandatory 
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3.4.4 Forecast Sources 

HEFS and AR1 forecasts for Lancaster, PA and their significance for operating the 

nearby City of Baltimore water supply are compared, as the HEFS forecasts were not available 

for a site upstream of that system.  The HEFS forecasts at Lancaster are 37-member ensemble 

forecasts issued every 5 days from 2/5/2001 through 12/27/2010.  The AR1 forecasts are created 

for the same issue dates in a 66-member ensemble using the historic streamflow record from 1929 

to 1995.  For forecast quality and skill analysis, forecasts are evaluated based on the record of 

Lancaster flow.  For forecast value analysis, forecasts are used to predict the inflow of the City of 

Baltimore Water Supply using quantile mapping, the transfer method that performed best for 

these datasets when compared with Maintenance of Variance Extension, Type 1 (Mcintyre et al., 

2017). 

To test a range of forecast skills, 40-member ensemble forecasts are re-sampled from 199 

existing forecast traces to have a specific PS.  The ensemble shape is constrained at the 25th, 50th, 

75th, and 100th percentile to match the average shape of the HEFS or AR1 forecasts.  This requires 

the MCRD of the resampled forecasts to match the MCRD of the two existing forecasts types at 

those points.  This prevents outlier forecasts in an otherwise low-absolute error forecast from 

disproportionately and unrealistically influencing the model’s decision.  Absolute error values in 

resampled forecasts’ 90-day totals range from 1,000 MG to 30,000 MG (the equivalent of 4 to 

130 days of demand for the system) with the width w corresponding to a constant PS of 0.5.  The 

199 existing traces include HEFS forecasts, AR1 forecasts, and the historic record. 

3.5 Results and Discussion 

This methodology is design to answer the question, for a specific water resource system, 

what amount of performance improvement can be expected from improved forecasting?  To show 

the Mean Capture Rate Diagram in the context of water supply system use, the MCRD is plotted 

for the AR1, HEFS, and historic forecasts.  To quantify performance improvement, resampled 
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forecasts with a range of absolute errors are utilized in a system model of the Baltimore water 

supply.  Operations aim to balance minimizing costs with maintaining high storage levels in the 

reservoirs, and the best course of action according to a composite metric was chosen based on the 

upcoming 90 days’ ensemble forecast.  To demonstrate the Probability Score as a system-specific 

forecast verification metric, a value of w is chosen based on the Baltimore case study results, and 

the metric is evaluated for existing forecasts for Lancaster.  

3.5.1 The MCRD 

The MCRD evaluates the average range (the absolute error) around the observed value 

necessary to capture a given amount (the non-exceedance probability) of the ensemble forecast.  

Points with higher y-axis values on the plot indicate that a larger error (y) is necessary to capture 

 

Figure 3.5 The Mean Capture Rate Diagram for three existing forecasts. The diagram plots 

the absolute error, w, as a function of the non-exceedance probability or the Probability 

Score. The plot can be read as, to capture 20% of the forecast ensemble members (x-axis), a 

window of 10,000 mg (y-axis) around the observed value is necessary. 
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a given percentage of the ensemble (x); lower y-axis values indicate a better forecast.  The 

MCRD is plotted for HEFS, AR1, and historic forecasts as 90-day totals (Figure 3.5).  For most 

of the range of the ensemble, HEFS forecasts perform best, having most of the ensemble 

members closer to the true, observed value. However, larger absolute error values at a non-

exceedance probability of 1 indicate that the extreme values of the HEFS forecast ensembles are 

farther from the observed value than the AR1 forecasts.  These differences result in the varying 

shapes of the distribution of the ensemble.  The difference between the two forecasts is small 

relative to the total error of those large-error forecast members, but for both, the extreme-most 

10% of forecasts are substantially poorer than the remaining 90%.  This can be considered when 

utilizing the ensemble forecasts in practice, and a repeat of the case study giving less weight to 

the extreme traces may show overall better performance. 

3.5.2 System Performance 

To incorporate performance metrics into the MCRD, values of the composite metric, total 

system “losses,” can be plotted as a function of absolute error for a given non-exceedance 

probability.  Plotting “losses” as a function of forecast quality resulted in a linear trend over a 

large range of forecast error.  This relationship is plotted for a PS of 0.5 roughly constrained to 

two forecasts shapes in Figure 3.6.  The trend was also evident in trials defining forecasts by a PS 

of 0.3 and 0.7. Deviations around the trend are likely a consequence of the forecast creation 

method (sampling) and the decision method (a small-scale threshold-crossing effect of choosing 

an action based on forecasts).  By testing two forecast shapes, we see that for this case study, 

small changes in forecast shape (here, the difference between statistical and mechanistic forecasts 

for the site) have less of an effect on performance than does a difference in absolute error, though 

this may not be true for larger differences in forecast shape.  When resampled forecasts are not 

constrained to an ensemble shape (i.e. are only required to have 50% of traces within w of the true 

value and the other 50% without), the outlier traces have a larger effect on system performance.  
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In that case, performance was worse overall and nonlinear, with more significant improvement 

for a given reduction in error at the lowest absolute errors.  

In this framework, a single-trace perfect forecast would be equivalent to a PS of 1 and an 

absolute error of 0: 100% of forecast ensemble members are within 0 MG of the observed flow.  

This results in 1.36% of annual revenue lost over the 2001 – 2010 period, denoted on the plot as a 

blue star.  That is, a certain amount of drawdown, pumping, and water use restrictions are 

necessary for this system regardless of foresight.  This sets an upper bound on the ability of 

forecasts to improve operations, particularly over a significant drought. 

Existing forecasts are within the range of the linear trend (Figure 3.6).  To have a PS of 

0.5, the range of absolute errors for existing forecasts would be 16650, 18050, and 20230 MG for 

HEFS, AR1, and the historic ensemble, respectively.  

Incremental improvements to forecasts can be made and will result in improved system 

performance, as long as operations are capable of utilizing ensemble forecasts.  These 

improvements can be compared quantitatively to other options, including infrastructure changes, 

demand reduction, or distribution system monitoring and repairs.  Here, for example, results 

indicated a difference of $4 million in the cost of the 2001-2002 drought, calculated using the 

composite metric, over the range of forecast quality tested. 

