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ABSTRACT

A CONE CONJECTURE FOR LOG CALABI-YAU SURFACES

MAY 2021

JENNIFER LI

B. Sc., LOUISIANA STATE UNIVERSITY

M. Sc., LOUISIANA STATE UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Paul Hacking

We consider log Calabi-Yau surfaces (Y,D) with maximal boundary. We denote by

(Ye, De) the unique surface in each deformation type such that the mixed Hodge

structure on H2(Y \D) is split. The generic log Calabi-Yau surface (Ygen, Dgen) does

not contain any (−2)-curves. We prove that (1) if K is the kernel of the action of

Aut(Ye, De) on H2(Ye \De), then Aut(Ye, De)/K acts on the nef effective cone of Ye

with a rational polyhedral fundamental domain; and (2) The monodromy group acts

on the nef effective cone of Ygen with a rational polyhedral fundamental domain. We

also prove that for a log Calabi-Yau surface (Ye, De) of boundary length n ≤ 6, the

cone of curves of Ye is finitely generated, and we explicitly describe the cones. This

provides infinite series of new examples of Mori Dream spaces.
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CHAPTER 1

INTRODUCTION

1.1. Organization

This paper is organized as follows. In the Introduction, we give an overview

of the project with some informal definitions. We also give a brief explanation of

our motivations for this project in the Introduction. Section 2 consists of the main

definitions, Section 3 is where we state major theorems and lemmas used, and Section

4 contains the proof of the conjecture. In Section 5, we give explicit descriptions of

certain cones of curves, which provide infinite series of new examples of Mori Dream

Spaces. We end the paper with Section 6, where we explain in some more detail the

motivations of our project.

1.2. Known Results

Given a smooth projective variety Y over C, the closed cone of curves of Y is the

closure of the set of all nonnegative linear combinations of classes of irreducible curves

in H2(Y,R). The cone of curves of any Fano variety is rational polyhedral, meaning

it has finitely many rational generators (see Theorem 1.24 on p.22 of [KM98]). But

this is not true in general for Calabi-Yau varieties - if Y is Calabi-Yau, the cone of

curves of Y could be round, for example (see Figure 1.2.1). The nef cone is the dual

of the cone of curves.

The Morrison cone conjecture states that if Y is a Calabi-Yau variety, then there

exists a rational polyhedral cone which is a fundamental domain for the action of the

automorphism group of Y on the nef cone. This can be pictured in dimension two

1



Figure 1.2.1. The left drawing shows a rational polyhedral cone,
which has finitely many extremal rays. The cone on the right is round.

Figure 1.2.2. The drawing above shows a rational polyhedral funda-
mental domain, which is the shaded region, that tessellates the interior
of a cone.

using hyperbolic geometry - in this case, there exists a rational polyhedral “piece”

that tessellates the interior of the cone, as shown in Figure 1.2.2.

The conjecture is known to be true in dimension two, but for higher dimensions, it is

an open question. In [T10], Totaro has shown that a generalization of this conjecture

is true in dimension two: if (Y,∆) is a klt Calabi-Yau pair, then the automorphism

group of Y acts on the nef cone with a rational polyhedral fundamental domain.

2



We are studying a cone conjecture for log Calabi-Yau surfaces that is similar

to, but different from, the conjecture proved by Totaro. We consider a log Calabi-

Yau pair (Y,D) where Y is a smooth projective surface and D is a reduced normal

crossing divisor on Y such that KY + D = 0. Additionally, we require D to be

singular, and write D = D1 + · · · + Dn for the irreducible components of D. By

the Gross-Hacking-Keel Torelli theorem for log Calabi-Yau surfaces (Theorem 1.8

in [GHK15b]), in each deformation type of log Calabi-Yau surfaces there exists a

unique pair (Y,D) = (Ye, De) such that the mixed Hodge structure on Y \D is split.

The conjecture we study is stated as follows:

1.3. Conjecture statement

There are two statements:

Conjecture 1.3.1. Let (Ye, De) be a log Calabi-Yau surface such that the mixed

Hodge structure on H2(Ye \ De,Z) is split. Let K be the kernel of the action of the

automorphism group of the pair on H2(Y,Z). Then Aut(Ye, De)/K acts on the nef

effective cone Nef e(Ye) with a rational polyhedral fundamental domain.

Conjecture 1.3.2. Let (Ygen, Dgen) be a generic log Calabi-Yau surface. Then the

monodromy group Adm acts on the nef effective cone Nef e(Ygen) with a rational poly-

hedral fundamental domain.

1.4. Results

Conjecture 1.3.1 and Conjecture 1.3.2 hold.

3



1.5. Motivation

The Morrison cone conjecture, stated in 1993, is originally inspired by mirror

symmetry. The log Calabi-Yau surface version of this conjecture is also related to

mirror symmetry through the deformation theory of cusp singularities of surfaces.

Given a log Calabi-Yau surface (Y,D), we may contract the boundary D to a

cusp singularity p, resulting in (Y ′, p) (see Grauert [G62]) and Definition 2.23). Cusp

singularities come in dual pairs such that the links are diffeomorphic but have opposite

orientations. If (Y ′, p) is obtained by contracting the boundary of a log Calabi-Yau

surface (Y,D) to a cusp singularity p ∈ Y ′, then, conjecturally, (Y,D) corresponds to

an irreducible component of the deformation space of the dual cusp. This is expected

as a consequence of mirror symmetry: Y \D is mirror to the Milnor fiber of the

corresponding smoothing of the dual cusp. Again conjecturally, the component of

the deformation space of the dual cusp can be described in terms of the action of

the monodromy group Adm on Nef (Y ′), by a construction of Looijenga ([L03], §4).

However, to use this construction, the group Adm must act with a rational polyhedral

fundamental domain on the effective nef cone of Y ′, and this is the original motivation

for our conjecture, cf. [M93].

4



CHAPTER 2

BACKGROUND

Let Y be a smooth complex projective variety. A divisor on Y is a formal integral

linear combination
∑
aiDi of codimension one subvarieties Di of Y . A 1-cycle on Y is

a formal integral linear combination C =
∑
aiCi of curves Ci ⊂ Y . The intersection

product D ·C is an integer for D a divisor and C a 1-cycle. Two divisors D1 and D2

are said to be numerically equivalent if D1 · C = D2 · C for all curves C ⊂ Y . Two

1-cycles C1 and C2 are said to be numerically equivalent if D · C1 = D · C2 for all

divisors D ⊂ Y .

We defineN1(Y ) to be the space of divisors with real coefficients modulo numerical

equivalence, and the space N1(Y ) to be the space of 1-cycles with real coefficients

modulo numerical equivalence. Then the intersection product defines a nondegenerate

pairing

(2.1) N1(Y )×N1(Y )→ R.

By the Néron-Severi theorem, the space N1(Y ) is finite dimensional, and by 2.1,

the dimensions of N1(Y ) and N1(Y ) are equal. Alternatively by Hodge theory,

N1(Y ) = H1,1(Y )
⋂

H2(Y,R),

where H2(Y,R) is a subset of H2(Y,C) = H2,0 ⊕H1,1 ⊕H0,2.