The same trend is evident in the relationship between forecast absolute error and system 

“losses” for the 2001-2002 drought (here, the value of the composite metric over the two-year 

span of 2/5/2001 – 2/5/2003) (Figure 3.7).  In the case of drought, any quality of forecast results 

in higher losses in drought years than in the record overall, indicating that even with a perfect 90-

day outlook, some combination of water use restrictions, pumping, and substantial reservoir 

drawdown are necessary.  The fact that the trend remains the same in both the drought scenario 

and the full record indicates that, for a reservoir system with more than a year’s worth of storage, 

little benefit is derived from the forecasts for a multi-year drought, and that the 90-day foresight 

of good forecasts allows for better operations for more minor droughts elsewhere in the record.  
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Figure 3.6 The relationship between absolute error, w, and the composite metric “System 

Losses” for two forecast shapes, based on a model of the Baltimore water supply using 

synthetic ensemble forecasts. Absolute error is varied for a Probability Score of 0.5. Perfect 

forecasts, and existing HEFS and AR1 forecasts are included as single points. 

 

 

It is important to note that forecasts that inform drought management (as opposed to flood 

forecasts that inform flood management) are least valuable when reservoirs are relatively full.  

This is a result of the ratio of total water available between stored and future inflows and the fact 

that the longer-term forecasts have to be accurate for a very long period (the end of the 

drawdown-refill cycle). 

3.5.3 Probability score as an evaluation metric 

For the Baltimore system, the relationship between forecast error and system losses did 

not result in a threshold past which forecast improvements had diminishing returns.  Instead, a 
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target value of the composite metric can be chosen to compare the different forecast types’ 

Probability Scores.  1500 MG for a 90-day forecast was chosen as a slightly smaller forecast 

spread than current existing forecasts, which would have reduced losses to 1.8% annual revenue 

over the trial period.  Evaluating PS (w=1500 mg) resulted in PS of 0.46, 0.45, and 0.34 for 

HEFS, AR1, and historic forecasts.  This is the equivalent of reading a non-exceedance 

probability from the MCRD based on an absolute error (x as a function of y).  Ranking the three 

forecast types from best to worst by Probability Score, results are consistent with the RMSE, 

CRPS, and reliability of these same forecasts.  This consistency suggests that the Probability 

Score based on a system threshold may be included in forecast verification to confirm a benefit to 

the forecast user.  

The lack of a clear inflection point may be more widespread than just this pilot case.  For 

many east coast water supplies, the reservoir volume is greater than a year’s worth of demand, so 

that a multi-year drought would be necessary to substantially draw down the reservoir.  In those 

cases, it is likely that the quality of a hypothetical two-year forecast would make a larger 

difference in outcomes than the quality of a three-month forecast.  Further, drought mitigation 

actions can occur over a long period of time, such that a difference of 5 days pumping (the length 

of time between forecast issue days in the case study) is small relative to the total volume of 

water pumped over the course of a drought.  For this particular case study, the multi-objective 

model formulation does not lend itself to a threshold-like behavior.  In contrast, forecasts used in 

predicting high flows with the single objective of preventing downstream flooding may show an 

inflection point in the relationship between forecast quality and system performance.  The 

decision of whether and how much to draw down a flood control reservoir in advance of a storm 

or snowmelt season is inherently a more threshold-based problem; there are no or minimal costs 

to a particular point, and then costs (e.g. as flood damage) begin and increase.  The greatest 

benefit of discovering a threshold and using this variation on the Probability Score to judge and 
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Figure 3.7 For the 2001-2002 drought, the relationship between absolute error, w, and the 

composite metric “System Losses” for two forecast shapes, based on a model of the 

Baltimore water supply using synthetic ensemble forecasts. Absolute error is varied for a 

Probability Score of 0.5. A perfect forecast is included as a single point. 

 

 

drive forecast improvements may appear in multi-objective systems when a threshold-based 

function like flood control is combined with a value-providing objective such as recreation or 

water supply. 

When there is not an obvious choice of threshold, the threshold can be defined by 

regulations, e.g. on a legal threshold for the total maximum daily load of a constituent, or by 

making a direct comparison to the benefit expected from an infrastructure project.  The latter 

would require an additional step of estimating the cost and plausibility of that amount of 

forecasting improvement, itself a substantial scientific undertaking.  
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 The method itself is generalizable to water resource systems in many cases.  In cases 

where actions are taken based on the current and projected state of the system, the success of 

those actions depends on the quality of that projection.  This method is intended to quantify the 

value of improved forecasting and to provide an additional metric that incorporates system 

performance.  As such, the method would not be applicable to a one-time decision, such as setting 

a rule curve for a flood control reservoir.  Other, risk-based, methods would be more appropriate 

in such a case. 

3.6 Conclusions 

This paper answers one question about the use of hydrologic forecasts for water resource 

system management: What amount of system performance improvement can be expected from 

improved forecasting?  Using existing forecasts for Lancaster, PA, synthetic forecasts with 

varying quality, and a system model of the Baltimore, MD water supply system, this paper 

demonstrates a method for quantifying improved system performance as a function of improved 

forecast quality.  

For our case study, improvements in system performance were approximately linear over 

a range of forecast quality, from absolute errors larger than the error in climatology through a 

perfect forecast.  A point of diminishing returns in terms of system performance was not 

identified for this case study, and the inclusion of perfect forecasts in the analysis illustrated an 

upper limit on what is achievable through improved forecasting.  In the context of a water 

supply’s strategic planning, this method can help estimate the expected gains of an investment in 

forecasting, especially once pilot studies of new technologies exist. Recent advancements in 

remote sensing for hydrologic forecasting (Lettenmaier, 2017) may be a viable option for a water 

supply, placing forecasting in the same category as an infrastructure project.  Additionally, with a 

certain source of ensemble forecasts available, there may be a best way to incorporate those 

forecasts into management decisions.  The framework demonstrated here is also able to 
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accommodate alternate ways of utilizing forecasts in operations, by comparing system 

performance with the same set of incremental quality forecasts and different indicators, triggers, 

and actions.  In forecast verification, the current consensus is that a wide range of metrics should 

be used to evaluate forecasts.  The results here suggest that if the ultimate use of the forecast is 

known, system modeling and system-specific metrics can provide additional insight to forecast 

quality and value. 