Remark 2.2. Although we define some terms for varieties of any dimension, we only

consider the case that Y is two-dimensional. Moreover, the surface Y is rational in

5



our setting (see [GHK15b], p.1). It follows that

N1(Y ) = H2(Y,R) = Pic(Y )⊗ R,(2.3)

N1(Y ) = H2(Y,R) = Cl(Y )⊗ R,(2.4)

and N1(Y ) = N1(Y ) because dim(Y ) = 2. Here is a proof of the lines 2.3 above: since

Y is smooth, its class group is isomorphic to its Picard group, that is, Cl(Y ) ∼= Pic(Y ).

We have H1(OY ) = H2(OY ) = 0 because Y is rational, so by the exponential exact

sequence, the first Chern class gives an isomorphism Pic(Y ) ∼= H2(Y,Z). By Poincaré

Duality, it follows that H2(Y,Z) = H2(Y,Z), and the intersection product on H2(Y,R)

is nondegenerate.

Properties of a smooth projective surface Y are encoded using convex geometry

through cones.

Definition 2.5. Let V be a finite dimensional real vector space, so that V ' Rρ for

some ρ ≥ 0. Then C ⊂ V is called a cone if for any v ∈ C, the product λ · v ∈ C

also, for any λ ∈ R>0.

Remark 2.6. For us, the vector space V is Pic(Y )⊗Z R ' Rρ.

Remark 2.7. We only consider convex cones. Recall that a set S ⊂ V is convex

if x, y ∈ S implies that λ1x + λ2y ∈ S for all λ1, λ2 ∈ R≥0 such that λ1 + λ2 = 1.

Geometrically, for any two points x, y in S, the line segment L joining x and y also

lies in S. If S = C is a cone, this is equivalent to the condition that x, y ∈ C implies

x+ y ∈ C.

In the following definitions, let Y be a smooth complex projective variety.

Definition 2.8. The nef cone of Y is defined as follows:

Nef (Y ) = {L ∈ N1(Y ) | L · C ≥ 0 for all irreducible curves C ⊂ Y }

Definition 2.9. The effective cone of Y is defined by:

6



Eff(Y ) = {
∑

ai[Di] ∈ N1(Y ) | ai ∈ R≥0 and Di ⊂

Y are codimension one subvarieties.}

Definition 2.10. Following Kawamata in [K97], we define the nef effective cone of

Y as follows:

Nef e(Y ) = Nef (Y )
⋂

Eff(Y ).

Conv(S), where S is subset of a real vector space, is used to denote the convex hull

of the set S.

Lemma 2.11. For a smooth projective surface,

Nef e(Y ) = Conv{[L] ∈ N1(Y ) | L ∈ Pic(Y ) is nef and h0(L) 6= 0}.

Proof. For any element [L] ∈ Conv{[L] ∈ N1(Y ) | L ∈ Pic(Y ) is nef and h0(L) 6=

0}, the line bundle L ∈ Pic(Y ) is nef so that [L] ∈ Nef (Y ). It is also effective by

definition, proving the inclusion Conv{[L] ∈ N1(Y ) | L ∈ Pic(Y ) is nef and h0(L) 6=

0} ⊆ Nef e(Y ).

If L ∈ Nef e(Y ), then L is nef, and L is effective, meaning we can write L =
r∑
i=1

ai[Ci] for some curves Ci and ai ∈ R≥0. Define a rational polyhedral cone σ :=

〈C1, . . . , Cr〉R≥0, and τ := σ
⋂

Nef (Y ). Then L ∈ τ ⊂ Nef e(Y ). Moreover, since

τ ⊂ σ is defined by a a finite list of inequalities {M ∈ σ | M · Ci ≥ 0 for all i},

τ is rational polyhedral, so we may write L ∈ τ as a linear combination
∑
ciMi of

integral classes Mi ∈ τ with nonnegative real coefficients. Therefore L ∈ Conv{[L] ∈

N1(Y ) | L ∈ Pic(Y ) is nef and h0(L) 6= 0}, proving that Nef e(Y ) ⊆ Conv{[L] ∈

N1(Y ) | L ∈ Pic(Y ) is nef and h0(L) 6= 0}. �

Corollary 2.12. For (Y,D) a log Calabi-Yau surface (see Definition 2.16), the nef

effective cone of Y is equal to the convex hull of the integral points of the nef cone of

Y , that is,

Nef e(Y ) = Conv(Nef (Y )
⋂

Pic(Y )).

7



Proof. This result follows from Lemma 2.11 and Lemma 2.22. �

Definition 2.13. The cone of curves of Y is defined as follows:

Curv(Y ) = {
∑

ai[Ci] ∈ N1(Y ) | ai ∈ R≥0 and each Ci ⊂ Y an irreducible curve}.

We write Curv(Y ) to mean the closure of the cone of curves.

Remark 2.14. The nef cone Nef (Y ) and the closed cone of curves Curv(Y ) are dual

cones. This can be understood as follows. In an arbitrary real vector space V , if σ ⊂ V

is a cone, then its dual cone is defined as σ∗ := {θ ∈ V ∗ | θ(v) ≥ 0 for all v ∈ σ}.

Definition 2.15. Let L be a finitely generated free Abelian group, ie., L ' Zρ for

some ρ ≥ 0. A cone C ⊂ L⊗Z R ' Rρ is said to be rational polyhedral if

C = 〈v1, . . . , vr〉R≥0 = {a1v1 + · · ·+ arvr | ai ∈ R≥0},

for some v1, . . . , vr ∈ L. That is, the cone C is generated by finitely many integral

vectors v1, . . . , vr ∈ L.

Definition 2.16. A log Calabi-Yau surface is a pair (Y,D) where Y is a smooth

complex projective surface and D ⊂ Y is a reduced normal crossing divisor such that

KY + D = 0. We say that (Y,D) has maximal boundary if D is singular. We write

D = D1 + · · ·+Dn, where n is the number of components or the length of D.

In this thesis, we always assume that (Y,D) has maximal boundary. If (Y,D) is a

log Calabi-Yau surface with maximal boundary, then Y is a rational surface, i.e., Y

is birational to P2 (see [GHK15b], top of p.2).

Remark 2.17. The boundary D is either a rational curve of arithmetic genus one

with a single node (i.e., a copy of P1 with two points identified to form a node), or it

is a cycle of smooth rational curves (i.e., a cycle of n copies of P1). This follows from

the adjunction formula.

We fix a cyclic ordering D = D1 + · · ·+Dn of the components of D and a compatible

orientation (an isomorphism H1(D,Z) ' Z). This orientation is uniquely determined

by the cyclic ordering for n greater than two.

8



Definition 2.18. We say that a log Calabi-Yau surface (Y,D) is generic if there are

no (−2)-curves C contained in Y \D. We sometimes write (Ygen, Dgen) to denote one

such log Calabi-Yau surface.

Definition 2.19. Two log Calabi-Yau surfaces (Y 1, D1) and (Y 2, D2) are said to be

deformation equivalent if there exists a flat family (Y ,D) over a connected base S such

that there are points p, q ∈ S with fibers f−1(p) = (Y 1, D1) and f−1(q) = (Y 2, D2).

Since S is connected, there is a path from p to q. In this case, we say that (Y 1, D1)

and (Y 2, D2) are of the same deformation type.

By the GHK Torelli Theorem in [GHK15b], given a log Calabi-Yau surface

(Y,D), the moduli space M of log Calabi-Yau surfaces that are deformation equiv-

alent to (Y,D) can be described explicitly and the locus of generic surfaces is the

complement of a countable union of divisors in M (see [GHK15b], Section 6). For

any two generic surfaces of the same deformation type, the nef cones of the two

surfaces are the same. This cone for Ygen is described after the following definition:

Definition 2.20. For a log Calabi-Yau surface (Y,D), an interior (−1)-curve is a

smooth rational curve of self-intersection −1 that is not contained in the boundary

D. By the adjunction formula, such a curve must intersect the boundary transversely

at a single point.

Proposition 2.21. (See Gross-Hacking-Keel [GHK15b], Lemma 2.15)

Nef (Ygen) = {L ∈ Pic(Y )⊗Z R | L2 ≥ 0 and L ·Di ≥ 0 for all i and

L · C ≥ 0 for any interior (-1)-curve C}.

Lemma 2.22. Let (Y,D) be a log Calabi-Yau surface. If L ∈ Pic(Y ) is nef, then L

is effective.

9



Proof. Let L ∈ Pic(Y ) be nef. By Riemann-Roch, we have

χ(L) = χ(OY ) +
1

2
L(L−KY )

= 1 +
1

2
(L2 + L ·D)

≥ 1,

since L being nef and D being effective give L · D ≥ 0 and L nef gives L2 ≥ 0. On

the other hand, we have

χ(L) = h0(L)− h1(L) + h2(L)

≤ h0(L) + h2(L)

Next we show that h2(L) = 0. By Serre Duality, we have h2(L) = h0(KY − L) =

h0(−D − L). If H is ample and L is nef and D is effective, then we have H ·D > 0

and H ·L ≥ 0. Then H · (−D−L) < 0, so h0(−D−L) = 0. Thus h0(L) ≥ χ(L) ≥ 1,

and therefore L is linearly equivalent to an effective divisor. �

Definition 2.23. A cusp singularity is a surface singularity whose minimal resolution

is a cycle of smooth rational curves that meet transversally. That is, the exceptional

locus of the minimal resolution of a cusp singularity is a union of copies of P1 with

nodal singularities such that the dual graph is a cycle.

Given a log Calabi-Yau surface (Ygen, Dgen) with Dgen having a negative definite

intersection matrix (Di · Dj), it is possible to contract Dgen to a cusp singularity p

(by a theorem of Grauert on the contractibility of a negative definite configuration of

curves on a smooth complex surface in the analytic category - see [G62] and Figure

2.1). Let f : Ygen → Y ′gen be the morphism contracting Dgen to a point. Then we

have the induced isomorphism

Ygen \Dgen
∼= Y ′gen \ {p},
10



and f−1(p) = Dgen. In addition, the surface Y ′gen is normal and compact (for the

usual Euclidean topology). We note that although Ygen is a projective variety, the

new surface Y ′gen is in general no longer a projective variety, but a normal, complex

analytic space. We make the following definitions.

Figure 2.1. The drawing above shows the contraction of the bound-
ary D of a log Calabi-Yau surface (Y,D) to another pair (Y ′, p), where
p is a cusp singularity. The new surface is an analogue to a K3 surface.
Here we note that the interior curves pictured in (Y,D) are (−1)-curves.
When D is contracted to the cusp p, these curves all pass through the
point p. It may be that in Y ′, such a curve is contractible to a point
and so defines an extremal ray of the cone of curves of Y ′. Although
the surface Y ′ is similar to a K3 surface, there is no analogue of such
curves in the case of a K3 surface. For this reason, the cone of curves
of Y ′ is more complicated than that of a K3.

Definition 2.24. (Mumford’s definition of intersection numbers on a normal surface,

on p.17 of [M61]). Let X be a normal surface and let π : X̃ → X be a resolution of

singularities of X. Then for a divisor D on X, we may define π∗D by

π∗D := D′ +
∑

aiEi,

where D′ is the strict transform of D, the Ei’s are exceptional curves of π, and the

ai ∈ Q are chosen such that(
D′ +

∑
aiEi

)
· Ej = 0 for all j.

We note that because the intersection matrix (Ei · Ej) is negative definite, it is non-

degenerate and therefore the coefficients ai are uniquely determined. Then π∗D ∈
11



Pic(X̃)⊗ZQ satisfies (π∗D) ·Ei = 0 for all exceptional curves Ei. Now we may define

the intersection number of two divisors D1 and D2 on the surface X in the following

way:

D1 ·D2 := π∗D1 · π∗D2 ∈ Q,

where the dot ‘·’ denotes the intersection product on Pic(X̃)⊗Z Q.

Definition 2.25. We define the nef cone of Y ′gen in the following way:

Nef (Y ′gen) = {L ∈ Cl(Y ′gen)⊗Z R | L · C ≥ 0 for all curves C ⊂ Y ′gen},

where the dot ‘·’ in the intersection ‘L · C ≥ 0’ represents Mumford’s intersection

product on Cl(Y ′gen).

Definition 2.26. We define the nef effective cone of Y ′gen in the following way:

Nef e(Y ′gen) = Nef (Y ′gen) ∩ Eff(Y ′gen) ⊂ Cl(Y ′gen)⊗Z R.

Lemma 2.27. The cone Nef (Y ′gen) may be described as follows:

Nef (Y ′gen) = Nef (Ygen)
⋂
〈D1, . . . , Dn〉⊥R

Proof. First we prove that

Nef (Y ′gen) = Nef (Ygen)
⋂
〈D1, . . . , Dn〉⊥R .

Because we have the birational morphism of surfaces f : Ygen → Y ′gen with exceptional

locus D ⊂ Ygen, we have the following exact sequence:

(2.28) 0→ 〈D1, . . . , Dn〉Z → Cl(Ygen)
f∗−→ Cl(Y ′gen)→ 0.

Then Cl(Y ′gen) ∼= Cl(Ygen)/〈D1, . . . , Dn〉Z. Tensoring both sides by R results in

θ : Cl(Y ′gen)⊗ R ∼−→ Cl(Ygen)⊗ R/〈D1, . . . , Dn〉R

∼= 〈D1, . . . , Dn〉⊥R ,

12



where the second isomorphism holds because Cl(Ygen) = 〈D1, . . . , Dn〉R⊕〈D1, . . . , Dn〉⊥R
(since the intersection product on 〈D1 . . . , Dn〉R is negative definite and so nondegen-

erate).

Because Nef (Y ′gen) is contained in Cl(Y ′gen)⊗R, it remains to show that θ induces

an isomorphism τ : Nef (Y ′gen) ∼= Nef (Ygen)
⋂
〈D1, . . . , Dn〉R, as shown below.

Nef (Y ′gen) ⊂ Cl(Y ′gen)⊗ R

↓ τ ↓ θ

Nef (Ygen)
⋂
〈D1, . . . , Dn〉⊥R ⊂ 〈D1, . . . , Dn〉⊥R

We use the definitions:

Nef (Ygen) = {L ∈ Pic(Ygen)⊗ R | L · C ≥ 0 for all curves C ⊂ Ygen},

and

Nef (Y ′gen) = {L ∈ Cl(Y ′gen)⊗ R | L · C ≥ 0 for all curves C ⊂ Y ′gen},

where L · C refers to Mumford’s intersection product (explained above in 2.24).