Improved system performance is possible through improvements in hydrologic 

forecasting.  A method similar to the one proposed here can aid in quantifying the value of 

forecasts and thereby aid in the adoption of state of the art hydrologic forecasts.  It is “beyond the 

scope of this paper,” but not beyond the abilities of the profession, to see these improvements in 

practice. 
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CHAPTER 4 

INCORPORATING A HYDROLOGIC REGIME IN STATISTICALLY-BASED 

SEASONAL STREAMFLOW FORECASTS FOR THE EAST COAST 

4.1 Abstract 

This research explores the use of three-month categorical precipitation forecasts for 

improving streamflow forecasts on the east coast of the US.  Six case study sites span the east 

coast from Georgia to Maine.  The approach taken applies the concept of “regimes,” which are 

defined as forecasts of future wet or dry periods. For comparison, perfect categorical forecasts 

and recent observed precipitation totals are compared 

To provide rationale for such a regime definition, correlation between streamflow and 

precipitation is evaluated at the sites; correlation is highest between streamflow and the 

precipitation that occurs concurrent to the streamflow total.  To provide context and realism, the 

skill of National Weather Service Seasonal Precipitation Outlook forecasts is tested, as forecasts 

have been shown to have small positive skill on the East Coast.  Finally, the forecast-based 

regime definitions and the two comparison cases are incorporated into a variety of AR(1) 

streamflow forecasts.  If a precipitation forecast with actionable information is identified, the 

method creating that forecasts is applied to estimate the upcoming wet or dry regime at the 

portion of the historic streamflow record corresponding to either wet or dry years.  This research 

suggests that, at present, there is insufficient skill in seasonal precipitation forecasts to improve 

streamflow forecasting in the six cases tested.  This suggests that other tools or areas of 

operational improvement should be identified to improve water supply system performance. 

4.2 Introduction 

 As demonstrated in the previous chapter, incremental improvements in hydrologic 

forecasting can result in incremental improvements in water supply system performance. 
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Forecasts with a seasonal lead-time have been used effectively for water supply systems on the 

west coast of the US (Hamlet and Lettenmaier, 2000), where snow accumulation provides 

actionable information related to initial-conditions and teleconnections between precipitation and 

Pacific oscillations.  This chapter explores one possibility for improving statistical streamflow 

forecasting on the east coast. 

Methods of forecasting streamflow continue to evolve, including statistical, model-based, 

and hybrid methods.  These include combinations of statistical and dynamical models (Schepen et 

al. 2012; Rosenberg et al. 2011), models taking advantage of numerical weather prediction 

outputs (Bennet et al. 2014a; Bennet et al. 2014b; Wand and Fu, 2014; Coelho and Costa, 2010), 

and sophisticated methods for combining multiple numerical weather prediction and hydrologic 

models (Demargne et al., 2014; Block et al. 2009).  The National Weather Service’s (NWS) 

hydrologic forecasts include methods for quantifying the sources of uncertainty (e.g., choice of 

hydrologic model parameters, imperfect observations of current conditions) (Demargne et al., 

2014).  Currently, the quality of these forecasts varies significantly.  Factors impacting forecast 

quality include the state of sea surface temperature oscillations, e.g. El Nino years, or the set of 

forecasts issued, e.g. the lowest tercile of flows.  It has been suggested that improved, longer-term 

forecasts for the east coast might include a correlation between central pacific sea surface 

temperature and PDSI in the southeast and mid-Atlantic (Cole and Cook, 1998), between the 

Pacific/North American teleconnection index and fall, winter, and spring temperatures for the 

same region (Leathers et al. 1991), or between the North Atlantic Oscillation and low-flow 

streamflow statistics in the northeast (Steinschnieder and Brown, 2011).  In general, 

teleconnections for the east coast are weaker than for the western United States.  Nonetheless, the 

possibility of longer-term memory and wider climactic conditions influencing streamflow, such 

as in the Columbia River Basin in the Pacific Northwest (Hamlet and Lettenmaier, 1999), 

provides motivation for investigating the possibility of regime-based hydrologic forecasting on 

the east coast. 



 58 

 For the primary method investigated here, the current climate condition or the “regime” is 

predicted using the National Weather Service’s Seasonal Precipitation Outlook, a three-month 

categorical forecast of precipitation.  The categories predict “above average precipitation” (for the 

time of year), “below average precipitation,” or “an equal chance of above or below average 

precipitation.”  Six sites located along the east coast of the United States are used here to test 

regime-based hydrologic forecasts.  Section 4.3 details the sites, statistical forecasting method, 

and evaluation metrics used in this study.  Section 4.4 presents an assessment of both the 

underlying assumptions in the forecasting method and the method itself.  Several possible regime 

definitions and the categorical precipitation forecast skill are tested at the specific study sites.  

Ultimately, the NWS seasonal precipitation forecasts and two comparison regime definitions are 

used to create conditional first-order autoregressive forecasts for six case study sites on the east 

coast. The comparisons are used to determine if there is actionable information in either the 

observed or forecasted precipitation and how the method of incorporating a regime influences the 

forecast’s quality.  Section 4.5 discusses the results and their implications for east coast 

forecasting and water resources management.  Section 4.6 provides the chapter conclusions. 

4.3 Methods 

4.3.1 Data 

 Six east coast stream gages serve as pilot locations, two southeastern sites, one mid-

Atlantic site, and three northeastern sites (Figure 4.1).  Characteristics of the sites chosen include: 

long streamflow records, no upstream regulation of flows, and similar watershed size and flow 

magnitudes. One site for which NWS HEFS forecasts exist, Lancaster, PA, is included to 

facilitate future comparisons and utilization studies.  

For each site, three data series are required.  Daily streamflows were acquired from 

USGS stream gages.  Monthly precipitation records were obtained from the National Climatic 

Data Center (NCDC) from weather stations near each of the gages (Table 4.1). The categorical 
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seasonal precipitation forecasts were obtained from the NWS.  These forecasts are issued monthly 

and archived, and forecasts were obtained from the archived seasonal outlook maps.  The entirety 

of the overlapping precipitation and flow record was utilized for each of the sites.  Seasonal 

precipitation forecasts are available beginning in October 1995. 

 A preliminary analysis of the datasets, including the correlation between precipitation and 

streamflow (as monthly totals) and the skill of the categorical NWS precipitation forecasts, is 

included in the results to provide rationale and insight to the forecasts’ performance. For 

correlations, the entire overlapping portion of the streamflow and precipitation record was used. 

For evaluating the hydrologic forecasts, the entire overlapping precipitation and streamflow 

record was used to create hydrologic forecasts for the 1995 – present time frame, when NWS 

forecasts are available to use as a regime. 

 

 

Figure 4.1 Case study sites plotted on a NWS seaosnal precipitation forecast map. The 

seasonal forecast for August/September/October, issued on July 15, predicts wetter-than-

average conditions for most of the east coast. 
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Table 4.1 Case study sites for AR1/seasonal forecasting testing 

Gage 

(USGS) 
Name Average Flow 

Watershed 

Area 
Record Length 

02387000 
Conasauga River 

at Tilton, GA 
200 – 1050 cfs 687 sq. mi. 1964 - present 

02112000 
Yadkin River at 

Wilkesboro, NC 
400 – 1000 cfs 504 sq. mi. 1928 - present 

01576500 
Conestoga River 

at Lancaster, PA 
150 – 600 cfs 324 sq. mi. 1948 - present 

01423000 

West Branch 

Delaware River at 

Walton, NY 

70 – 1400 cfs 332 sq. mi. 1956 - present 

01166500 
Millers River at 

Erving, MA 
100 – 1800 cfs 372 sq. mi. 1950 - present 

01031500 

Pisquatis River 

near Dover-

Foxcroft, ME 

70 – 1000 cfs 298 mi sq 1947 - present 

 

4.3.2 Forecast Creation 

 Streamflow forecasts are created using an autoregressive model, and a baseline model is 

modified to incorporate the current hydrologic regime.  The baseline forecasts are created as 

follows.  The historic streamflow record is aggregated by month, normalized via a log-transform, 

and standardized to a mean of 0 and standard deviation of 1.  With Q1, Q2, …, Qn as monthly 

inflow totals, the normalization and standardization proceeds as follows. 

 

𝑌𝑡 = ln(𝑄𝑡)                                     (Equation 4.1) 

 

𝑍𝑡 =
𝑌𝑡−𝑌𝑚𝑜𝑛𝑡ℎ,𝑚𝑒𝑎𝑛

𝑌𝑚𝑜𝑛𝑡ℎ,𝑠𝑡𝑑
                                   (Equation 4.2) 

 

An AR(1) model is applied to the normalized standardized series Zt with a different 

autoregressive parameter 𝜙𝑚𝑜𝑛𝑡ℎ  for each month, leaving an error series εt from each year of the 

record.  A time sequence of observed 𝜙 is calculated from the normalized standardized data. 
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𝜙𝑡 = 𝑍𝑡 ∗ 𝑍𝑡−1                                     (Equation 4.3) 

 

A monthly 𝜙 parameter (12 total) is created as the average of all observed 𝜙 s for that month. 

 

𝜙𝑚𝑜𝑛𝑡ℎ = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜙𝑡 , 𝑚𝑜𝑛𝑡ℎ)                      (Equation 4.4) 

 

The error series from each year of the observed record is extracted from the data using the 

autocorrelation equation and parameters from the previous steps. The error series are saved as 

part of the process. 

 

𝜀𝑡 = 𝑍𝑡 −𝜙𝑚𝑜𝑛𝑡ℎ𝑍𝑡−1                               (Equation 4.5) 

 

 

The monthly AR(1) model is initiated using the past month’s streamflow and runs into the future 

for up to 12 months.  Each year’s error series is returned to the AR(1)-generated flows, creating 

variance in the forecasts based on variance in the historic record. The ensemble size is the number 

of years of record available.  The standardization and normalization of the data series is then 

reversed, and the daily variations reapplied to create an ensemble forecast at a daily time-step. 

Regime-based forecasts differ from the baseline forecasts in the following ways. When 

precipitation is predicted or observed to be above- or below-average, the regime-based case 

calibrates the monthly autoregressive parameter ϕ based on historic years with the same regime.  

In those same cases, only a portion of the historic variance, as εt, is included in the ensemble.  

When the regime is above or below average, the ensemble size is 1/3 that of the original AR(1) 

forecasts.  When the forecast predicts an “equal chance” of above or below average precipitation, 

the forecast utilizes the full record (i.e. the forecast is not constrained to the middle tercile when 
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“equal chance” is forecast).  To further investigate the process, two variations are also included, 

the first using just regime-based ϕ, and the second using just regime-based ensemble variance. 

Three methods of defining the regime are explored.  The central experimental method of 

the paper uses NWS Seasonal Precipitation Outlook forecasts, defining the regime as wetter than 

average, drier than average, or an equal chance of being above or below average.  This maintains 

the same categories as the forecasts.  For the east coast sites included here, forecasts of above or 

below average precipitation are only made in 15-30% of months with the remaining being 

forecasts of equal chance.  A second method uses the previous three months’ precipitation to 

define the regime retrospectively into the same three categories.  When the observed precipitation 

is in the middle tercile, a regime of “equal chance” is forecast.  Regime designation using this 

observed data is distributed more evenly into the three categories than with the NWS predictions.  

Finally, a hypothetical case of perfect categorical forecasts is included in the analysis.  This 

forecast correctly designates the regime into above- or below-average categories based on the 

upcoming precipitation. 