First we show that L ∈ Nef (Y ′gen) implies that θ(L) ∈ Nef (Ygen). Let C ⊂ Y ′gen

be a curve. Then

θ(C) = C ′ +
∑
aiDi,

such that θ(C) · Di = 0 for all i. Here we use C ′ to denote the strict transform of

C. Now we have θ(L) · θ(C) = θ(L) · C ′. Since θ(L) is perpendicular to each Di by

definition, for each i, the intersection θ(L) ·Di is zero. Then θ(L) ·C ′ = θ(L) · θ(C) =

L · C ≥ 0. The last inequality is by our assumption that L ∈ Nef (Y ′gen).

For any curve Γ ⊂ Ygen, we have θ(L) · Γ ≥ 0. This is because Γ is either

exceptional, so that Γ = Di and θ(L) · Γ = 0, or Γ is not exceptional, so that

f(Γ) = C is some curve on Y ′gen, so that Γ = C ′ and θ(L) · Γ ≥ 0 by the inequality in

the previous paragraph. Thus by definition of Nef (Ygen), we obtain θ(L) ∈ Nef (Ygen).

Conversely, we want to show that M ∈ Nef (Ygen)
⋂
〈D1, . . . , Dn〉⊥R implies M =

θ(L) for some L ∈ Nef (Y ′gen). Since θ : Cl(Y ′gen) ⊗Z R ∼−→ 〈D1, . . . , Dn〉⊥R is an

13



isomorphism, we have M = θ(L) for some unique L ∈ Cl(Y ′gen)⊗ R. If C ⊂ Y ′gen is a

curve, then

L · C = θ(L) · θ(C)

= θ(L) · C ′

= M · C ′

≥ 0,

where the last line comes from the assumption that M is nef. Therefore L ∈

Nef (Y ′gen). This completes the proof that Nef (Y ′gen) ∼= Nef (Ygen)
⋂
〈D1, . . . , Dn〉⊥R .

�

Lemma 2.29. The cone Nef e(Y ′gen) may be described as follows:

Nef e(Y ′gen) = Nef e(Ygen)
⋂
〈D1, . . . , Dn〉⊥R .

Proof. Because Nef e(Y ) = Nef (Y )
⋂

Eff(Y ), it suffices to show that Eff(Y ′gen)
∼−→

Eff(Ygen) under the isomorphism θ : Cl(Y ′gen)⊗R→ 〈D1, . . . , Dn〉⊥R , defined above in

the proof of Lemma 2.27. We use the following to observations:

(1) The restriction of the pushforward f∗ : Cl(Ygen) ⊗ R → Cl(Y ′gen) ⊗ R to

〈D1, . . . , Dn〉⊥R coincides with θ−1. This follows from the exact sequence 2.28

and the definition of θ. Now f∗ sends effective divisors to effective divisors:

f∗(
∑

aiCi) =
∑

aif∗(Ci),

where f∗(Ci) = 0 if f(Ci) is a point and f∗(Ci) = f(Ci) otherwise. So θ−1

sends effective divisors to effective divisors.

(2) If L is effective, then θ(L) is effective: this is because

θ(L) = L′ +
∑

aiDi,

where L′ is the strict transform of L and each ai ∈ Q and θ(L) ·Di = 0 for

all i. If L is effective, then its strict transform L′ is also effective. By Lemma

14



3.41 in Kollár and Mori [KM98], each ai is nonnegative. Therefore θ(L) is

effective.

�

Definition 2.30. An isomorphism of log Calabi-Yau surfaces (Y 1, D1) and (Y 2, D2)

means an isomorphism θ : Y 1 → Y 2, with the property that θ(D1
i ) = θ(D2

i ) for each

boundary component Dk
i of Dk for k = 1, 2, and θ respects the orientations of D1

and D2 (automatic for n ≥ 3). The automorphism group of a log Calabi-Yau surface

(Y,D) is denoted by Aut(Y,D).

Definition 2.31. Given any log Calabi-Yau surface (Y,D), the admissible group of

Y is defined as follows:

Adm = {θ ∈ Aut(Pic(Y ), ·) | θ([Di]) = [Di] for all i = 1, . . . , n and

θ(Nef (Ygen)) = Nef (Ygen)}.

In the definition above, the Picard group Pic(Y ) is considered as an Abelian

group. The dot ‘·’ symbol that appears in (Pic(Y ), ·) denotes the intersection form

on Pic(Y ). Then Aut(Pic(Y ), ·) is by definition the group of automorphisms of the

Abelian group Pic(Y ) which preserve the intersection form. So in other words, the

group Adm is the subgroup of Aut(Pic(Y ), ·) consisting of all automorphisms that fix

the class of each component of D and preserve the cone Nef (Ygen).

Remark 2.32. Adm is identified with the monodromy group for (Y,D) (see [GHK15b]

Theorem 5.15 on p.25).

Definition 2.33. Let Γ be a group and X a topological space. Suppose that Γ acts

on X by homeomorphisms. We say that a closed subset D ⊂ X is a fundamental

domain for the action of Γ on X if the following are true:

(1) for all x ∈ X, there exists d ∈ D and γ ∈ Γ such that γ(d) = x; and
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(2) for all γ1, γ2 ∈ Γ such that γ1 6= γ2, the intersection γ1D∩γ2D has no interior.

Equivalently, for all γ ∈ Γ such that γ 6= 1, the intersection γD ∩D has no

interior.

Remark 2.34. The two conditions in the last statement of Definition 2.33 are equiv-

alent because

γ1D ∩ γ2D = γ2((γ−1
2 γ1)D ∩D)

Definition 2.35. Given a log Calabi-Yau surface (Y,D), the period point is de-

fined to be the homomorphism φ : 〈D1, . . . , Dn〉⊥ → C∗, where a line bundle L ∈

〈D1, . . . , Dn〉⊥ is sent to θ([L|D]) ∈ C∗, where θ : Pic0(D)
∼−→ C∗ is the isomorphism

determined by the given orientation of D (as explained in [GHK15b], Lemma 2.1).

Here Pic0(D) is the kernel of the map c1 : Pic(D) → H2(D,Z) ' Zn, defined by

sending any L ∈ Pic(D) to
(
deg(L|Di

)
)n
i=1

= (deg(L|D1), . . . , deg(L|Dn)).

By Proposition 3.12 in [F15], the homomorphism φ is the extension class of the

mixed Hodge structure on H2(U,C), where we take U = Y \D. There exists an exact

sequence (see [L81], Chapter I, Section 5.1, p. 285):

0→ Z→ H2(U)→ 〈D1, . . . , Dn〉⊥ → 0.

There exists a unique log Calabi-Yau surface in each deformation type such that

φ(α) = 1 for all α ∈ 〈D1, . . . , Dn〉⊥, i.e., meaning that φ : 〈D1, . . . , Dn〉⊥ → C∗ is

the constant map sending everything to 1. This follows from the Torelli theorem

and is stated at the beginning of Section 5 of [GHK15b]; it is also stated without

proof in [F15], in Corollary 9.7. This unique surface corresponds to the mixed Hodge

structure on H2(U) being split. In this case we denote the log Calabi-Yau surface

by (Ye, De). To summarize, for any log Calabi-Yau surface (Y,D), there is a unique

surface denoted (Ye, De) such that

(1) the mixed Hodge structure on H2(Ye \De,Z) is split, and

(2) (Ye, De) is deformation equivalent to (Y,D).

16



Definition 2.36. Given a log Calabi-Yau surface (Y,D), the associated root system

is the subset of Pic(Y ) defined by:

Φ = {α ∈ 〈D1, . . . , Dn〉⊥ | α⊥ ∩ Int(Nef (Ygen)) 6= ∅ and α2 = −2}

Definition 2.37. We define the Weyl group of a root system Φ ⊂ Pic(Y ) as follows:

W = 〈sα | α ∈ Φ〉 ⊂ Aut(Pic(Y ), ·),

where the generators sα(β) = β + (α · β)α are the reflections in the hyperplanes α⊥

for α ∈ Φ.

An equivalent but more efficient presentation of the Weyl group involves the simple

roots of a log Calabi-Yau surface.

Definition 2.38. Given (Ye, De), we define the simple roots as the set:

∆ = {[C] | C ⊂ Ye \De is a (−2)-curve}.

Proposition 2.39. The Weyl group W is generated by the reflections sδ for δ ∈ ∆,

i.e.,

W = 〈sδ | δ ⊂ ∆〉.

We note that ∆ ⊆ Φ and W · ∆ = Φ (see Definition 1.6 and Proposition 3.4 in

[GHK15b]). By Lemma 2.15 in [GHK15b],

Nef (Ye) = Nef (Ygen)
⋂

(δ ≥ 0 for all δ ∈ ∆),

where (δ ≥ 0 for all δ ∈ ∆) means {L ∈ Pic(Y )⊗ R | L · δ ≥ 0 for all δ ∈ ∆}.

Remark 2.40. The Weyl group is a normal subgroup of Adm: it follows from the

definitions 2.31 and 2.36 that Adm preserves Φ. If g ∈ Adm and α ∈ Φ, then

gsαg
−1 = sg(α), which implies that W � Adm.

By Theorem 3.2 of Gross-Hacking-Keel [GHK15b], the groupW acts on Nef e(Ygen)

with fundamental domain Nef e(Ye). This is called the fundamental chamber in

Nef (Ygen). By Theorem 5.1 in Gross-Hacking-Keel [GHK15b] on p.19, there is

an exact sequence
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1→ K → Aut(Ye, De)→ Adm /W → 1,

where K is the kernel of the action of Aut(Ye, De) on Pic(Y ).

18



CHAPTER 3

TOOLS

Here we include some main results that we used in the proof of our results.

Theorem 3.1. The Global Torelli Theorem for (Y,D) (Gross-Hacking-Keel [GHK15b],

Theorem 1.8, p.5). Suppose that (Y 1, D1) and (Y 2, D2) are log Calabi-Yau surfaces.

Consider the following three statements:

(1) θ : Pic(Y 1) → Pic(Y 2) is an isometry such that θ([D1
i ]) = [D2

i ] for i =

1, . . . , n.

(2) θ(L) is ample for some ample L on Y 1.

(3) φY 2 ◦ θ = φY 1, where φY : 〈D1, . . . , Dn〉⊥ → C∗ is the period point of Y .

(1), (2) and (3) hold if and only if θ = f ∗ for some isomorphism f : (Y 2, D2) →

(Y 1, D1).

Theorem 3.2. (Engel-Friedman [EF16], Proposition 1.5, p.13). Let (Ygen, Dgen) be

a generic log Calabi-Yau surface, where Dgen has at least three boundary components.

If E is a divisor on Ygen with nonnegative integer coefficients, then E is linearly

equivalent to a divisor of the form∑
aiDi +

∑
bjCj,

where the Cj’s are disjoint interior (−1)-curves and ai, bj are nonnegative integers.

Remark 3.3. Although the Engel-Friedman Theorem 3.2 is stated for E with non-

negative integer coefficients, the statement also holds for E with nonnegative real

coefficients. There is a sketch of the proof in the paper ([EF16], p.55), which uses a

continuity argument and the assertion that the collection of subsets{∑
ajDj +

∑
biEi | aj, bi ∈ R≥0

}
,
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where the Ei’s are disjoint interior (−1)-curves, is locally finite in Nef e(Ygen) in a

sense that is made precise below. Since this is important for our results, we give a

complete proof (see Corollary 3.10).

Friedman showed in [F15] that Adm acts with finitely many orbits on the set of

faces of Nef e(Ygen) corresponding to interior (−1)-curves. This is stated in Theorem

3.4.

Theorem 3.4. (Friedman [F15], Theorem 9.8, p.74) Let (Y,D) be a generic log

Calabi-Yau surface. Let E(Y,D) be the set of all interior (−1)-curves of Y . Then

the admissible group Adm acts on E(Y,D) and there are finitely many Adm-orbits for

this action.

The following Corollary 3.5 by Friedman is similar to the statement above. Specif-

ically, it is a statement about the action of Adm on the set of collections of disjoint

interior (−1)-curves.

Corollary 3.5. (Friedman [F15], Corollary 9.10, p.75) Given a generic log Calabi-

Yau surface (Y,D), let Ek(Y,D) be the set of collections {E1, . . . , Ek}, where the

curves Ei are disjoint, interior (−1)-curves. Then the admissible group Adm acts on

Ek(Y,D) and the number of Adm orbits for this action is finite.

Theorem 3.6. (Looijenga [L14], Proposition-Definition 4.1; and Application 4.14;

and Proposition 4.7) Let Γ be a group and L be a lattice, i.e., a finitely generated free

abelian group, and let C ⊂ L⊗Z R be an open nondegenerate convex cone. Define

C+ := Conv(C̄ ∩ L).

Assume that Γ acts on L faithfully, preserving the cone C. If there exists a polyhedral

cone Π ⊂ C+ such that Γ ·Π = C+, then there exists a rational polyhedral fundamental

domain for the action of Γ on C+. Moreover, in this case, the group NΓF/ZΓF acts

on any face F of C+ with a rational polyhedral fundamental domain.
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Remark 3.7. In Proposition 3.6, following the notation of Looijenga, we use NΓF

to mean the normalizer of F in Γ and ZΓF to mean the centralizer (i.e., elements of

Γ that fix F pointwise). The last statement is a special case of Proposition 4.7 in

[L14].

Lemma 3.8. Let (Ygen, Dgen) be a generic log Calabi-Yau surface. For a collection

{E1, . . . , Ek} of disjoint (−1)-curves, define

C ′(E1, . . . , Ek) := 〈D1, . . . , Dn, E1, . . . , Ek〉R≥0
∩ Nef e(Ygen).

Then

(1) C ′(E1, . . . , Ek) is a rational polyhedral cone; and

(2) If Dgen consists of at least three components, the set of cones C ′(E1, . . . , Ek)

covers Nef e(Y ′gen).

Proof. Let C be the cone defined by

C := 〈D1, . . . , Dn, E1, . . . , Ek〉R≥0
,

so that C ′(E1, . . . , Ek) can be expressed as C∩Nef e(Ygen). The cone C ′(E1, . . . , Ek) is

rational polyhedral because C is rational polyhedral by definition, and the intersection

with the nef cone is given by finitely many inequalities L ·Di ≥ 0 and L ·Ej ≥ 0 for all

1 ≤ i ≤ n and all 1 ≤ j ≤ k. This shows that C ′(E1, . . . , Ek) is rational polyhedral.