4.3.3 Evaluation Metrics 

This method for conditioning streamflow forecasts on a precipitation-based regime has 

assumptions: streamflow is correlated with precipitation, and for the first of three regime 

definitions, the precipitation forecasts provide actionable information.  The preliminary analysis 

to test these assumptions uses correlation, accuracy, and the Heidke Skill Score. Accuracy is 

defined as the fraction of correct categorical forecasts. 

  

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠

𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑠
                        (Equation 4.6) 

The Heidke Skill Score (HSS) is a measure of the forecast accuracy compared to random chance.  

A skill score gives further insight into the information available in precipitation forecasts. 

𝐻𝑆𝑆 =
𝑁𝐶−𝐸

𝑇−𝐸
                                        (Equation 4.7) 
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where NC is the number of correct forecasts, T is the total number of forecasts, and E is the 

number of forecasts expected to be correct by chance.  The HSS can range from -∞ to 1, with 0 

equaling no skill, 1 being a perfect forecast, and negative skill scores indicating that the forecast 

performs worse than a random guess.  For categorical forecasts, the predicted tercile (with an 

“equal chance” forecast designated as a forecast of the middle tercile) is compared to the 

observed tercile.  The numerical values are not considered in analyzing the quality of categorical 

forecasts in this case. 

The hydrologic forecasts themselves are evaluated with the Continuous Ranked 

Probability Score and Skill Score.  The CRPS integrates the squared difference between the 

ensemble and the observation for each ensemble forecast/observation pair.  

 

𝐶𝑅𝑃𝑆 =∫ (𝐹𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐹𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
2
𝑑𝑥

∞

−∞
            (Equation 4.8) 

 

with Fforecast the CDF of the forecast, and Fobservation the CDF of the observation (a step function).  

The skill score compares the regime-based forecasts with the baseline forecasts, with 1 being a 

perfect score, 0 indicating no skill, and negative values indicating that the regime-based method is 

not an improvement over the baseline.  The skill score is calculated by comparing the mean 

CRPS for each forecast type over the available record. 

 

𝐶𝑅𝑃𝑆𝑆𝑚𝑒𝑡ℎ𝑜𝑑 = 1−
𝐶𝑅𝑃𝑆𝑚𝑒𝑡ℎ𝑜𝑑,𝑚𝑒𝑎𝑛

𝐶𝑅𝑃𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,𝑚𝑒𝑎𝑛
                   (Equation 4.9) 

 

4.3.4 Experimental Design 

The experimental design has three steps.  First, several possible choices for the regime 

definition are chosen by analyzing the streamflow and precipitation records.  The correlation 
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between upcoming streamflow and a regime definition is used as an indicator of a promising 

regime definition.  Second, the quality and skill of the categorical precipitation forecasts are 

assessed using Accuracy and the Heidke Skill Score.  This creates a context for evaluating results.  

Finally, multiple, different forecasts are created, comparing regimes, methods, and the case study 

sites. The regime and method combinations result in nine cases for each case study site (Table 

4.2). These forecasts are assessed using the CRPSS.  The results from this experimental design 

establish the chapter’s conclusions. 

  

Table 4.2 Regime definition and methods combine to create nine hydrologic forecast cases 

 

4.4 Results 

4.4.1 Correlation between streamflow and precipitation 

 Creating a regime-based forecast requires some method of defining the regime.  This trial 

uses precipitation totals either prior to or concurrent with the desired streamflow forecast.  The 

choice of regime definition discussed up to this point is chosen in the following analysis.  Four 

candidate regime definitions are tested: total precipitation in the three months preceding the 

forecast, total precipitation for one month immediately preceding the forecast, total observed 

precipitation in the first month of the forecast time period, and total observed precipitation in the 

three months concurrent with the forecast.  When the regime is based on preceding precipitation, 

as in the first two “retrospective” regime definitions above, the regime is known with certainty at 
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the time of hydrologic forecast creation.  When the regime is based on upcoming precipitation, 

the regime would be available as predicted categories only, though at this stage, the correlation is 

ested using observed precipitation values from the historic record.  This test of correlations is a 

necessary first step in rationalizing the proposed method of the paper, because if the highest 

correlation were found to be between streamflow and prior precipitation for the case study sites, 

there would be no need to rely on precipitation forecasts. 

 Expectedly, three-month streamflow totals had the highest correlation with precipitation 

in those months, followed by one month of concurrent streamflow, three months of preceding 

streamflow, and one month of preceding streamflow.  Three-month precipitation concurrent with 

the hydrologic forecast is chosen as the first experimental regime definition. To examine a rule 

that does not rely on a forecast quantity, three-month preceding precipitation is chosen as a 

possible alternative.  (A perfect categorical forecast of three-month precipitation concurrent with 

the hydrologic forecast is chosen as a comparison case.)  One rule per trial is used to define the 

regime, to avoid overly reducing the pool of data used in generating the streamflow forecasts. (If 

both preceding precipitation and forecast precipitation were used in the regime definition, the 

nine categories created would result in a very small number of ensemble members for the 

resulting hydrologic forecasts.) The different rules used to define the regime are therefore: 1) 

NWS forecasted tercile of precipitation concurrent with the forecast, 2) tercile of preceding three 

months’ precipitation, and 3) a perfect categorical forecast of the precipitation tercile concurrent 

with the streamflow forecast. 

Figure 4.2 presents monthly correlations at each site for each possible regime definition, 

and the average correlation over all months and sites for each possible regime definition.  The 

streamflow total for a January data point is the sum of January, February, and March streamflow.  

The one-preceding-month regime definition sums the precipitation in December, and the three-

preceding-month regime includes the precipitation totals for the previous October, November, 

and December. 
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Figure 4.2 Monthly correlation of three-month streamflow totals to concurrent three-month 

precipitation (purple), first concurrent month precipitation (green), one previous month 

precipitation (red), and three previous months’ precipitation (blue), for six sites designated 

by state abbreviation. Horizontal colored lines indicate averages over all sites and all 

months. 
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4.4.2 Heidke Skill Score for precipitation forecasts 

 The Heidke Skill Score compares a categorical forecast to a random guess.  In general, 

forecasts had a small positive amount of skill, with the southeastern and mid-Atlantic performing 

better than the northeastern sites (Table 4.3).  Three cases had a negative skill score: monthly 

forecasts for Maine (-0.001), monthly forecasts for Massachusetts (-0.003), and seasonal forecasts 

for New York (-0.009).   

 

Table 4.3 Categorical precipitation forecasts' accuracy and skill 

Site 
Monthly Seasonal 

Accuracy HSS Accuracy HSS 

GA 0.40 0.094 0.39 0.079 

NC 0.40 0.077 0.48 0.098 

PA 0.38 0.055 0.55 0.125 

NY 0.33 -0.025 0.28 -0.009 

MA 0.30 -0.003 0.41 0.059 

ME 0.29 -0.002 0.46 0.017 

 

 

4.4.3 Regime based hydrologic forecasts 

 Though the central method of the experiment is the utilization of NWS Seasonal 

Precipitation Forecasts in statistical streamflow forecasts, a comparison of several rules and 

methods for regime-based forecasts is necessary to determine whether there is information in the 

forecasts and whether regime based-forecasts are an overall improvement in predicting 90 day 

streamflow totals.  The differences in hydrologic forecasts using three regime definitions 

differentiate whether it is more useful to use uncertain forecasts or known retrospective 

observations in defining the regime, “Regime Definition” in Tables 4.4 – 4.9.  In addition, three 

variations incorporating the regime into statistical forecasts are compared to a baseline forecast 

and to each other to determine how the regime influences the process.  In these variations, either 

the autoregressive parameter, the ensemble error terms, or both, are conditioned on the regime, 

“Conditional ϕ” and “Conditional εt” (Tables 4.4-4.9). In general, none show a substantial 

improvement over the baseline forecast.  
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 Conditioning the autoregressive parameter on the regime is detrimental in most cases, 

even when a perfect forecast of the regime is used (forecast cases 1, 2, and 3 with conditional 

ensemble variance, and cases 4, 5 and 6 alone).  Instead of wet and dry regimes having distinct 

patterns in their autocorrelation, the autocorrelation parameter behaves erratically in the 

conditional cases.  For example, a plot of the unconditional and conditional AR(1) for the Maine 

site shows that the parameter does not show any distinct patterns (Figure 4.3).  The smaller subset 

used in the conditional forecasts may hurt the model’s ability to best predict the autocorrelation. 

 

Table 4.4 Georgia hydrologic forecast skill 

Forecast Case Conditional ϕ Conditional εt 

Regime 

Definition CRPSS 

1 Y Y NWS -0.09 

2 Y Y perfect 0.04 

3 Y Y retrospective -0.39 

4 Y N NWS -0.04 

5 Y N perfect -0.02 

6 Y N retrospective -0.26 

7 N Y NWS -0.05 

8 N Y perfect 0.07 

9 N Y retrospective -0.37 

 

Table 4.5 North Carolina hydrologic forecast skill 

Forecast Case Conditional ϕ Conditional εt 

Regime 

Definition CRPSS 

1 Y Y NWS 0.04 

2 Y Y perfect 0.07 

3 Y Y retrospective 0.007 

4 Y N NWS 0.04 

5 Y N perfect 0.07 

6 Y N retrospective -0.05 

7 N Y NWS 0.12 

8 N Y perfect 0.13 

9 N Y retrospective 0.03 
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Table 4.6 Pennsylvania hydrologic forecast skill 

Forecast Case Conditional ϕ Conditional εt 

Regime 

Definition CRPSS 

1 Y Y NWS 0.07 

2 Y Y perfect 0.13 

3 Y Y retrospective 0.10 

4 Y N NWS 0.000 

5 Y N perfect 0.12 

6 Y N retrospective 0.07 

7 N Y NWS 0.07 

8 N Y perfect 0.13 

9 N Y retrospective 0.14 

 

Table 4.7 New York hydrologic forecast skill 

Forecast Case Conditional ϕ Conditional εt 

Regime 

Definition CRPSS 

1 Y Y NWS -0.03 

2 Y Y perfect 0.09 

3 Y Y retrospective -0.05 

4 Y N NWS 0.007 

5 Y N perfect -0.12 

6 Y N retrospective -0.11 

7 N Y NWS -0.007 

8 N Y perfect 0.25 

9 N Y retrospective 0.01 

 

Table 4.8 Massachusetts hydrologic forecast skill 

Forecast Case Conditional ϕ Conditional εt 

Regime 

Definition CRPSS 

1 Y Y NWS -0.02 

2 Y Y perfect 0.16 

3 Y Y retrospective -0.03 

4 Y N NWS -0.008 

5 Y N perfect -0.05 

6 Y N retrospective -0.07 

7 N Y NWS 0.001 

8 N Y perfect 0.24 

9 N Y retrospective -0.005 

 

Table 4.9 Maine hydrologic forecast skill 
Forecast Case Conditional ϕ Conditional εt Regime Definition CRPSS 

1 Y Y NWS -0.04 

2 Y Y perfect 0.22 

3 Y N NWS -0.002 

4 Y N perfect 0.004 

5 N Y NWS -0.04 

6 N Y perfect 0.22 
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Figure 4.3 The monthly autocorrelation parameter fit to the full (unconditional) historic 

record, black, and to the wettest tercile of the historic record, blue, and the driest tercile of 

the historic record, pink, in each month. The parameters for wet and dry conditions are 

calibrated in a series of three-month blocks starting in each month. 

 

 Conditioning the ensemble variance, as a portion of the full record of error traces, based 

on the regime has the most influence over the forecast’s skill (forecasts cases 7, 8, and 9, in tables 

above).  When the regime is defined by perfect precipitation forecasts, the method is consistently 

an improvement over the baseline.  Meanwhile, for the other two regime definitions, the method 

either improved or worsened the hydrologic forecasts. 