Now assume that Dgen has at least three components. To see why,

Nef e(Ygen) =
⋃

C ′(E1, . . . , Ek),

where the union is over the set
⋃
k

Ek(Y,D) of collections {E1, . . . , Ek} of disjoint

interior (−1)-curves. We apply Corollary 3.10 below. �

Theorem 3.9. (The Siegel Property, as stated in Looijenga’s paper [L14], Theorem

3.8.) Let L be a lattice and V = L⊗R. Let C ⊂ V be an open convex nondegenerate

cone. We denote the convex hull Conv(C̄ ∩ L) by C+. Let Γ be a subgroup of GL(V )

such that Γ leaves the cone C and the lattice L invariant. Then Γ has the Siegel
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Property in C+, that is, if Π1 and Π2 are polyhedral cones in C+, then the collection

{γΠ1

⋂
Π2}γ∈Γ is finite.

Next, we give the precise statement of Engel-Friedman’s Proposition 3.2 for real

coefficients, followed by a careful proof, which uses the Siegel Property 3.9 and the

result 3.5 of Friedman.

Corollary 3.10. (Engel-Friedman 3.2 for E with real coefficients) Let (Ygen, Dgen) be

a generic log Calabi-Yau surface, where Dgen has at least three boundary components.

If E is a divisor on Ygen with nonnegative real coefficients, then E is linearly equivalent

to a curve of the form ∑
aiDi +

∑
bjCj,

where the Cj’s are disjoint interior (−1)-curves and ai, bj are nonnegative real num-

bers.

Proof. We use the same notation introduced in Lemma 3.8 above, that is, for a

log Calabi-Yau surface (Ygen, Dgen) where Dgen is of length at least three, we let

C := 〈D1, . . . , Dn, E1, . . . , Ek〉R≥0.

We want to show that

(3.11) Curv(Ygen) =
⋃

C(E1, . . . , Ek),

where Curv(Y ) := {
∑
ai[Cj] | ai ∈ R≥0 and Ci ⊂ Y are irreducible curves}.

Remark 3.12. Because dim(Ygen) = 2, the cones Eff(Ygen) and Curv(Ygen) coincide.

By definition, for any collection {E1, . . . , Ek} of disjoint interior (−1)-curves,

C(E1, . . . , Ek) := 〈D1, . . . , Dn, E1, . . . , Ek〉R≥0

= {a1D1 + · · ·+ anDn + b1E1 + · · ·+ bkEk | ai, bj ∈ R≥0}.

Thus the following inclusion holds for any cone C(E1, . . . , Ek):

22



C(E1, . . . , Ek) ⊆ Curv(Ygen)

Therefore we also have

⋃
C(E1, . . . , Ek) ⊆ Curv(Ygen),

where the union is taken over all C(E1, . . . , Ek) where {E1, . . . , Ek} are collections of

disjoint interior (−1)-curves. Therefore, in order to prove the equality in Equation

3.11, we need to prove the following inclusion:

(3.13) Curv(Ygen) ⊆
⋃

C(E1, . . . , Ek),

Let x ∈ Curv(Ygen) be an arbitrary point. A convex cone is the disjoint union of

the relative interiors of its faces. This follows from the supporting hyperplane theorem

(see [S11], Proposition 8.5 on p.122). There are two cases we need to consider.

Case 1. Suppose that x ∈ Int(Curv(Ygen)). Then we may construct a small rational

polyhedral cone around x such that this is contained in Curv(Ygen). This can be done

by choosing rational points that lie inside of Curv(Ygen) and are close to x. Taking the

convex hull of these rational points gives a rational polyhedral cone that is contained

in Curv(Ygen) and also contains x.

Case 2. Suppose that x /∈ Int(Curv(Ygen)). Then x ∈ relInt(F ), where F is some

face of Curv(Ygen). Since Curv(Ygen) is generated by rational points, the same is true

for any face of Curv(Ygen). In particular, the face F is the convex hull of its rational

points, so the rational points are dense in F . Thus we may choose a sequence of points

xn ∈ F
⋂

(Pic(Y ) ⊗ Q) that converge to x as n approaches infinity. The original

Engel-Friedman statement (see Proposition 3.2) was stated for integer coefficients,

but this implies that the statement for rational coefficeints is also true. So for every

n, the point xn belongs to some cone C(E1, . . . , Ek), as defined above.

Since x ∈ relInt(F ), i.e., the interior of F regarded as a subset of 〈F 〉R, there exists

a rational polyhedral cone Π ⊂ F such that x ∈ relInt(Π) and dim(Π) = dim(F ).

Then relInt(Π) is an open subset of F . Since the points {xn} converge to x in
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the face F , there exists some number N ∈ N such that xn ∈ Π for all n ≥ N .

Friedman’s results tells us that Adm acts on the cones C(E1, . . . , Ek) with finitely

many orbits. Say we choose a representative Ci from each orbit, so we have finitely

many representatives C1, . . . , Cr (note that we drop the {E1, . . . , Ek} part here to keep

the notation simpler). By the Siegel property 3.9, there exists finitely many elements

g ∈ Adm such that g(Ci)
⋂

Π 6= ∅. Suppose these elements are gi,1, . . . , gi,mi
for

i = 1, . . . , r. Then the following cones intersect Π:

g1,1C1, . . . , g1,m1C1

g2,1C2, . . . , g2,m2C2

...

gr,1Cr, . . . , gr,mrCr.

As a result, we have a (finite) total of m = m1 + · · · + mr cones σl of the form

C(E1, . . . , Ek) intersecting the cone Π. Since each cone C(E1, . . . , Ek) is closed, the

finite union
m⋃
l=1

σl

is also closed. Recall that each xn is contained in some cone in the union above, so

their limit point x must also lie in the union, i.e.,

x ∈
m⋃
l=1

σl ⊂
⋃

C(E1, . . . , Ek).

Now we have shown that Curv(Ygen) ⊆
⋃
C(E1, . . . , Ek). Therefore,

Curv(Ygen) =
⋃
C(E1, . . . , Ek) =

⋃
〈D1, . . . , Dn, E1, . . . , Ek〉R≥0,

proving Corollary 3.10. �

Theorem 3.14. If L is a nef divisor on Y = Ye, then L is semiample.

Proof. Let L be nef on Y = Ye. Then L2 ≥ 0. If L2 > 0, then by Friedman’s

results (see Theorem 4.8 on p.35 in Friedman [F15]), the divisor L is semiample. For
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the remainder of this proof, we suppose that L2 = 0 and L 6= 0. Using Riemann-Roch,

we obtain

χ(L) = χ(O) +
1

2
L · (L−KY )

= 1 +
1

2
L2 +

1

2
(L ·D) since Y is rational and KY +D = 0

= 1 +
1

2
(L ·D) using L2 = 0.

Here we note that χ(L) ≥ 1, since L nef and D effective imply that L · D ≥ 0. On

the other hand, the Euler characteristic of L may also be expressed as

χ(L) = h0(L)− h1(L) + h2(L).

By the last paragraph of the proof of Lemma 2.22, since L is nef, we have h2(L) =

0. Now χ(L) = h0(L) − h1(L) = 1 +
1

2
(L ·D). Recall that L ·D ≥ 0 (because L is

nef). Next we split this last inequality into two subcases, and in each situation we

prove that h0(L) ≥ 2.

Subcase (i). Suppose that L ·D > 0, or L ·D ≥ 1. Then

χ(L) = h0(L)− h1(L)

= 1 +
1

2
(L ·D)

≥ 1 +
1

2
· 1 =

3

2
.

Since χ(L) ∈ Z, we must have χ(L) = h0(L)−h1(L) ≥ 2. Since h1(L) is by definition

the dimension of a vector space, we have h1(L) ≥ 0. Then h0(L) − h1(L) ≤ h0(L).

Combining these inequalities, we have 2 ≤ h0(L)− h1(L) ≤ h0(L), or h0(L) ≥ 2.

Subcase (ii). Suppose that L ·D = 0. We still have χ(L) = h0(L)− h1(L) = 1; the

point here is to show that h1(L) ≥ 1, which would prove that h0(L) ≥ 2. In other

words, we eliminate the possibility that h0(L) = 1. Since L ·D = 0 and L is nef, we

have L · Di = 0 for all i. Then because Y = Ye, by Friedman’s result in [F15] (see
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Prop 3.12 on p.22 and Def 3.7 on p.30), it follows that OD(L|D) ' OD. From the

exact sequence

0 −→ OY (L−D) −→ OY (L) −→ OD −→ 0,

we obtain

H1(OY (L))
δ−→ H1(OD) −→ H2(OY (L−D))

'
C

By Serre Duality, we have

h2(OY (L−D)) = h0(OY (KY − (L−D)))

= h0(OY (−L)) since KY +D = 0

= 0.

Then the map δ in the exact sequence above is surjective, so H1(OY (L)) 6= 0, i.e.,

dimH1(OY (L)) = h1(L) > 0,

so h1(L) ≥ 1. Now h0(L) = 1 + h1(L) ≥ 1 + 1 = 2.

Therefore h0(L) ≥ 2. This means that in the linear system |L|, there is a moving

part. Writing L = M + F , where M is the moving part and F is the fixed part, we

have

L2 = L · (M + F )

= L ·M + L · F,
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and L nef gives L ·M ≥ 0 and L · F ≥ 0. Since L2 = 0 by assumption, we obtain

L ·M = 0 = L · F . Now we have

L ·M = (M + F ) ·M

= M2 +M · F

= 0,

and M is nef (since it is moving) so M2 ≥ 0 and M · F ≥ 0, so M2 = M · F = 0.

Also,

L2 = (M + F )2

= M2 + 2M · F + F 2

= F 2, since M2 = 0 = M · F ,

so that F 2 = L2 = 0. We make two conclusions from the computations above.

(a) The linear system |M | has no fixed part, so |M | is basepoint free: there exists

M ′ ∼M such that M and M ′ have no common components (since M is moving).

Then M · M ′ = M2 = 0, so Supp(M) ∩ Supp(M ′) = ∅, and therefore |M | is

basepoint free. It follows that there exists a map φ|M | : Y → C, where C ⊂ PN

is a curve. By Stein factorization (see Hartshorne [H77], Chapter III (11.5) on

p.276), replacing L = M + F by kL = kM + kF for sufficiently large k, we may

assume that C is a smooth curve and φ has connected fibers.

Remark 3.15. The point of the last statement above is to avoid the possibilities

of the map Y → C having disconnected fibers and of the curve C being singular.

(b) Secondly we conclude that L is semiample, using the results that F 2 = 0 and

F ·M = 0. Since F ·M = 0, the divisor F is contained in a union of fibers of

the map φ : Y → C. A fiber has negative semidefinite intersection matrix with

kernel generated over Q by the class of the fiber. Therefore kF is a sum of fibers
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for some k > 0. Then k′F is basepoint free for some k′ > 0 such that k|k′ by

Riemann-Roch on the curve C. Now k′ · L = k′ ·M + k′ · F is basepoint free, so

L is semiample.

�
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CHAPTER 4

PROOF OF THE CONJECTURE

Theorem 4.1. The cone conjecture for Ygen holds. That is, the group Adm acts on

Nef e(Ygen) with a rational polyhedral fundamental domain.

Proof. First, assume n ≥ 3. By Friedman’s result (Corollary 3.5), the group

Adm acts on the set of finite collections of disjoint interior (−1)-curves with finitely

many orbits. Since each cone C ′ described above (in Lemma 3.8) is determined by

a finite set of disjoint interior (−1)-curves, we conclude that Adm acts on the set

of all such cones C ′ with fnitely many orbits. This result, together with Lemma 3.8

and Looijenga’s results (see Theorem 3.6) allow us to conclude that Adm acts on the

nef effective cone Nef e(Ygen) with a rational polyhedral fundamental domain. To see

why, let C ′1, . . . , C
′
r be representatives for the finitely many orbits of Adm on the set

of cones C ′. Let Π = Conv(C ′1, . . . , C
′
r). Then Π is rational polyhedral because the

cones C ′i are, by Lemma 3.8 (1). Moreover Adm ·Π = Nef e(Ygen) by Lemma 3.8 (2).

Therefore Adm acts on Nef e(Ygen) with a rational polyhedral fundamental domain

by Theorem 3.6 of Looijenga: in our setting, the lattice L is Pic(Ygen) and C is the

ample cone of Ygen (which is the interior of Nef (Ygen)). Its closure C̄ is Nef (Ygen).

The group Γ acting on L is Adm. By Corollary 2.12, C+ = Nef e(Ygen). This proves

the cone conjecture for Ygen in the case when Dgen has at least three components.

If the number of components n of Dgen is one or two, then we show below in Section

5 that the nef cone is rational polyhedral for Ye. Moreover in these cases, the groups

Adm and the Weyl group W are equal (see Looijenga [L81], Chapter I, Proposition

4.7 on p.284, or see Friedman [F15], Theorem 9.13, p.76). Because the action of W on

Nef e(Ygen) has fundamental domain Nef e(Ye) (see Gross-Hacking-Keel [GHK15b],
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Theorem 3.2, p.15), we conclude that Adm = W acts on Nef e(Ygen) with the rational

polyhedral fundamental domain Nef (Ye), proving the cone conjecture.

�

Theorem 4.2. The cone conjecture for Y ′gen holds. That is, the group Adm acts on

Nef e(Y ′gen) with a rational polyhedral fundamental domain.

Remark 4.3. We use the definition of Nef e(Y ′gen) as given in 2.25.

Proof. By Theorem 4.1, we know that the cone conjecture holds for Ygen. Since

Nef e(Y ′gen) is a face F of Nef e(Ygen), by Looijenga’s result (see the last statement of

Theorem 3.6), the cone conjecture also holds for Y ′gen. In our setting, the normalizer

NΓF = Adm and the centralizer ZΓF = {e}. �

Theorem 4.4. Aut(Ye, De)/K acts on Nef e(Ye) with a rational polyhedral fundamen-

tal domain.

Remark 4.5. If the action of Aut(Ye, De) on Pic(Y ) is not faithful, then there exists

a nontrivial kernel K and the action of the group quotiented by K is faithful.

Remark 4.6. The proof of Theorem 4.4 is similar to the argument of Sterk for K3

surfaces (see [S85]).