 Perfect forecasts performed best in almost every case; in most cases, there was no 

difference between the skills of forecasts defining the regime based on the NWS seasonal 

precipitation outlooks and forecasts defining the regime based on retrospective observations of 

precipitation.  Similarly, there is no pattern between the relative correlation between precipitation 

and streamflow over these periods with the definition’s effectiveness as a regime definition.  

Accuracy and the HSS for forecasts indicated very little information in the precipitation forecasts, 
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and this lack of information was observed in the streamflow forecasts.  Additionally, seasonal 

variations in both precipitation forecast skill and hydrologic forecast skill were not included in the 

analysis, and these may contribute to a lack of pattern in results. 

4.5 Discussion  

 The cases and sites included in this experiment were chosen to answer several questions 

about streamflow forecasting on the east coast, including questions regarding the skill of 

precipitation forecasts, regional differences in efficacy, and methodology choices all in support of 

determining whether NWS precipitation forecasts could be used to improve statistical streamflow 

forecasts on the east coast.  Differences in skill of the methods were discussed briefly in the 

results section with two key points.  Artificially limiting the dataset in the conditional ϕ case, by 

calculating the autoregression parameter based on a regime-defined subset of years, resulted in 

poorer performance of the statistical forecasting method.  Users of statistically-based hydrologic 

forecasts should be aware of the size of their dataset when testing any future method that 

deliberately limits the dataset. Meanwhile, disaggregating the ensemble variance was more 

successful in improving streamflow forecasts based on a regime when the predicted regime was 

correct, as in the perfect precipitation forecast cases.  While the record as a whole is standardized 

and normalized to a mean of 0 in this method, the degree to which a historic year was wet or dry 

is preserved in the individual error traces, e.g. error traces from wet years will have average totals 

well above 0.  It is these error traces that store the range, from wet to dry, of possibilities in the 

method used here.  The location of the gage, categorized as southeastern, mid-atlantic, and 

northeastern, has a small effect on whether statistical streamflow forecasts result in improvement 

through utilizing a hydrologic regime. Southeastern and mid-Atlantic precipitation forecasts from 

NWS perform better than those from northeastern sites.  Weather patterns originating from the 

southern Atlantic may be more predictable at this coarse seasonal scale than weather patterns 

coming across the continent.  Lower correlations between streamflow and concurrent 
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precipitation for several months in Georgia result in the streamflow forecasts for that site 

decreasing in skill regardless of the use of perfect forecasts.  It is unlikely that water storage in 

snowpack is a driving factor in lower streamflow forecast skill in the northeast. If that were the 

case, a seasonal pattern showing lower correlation between streamflow and precipitation in winter 

or spring would be observed.  Based on the results across all sites, for this regime-based method 

to perform better than baseline, both high correlations between precipitation and streamflow, and 

precipitation forecast skill above zero are necessary.  

Regardless of location, a major impediment to improved streamflow forecasting is the 

uncertainty in future climactic conditions.  Lacking good precipitation forecasts, defining the 

hydrologic regime based on observations or forecasts that are currently available did not result in 

improved hydrologic forecasts.  This likely reflects the reality on the east coast, where hydrologic 

forecast uncertainty is dominated by the uncertainty in upcoming conditions (Shukla & 

Lettenmaier, 2011) and there is a lack of actionable skill in precipitation forecasts.  This is, in 

itself, valuable information in predicting an upper limit of hydrologic forecast skill.  Combined 

with the methods in Chapter 3, this allows a utility to decide whether or not to invest in 

improving the forecasts themselves or to put resources towards other methods of improved 

operations or infrastructure.  Currently, formally incorporating a regime into long-term forecast 

generation for east coast sites is not recommended, though methods other than the one tested here 

may show better results.  Possible improvements in the global observation network may improve 

longer term precipitation forecasts over time (Lettenmaier, 2017), and shorter term precipitation 

forecasts and the resulting hydrologic forecasts for flood warnings are still a valuable resource in 

water resource management (Hapuarachchi et al., 2011). 

 High quality three-month hydrologic forecast can be used in seasonal drought planning 

combined with other indicators, such as demand and current storage, the latter of which is a 

strong indicator of potential shortages (Booras et al., 2017).  With perfect categorical 

precipitation forecasts, using a subset of ensemble variance consistently improved upon the 
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baseline hydrologic forecasts. If precipitation forecast information is good, an even simpler 

method may be best for use in water supply system operation.  If the hydrologic forecast is 

created using the baseline method from this experiment with no regime-based conditioning, the 

decision-maker can choose to focus on some portion of that ensemble based on predicted 

precipitation while still having the full record of historic variance available.  Changes in 

operations utilizing the level of forecasts that are available, may also result in improved 

operations for water supply, but managers should be conscious of the forecast’s skill and 

limitations.  In terms of resource allocation for a municipal water supply, a potential approach 

may range from clearly recognizing the limits of current forecasts and investing in more 

sophisticated and locally generated forecasting methods. 

4.6 Conclusion 

 In literature and in practice, hydrologic forecasting for water supply management on the 

east coast is a more difficult task than for the western United States and a barrier to more 

widespread implementation.  In this research, a method of improving statistical ensemble 

streamflow forecasts based on defining a hydrologic regime is tested for three-month flow totals 

for six sites on the east coast, with their intended use being for water supply management.  Based 

on these experiments, there is insufficient skill in NWS seasonal precipitation forecasts and 

limited correlation with preceding precipitation for a regime-based approach to be an 

improvement in practice.  Knowing the initial basin conditions is helpful, but uncertainty 

associated with longer-term precipitation forecasts results in the forecasts not having a positive 

impact on predicting streamflows.  The research illustrates that with better precipitation forecasts, 

utilizing a subset of the baseline statistical forecasts would be the most successful method of 

incorporating a categorical regime.  While the utilization of forecasts in water supply 

management can be beneficial, improving longer-lead-time forecasts themselves is a difficult 

task. 
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CHAPTER 5 

CONCLUSION 

 

The research in this dissertation, summarized and included in full, examines the science 

and vulnerabilities of water resources in the northeast, compares climate change adaptations for 

water quality and quantity management for the New York City Water Supply System, quantifies 

the value of small incremental improvements in hydrologic forecasting for use in drought 

management for the City of Baltimore Water Supply System, and searches for those incremental 

improvements by modifying an existing statistical ensemble forecasting method.  

Chapter 1 details three studies performed prior to the research that comprises the 

remaining three technical chapters.  First, turbidity is modeled in the New York City Water 

Supply System using stochastic weather sequences, a hydrologic model, and a system model of 

the New York City Water Supply System.  Incremental changes in precipitation and temperature 

(spanning those projected by CMIP5) are shown to have varying effects on the in-reservoir 

turbidity depending on the season.  Second, different statistical methods for generating weather 

sequences (to be used in climate change planning or extreme events management) are tested.  A 

lag-1 Markov chain process coupled with either skewed normal, exponential, or KNN-resampling 

distributions are determined to be the most parsimonious and best approach to capture the 

statistics of extreme precipitation events.  Finally, the New York City Water Supply system is 

included in a study of climate change outcomes for northeastern cities.  On a monthly time-step, 

with a large amount of reservoir drawdown, the NYCWSS will remain reliable (in terms of water 

quality) across the range of current climate projections.  These experiments provide the basis and 

the inspiration for the remaining chapters. 

Chapter 2 investigates adaptations for the New York City Water Supply system in more 

detail, modeling both water quantity and turbidity on a daily time-step for climate projections 

through the end of the century and testing possible adaptations.  A stochastic weather generator, 
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hydrologic model, and system model incorporating adaptations are used in series, with climate 

change projections for temperature and precipitation from CMIP5.  Results illustrate how 

reducing demand and managing storage and releases based on hydrologic forecasting reduce the 

frequency of drought warnings and emergencies and improve system reliability.  In addition 

operations that limit turbidity propagation through the system and improvements to the Catskill 

Aqueduct (to lower the minimum flow under conditions with high turbidity) result in lower 

turbidity loads and a reduction in emergency Alum use.  The city’s existing infrastructure, 

combined with upcoming projects to improve the system and reduce demand, provide a 

promising outlook for the system’s future reliability. 

Chapter 3 expands on one of the adaptations included in Chapter 2:  the use of hydrologic 

forecasting at three-month lead-times.  Prompted by the need to quantify improved system 

performance with forecasting (cited as one barrier to the implementation of hydrologic 

forecasting in water resource engineering), a method is applied that creates forecasts with 

incremental differences in quality to determine the effect on system performance of improved 

forecasts.  The method created a set of 90-day outlook ensemble hydrologic forecasts issued 

every 5 days with varying skill according to the Probability Score.  Each ensemble forecasts 

(representing a particular forecast quality) is evaluated using a water supply systems model.  Each 

trace was considered equally likely, and the expected value (a composite metric of economic 

costs and reservoir storage) of each possible action is calculated.  The best option was 

implemented until the next forecast is issued.  For a case study site of the City of Baltimore Water 

Supply System, system performance improved linearly with forecast quality.  Because of an 

imbalance between water demand, system capacity, and inflows, even a perfect forecast could not 

prevent the necessity of restrictions, pumping, or reservoir drawdown over the 2001-2002 

drought.  Nonetheless, the method can play a useful part in a water resource system’s long term 

planning. 
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Finally, Chapter 4 examines a possible method for improving statistically-based 

streamflow forecasts on the eastern US coast by defining a hydrologic regime based on forecast 

or observed precipitation.  Several methods for both defining the regime (as wetter, dryer, or 

average according to the historic precipitation terciles used in the National Weather Service’s 

Seasonal Precipitation Outlook maps) and creating the forecasts (an AR(1) monthly process for 

streamflow with daily data and variability preserved from the historic record) were tested and 

compared.  Overall, improvements in the hydrologic forecasts were limited by the skill of the 

precipitation forecasts at a three-month lead-time. A regime-based forecast was not a significant 

improvement over the baseline unconditional AR(1) process.  On the east coast, hydrologic 

forecast uncertainty is dominated by uncertainty in the upcoming conditions, and the results in 

Chapter 4 reinforced this. 

Future work following from all three chapters should include the application of the 

methods herein to other sites or systems on the east coast or elsewhere.  Comparisons with 

systems from across the country would provide further information on the unique challenges and 

opportunities in water resources engineering on the east coast, compare large and small systems, 

and further refine the methods themselves.   

The results in Chapter 4, in particular, would benefit from a comparison with west coast 

sites for this method and with further variations on the method itself for all sites.  A comparison 

with west coast sites would explore differences in the ranges and seasonality of precipitation and 

streamflow at each site, the skill of the precipitation forecasts, and at the effectiveness of the 

method itself especially at sites with higher precipitation forecast skill.  This would provide 

broader insights into the effectiveness of regime-based AR(1) forecasts and perhaps identify a 

threshold of forecast skill or a type of hydrology where this or a similar method becomes a viable 

improvement over baseline forecasts.  Several variations on the process are also possible, 

including utilizing individual precipitation forecast traces of the ensemble forecast used to make 



 77 

the Seasonal Outlook maps if that data becomes available.  If this results in an improvement, the 

added complexity in the process may be a worthwhile change to the method. 

From Chapter 3, the method for quantifying system performance improvement can also 

include the change in system performance as a function of operation or infrastructure changes, 

adding a third dimension to the results and providing insight to where improvement stands to be 

gained.  For example, the operating policies in Booras et al. (2017) can be adapted to utilize 

ensemble forecasts, and a more thorough analysis of the system and options can be completed.  

Similarly, the comparison of infrastructure and operating policies for the New York City Water 

Supply System in Chapter 2 can be expanded with incremental forecast quality from the methods 

utilized in Chapter 3.  The methods in Chapters 2 and 3 combined can create a full picture of 

options and outlooks for infrastructure, forecasting, and the effects of climate change on the 

system.  All of the results and methods can be updated as new datasets and climate change 

projections become available. 

Through system-specific studies and wise utilization of the existing science, researchers 

and water managers will continue to pursue best management practices to provide reliable and 

high quality drinking water to the cities of the northeast. This dissertation is a small part of that 

large effort. 
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