Proof. (Theorem 4.4) By Theorem 4.1, the group Adm acts on Nef e(Ygen) with a

rational polyhedral fundamental domain. Moreover, by Looijenga’s Application 4.14

in 3.6, we can choose y ∈ Int(Nef e(Ygen)) such that y has trivial stabilizer in Adm,

then we obtain a rational polyhedral fundamental domain σ(y) defined as follows:

σ(y) = σ := {x ∈ Nef e(Ygen) | γx · y ≥ x · y for all γ ∈ Adm}.

Let γ = sα, the reflection associated to a simple root α = [C] where C ⊂ Ye \De is a

(−2)-curve. Because sα(x) = x+ (x · α)α, the condition

(4.7) γx · y ≥ x · y
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is equivalent to

sα(x) · y ≥ x · y ⇐⇒ (x+ (x · α)α) · y ≥ x · y

⇐⇒ x · y + (x · α)(α · y) ≥ x · y

⇐⇒ (x · α)(α · y) ≥ 0.

Because α is effective and y is ample (since y ∈ Int(Nef (Ye)), which is the ample

cone), the intersection (α · y) is positive. Then (x · α)(α · y) ≥ 0 if and only if

(x · α) ≥ 0. In particular, this shows the following:

σ ⊂ Nef e(Ygen) ∩ (α ≥ 0 ∀ α ∈ ∆) = Nef e(Ye),

where ∆ above denotes the simple roots (see Definition 2.38) and the equality follows

from the description of the nef cone in Gross-Hacking-Keel [GHK15b] (see Lemma

2.15).

The following statements are true:

(1) σ is rational polyhedral (this is from Looijenga’s construction, Application

4.14 [L14]) and σ ⊂ Nef e(Ye), as shown above;

(2) Adm = WoAut(Ye, De)/K (from Theorem 5.1 of Gross-Hacking-Keel [GHK15b]

or Theorem 9.6 of Friedman [F15]);

(3) Nef e(Ye) is a fundamental domain for the action of W on Nef e(Ygen) (this fol-

lows from Gross-Hacking-Keel [GHK15b], Theorem 3.2), and by the Torelli

Theorem (see Gross-Hacking-Keel [GHK15b], Theorem 1.8), Aut(Ye, De)/K ≤

Adm is the normalizer of Nef e(Ye).

Next, we show how the three statements above imply that σ is a rational polyhe-

dral fundamental domain for the action of Aut(Ye, De)/K on Nef e(Ye). Let g be an

element of Adm. By (2) above, there exist unique w ∈ W and θ ∈ Aut(Ye, De)/K

such that g = wθ. We claim that the following inclusion holds:

(4.8)
(
gσ
) ⋂

Nef e(Ye) ⊂ θσ
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Figure 5.13. Two different ways to blow down the hexagon to P2.

Figure 5.14. The top figure shows one of the three fibers of the mor-
phism f : Ȳ → P2. The bottom figures show all three different fibers,
which are obtained by rotations.

Figure 5.15. Two sets of curves that lie in the interior of the surface
of n = 6.
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The set S = {Ei,j | i = 1, . . . , 6} ∪ {Fk | k ∈ K} spans Pic(Y ). This follows from

two facts: (1) The set {F̄k | k ∈ K} spans Pic(Ȳ ) and (2) if S is a smooth projective

surface and B is a basis of Pic(S) and S̃ → S is the blowup of a point p ∈ S with

exceptional curve E, then B̃, consisting of the strict transforms of divisors in B with

E, is a basis of Pic(S̃).

Let C ⊂ Y be an irreducible curves. Suppose that C 6= Di, Ei,j for all i, j. Then

C · Ai,j ≥ 0 for all i, j. We can write

C =
∑

ai,jEi,j +
∑

bkFk ∈ Pic(Y )

Computing the intersection numbers Ai,j · Es,t and Ai,j · Fk results in the following

inequalities:

ai,j ≥ 0 for all i, j;

b1,4 + b1,3,5 ≥ 0;

b1,4 + b2,4,6 ≥ 0;

b2,5 + b1,3,5 ≥ 0;

b2,5 + b2,4,6 ≥ 0;

b3,6 + b1,3,5 ≥ 0; and

b3,6 + b2,4,6 ≥ 0;

The last six inequalities define the cone

σ := 〈[Fk] | k ∈ K〉R≥0 ⊂ V ,

where V := 〈[Fk] | k ∈ K〉R. Using the spanning set

{[Fk]} where k ∈ K = {{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}}

of V , we can identify σ with the cone
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〈ē1, . . . , ē5〉R≥0 ⊂ R5/〈(1, 1, 1,−1,−1)〉R.

Then, we may assume that bk ≥ 0 for all k ∈ K, so that C lies in the cone generated

by the Ei,j and the Fk. Therefore Curv(Y ) = 〈Di, Ei,j, Fk | i = 1, . . . , 6 and j =

0, . . . , pi and k ∈ K〉R≥0
.

Corollary 5.12. A log Calabi-Yau surface (Ye, De) which has boundary De consisting

of no more than six components is an example of a Mori Dream space.

Proof. This follows from Theorem 5.2, Theorem 3.14, Remark 2.2, and Defini-

tion 5.1. �
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CHAPTER 6

MOTIVATIONS

Let (Y,D) be a log Calabi-Yau surface, and let (Y ′, p) be obtained by contracting

D to a cusp singularity p. Then there is the following conjecture:

(1) The smoothing components of the deformation space of Y , up to isomor-

phism, are in bijective correspondence with deformation types of log Calabi-

Yau pairs (Y,D) such that D (which does not contain any (−1)-curves)

contracts to the dual cusp p, i.e.,

π : (Y,D)→ (Y ′, p),

where π is the minimal resolution. A cusp might not have a smoothing, or

it could have more than one smoothing component.

(2) The smoothing component of p ∈ Y associated to (Y,D) is the Looijenga

space determined by the action of Adm on the nef effective cone Nef e(Y ′gen),

which is contained in 〈D1, . . . , Dn〉⊥ ⊗Z R - this construction is described in

[L03], Section 4.

Looijenga’s construction requires that Adm acts on Nef e(Y ′gen) with a rational

polyhedral fundamental domain, and this is a motivation for the cone conjecture

for log Calabi-Yau surfaces. This was also the motivation for the Morrison cone

conjecture for Calabi-Yau threefolds.

The log Calabi-Yau cone conjecture can provide insight into the original Morrison

cone conjecture because it includes more accessible cases. For instance, in every

dimension there are many log Calabi-Yau pairs (Y,D) such that the variety Y is

rational. In addition, the cone conjecture is related to the abundance conjecture,

which is a long-standing open question of the minimal model program.
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Remark 6.1. The cone conjecture for log Calabi-Yau surfaces suggests that the

Morrison cone conjecture is false in general, because it is the monodromy group Adm

that acts with a rational polyhedral fundamental domain on Nef e(Ygen), and not the

automorphism group.

Remark 6.2. The explicit description of Nef (Ye) can be used to verify the conjecture

(1) stated above. For n ≤ 5, this follows from work of Looijenga [L81], and for n = 6,

we expect that it can be verified using work of Brohme (see [B95]). The deformation

theory for n > 6 is not known.
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