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ABSTRACT 

Evaluating Approaches for Dealing with Omitted Items 

in Large-Scale Assessments 

MAY 2021 

SEONG EUN HONG, B.A., CORNELL UNIVERSITY 

M.A., COLUMBIA UNIVERSITY, TEACHERS COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Scott Monroe 

Large-scale assessments (LSAs), such as the National Assessment of Educational 

Progress (NAEP) are low-stakes tests for examinees; consequently, they might randomly 

guess or generate no responses. Such disengaged test-taking behavior can undermine the 

validity of test score interpretation. To account for such behavior, various methods have 

been proposed over the years, which can be classified as ad hoc or model-based. For 

instance, the Programme for the International Assessment of Adult Competencies 

(PIAAC) uses a common time threshold (e.g., 5 seconds) method for all items: if an 

examinee spends more than or equal to five seconds on an item, the omitted response is 

coded as incorrect; otherwise, it is coded as ignored. Recently, the speed-

accuracy+omission (i.e., SA+O model) has been proposed for modeling the processes 

underlying response and nonresponse behavior. The present research aims to investigate 

the impact of omitted responses on item and person parameter estimates with the ad hoc 

and the model-based approaches in the context of LSAs. In a simulation study, we 

examine (a) how ad hoc and model-based approaches for handling omitted responses 

compare in terms of item and person parameter estimation in IRT and (b) whether there is 
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a practical difference between ad hoc and model-based approaches to handling omitted 

responses in real data analyses. Finally, we illustrate the practical implications of 

selecting a certain approach for handling the omitted items in LSAs through an empirical 

analysis. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background 

Since the 21st century, the number of countries participating in international surveys has 

substantially increased. For the Trends in International Mathematics and Science Study 

(TIMSS), the number of participating countries has grown from 38 to 58 (NCES, 2020a), and for 

the Progress in Reading Literacy Study (PIRLS) and the Programme for International Student 

Assessment (PISA), it has grown from 34 to 49, and 43 to 79, respectively (NCES, 2020b; 

NCES, 2020c). With the growth of international large-scale assessments (LSA), more data have 

become available, and studies on secondary data sets have also notably increased. For instance, 

cross-sectional estimates of achievement are provided, in addition to student background 

information, including their homes, teachers, and schools. The substantial amount of data from 

various countries are oftentimes publicly available to researchers with online tools (e.g., IDB 

Analyzer, NAEP Data Explorer) for data extraction. Further, since the data are gathered at 

multiple levels (e.g., classroom, school, country), different units of analysis can be used for 

further investigation.  

However, there are several limitations on the use of LSAs. First, the features of the LSAs 

do not explain cause-and-effect relationships; in other words, the data cannot be used to answer 

the following research question: what causes educational outcomes to change (Chudgar, & 

Luschei, 2016)? In addition, the technical complexities of LSA data prevent certain research 

questions. For example, simple random sampling is not used, and different sets of cognitive 

items are administered to each participant (OECD, 2013; OECD, 2017). To deal with this 

problem, sampling weights are used to reflect that some units (e.g., students, teachers, or 
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schools) are selected with different probabilities (Rutkowski et al., 2010). Moreover, since the 

individual proficiency estimates are biased in LSAs (Mislevy et al., 1992), the population-level 

proficiency estimates (i.e., plausible values) are reported, instead. Further, due to the stratified 

multistage sampling design used in LSAs, standard errors of estimates based on the random 

sampling assumption cannot be calculated; instead, special methods need to be employed to 

estimate the uncertainty associated with sampling (Rutkowski et al., 2010). Overall, researchers 

need to be well aware of the prominent issues associated with analyzing the LSAs, including 

level of analysis, sampling weights, plausible values, and variance estimation.    

Another concern about the LSAs is examinee’s lack of motivation. One of the purposes 

of LSAs is to measure group proficiency, which is based on examinee proficiency. For an 

accurate interpretation of proficiency estimates, it is assumed that examinees are actively 

engaged to answer every item correctly. For high-stakes tests, a lack of motivation is generally 

not a concern because test results have significant consequences for examinees such as receipt of 

a high school diploma, a scholarship, or a license to practice a profession. However, the LSAs 

are low-stakes tests that have little or no consequences for the examinees. Unlike the high-stakes 

tests, unmotivated examinees taking low-stakes tests might randomly guess on multiple-choice 

(MC) items or generate no responses without even reading or attempting an item (Wise & Gao, 

2017). This can cause a serious threat to the validity of proficiency estimates in LSAs because 

test scores can be confounded with the level of disengagement (Braun, Kirsch, & Yamamoto, 

2011).     

 Traditionally, missing responses have been dealt with using ad hoc approaches. For 

instance, missing responses are coded as incorrect, ignored, or partially correct for further 
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analysis. Unfortunately, there is no consensus among researchers regarding how to ideally deal 

with missing responses in IRT models.      

Recently, new technologies have been implemented in LSAs. For instance, the Program 

for the International Assessment of Adult Competencies (PIAAC) and PISA have changed the 

mode of administration from a paper-based assessment (PBA) to a computer-based assessment 

(CBA). CBA allows for introducing new item types, measuring new constructs, and increasing 

efficiency. CBA also collects log data such as click or touch event (e.g., using a button, link, or 

menu), keystroke event (e.g., entering text), focus-in and out event (e.g., scrolling, zooming) and 

view event (e.g., page is loaded and displayed). The log data have following properties: log data 

are event-based (i.e., events are collected based on examinee’s behavior), events are of different 

types and events have time stamps representing the temporal relations of events (Kroehne & 

Goldhammer, 2018). Further, CBA allows for collection of the response time (RT), which 

provides information about response process. There has been extensive research of reaction 

times (e.g., speed-accuracy trade-offs) in psychology (van der Linden, 2007; Ulitzsch, von 

Davier, & Pohl, 2019; Ulitzsch, von Davier, & Pohl, 2020).     

 In particular, RTs can be used to investigate cognitive processes. RT modeling 

approaches can be classified into four categories (De Boeck & Jeon, 2019, p. 2):  

1) RT models: RTs are used as the sole dependent variable (e.g., distribution models, 

explanatory models, and models with response accuracy as a covariate).  

2) Joint models: RTs and response accuracy (RA) are joint dependent variables (e.g., 

hierarchical model, diffusion model, race models). 
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3) Dependency models: RTs and RA are jointly modeled with the possibility of 

dependencies beyond the relationship of latent variables and item parameters so that they 

can explain an extra dependency.  

4) RTs as covariate models: RTs are used as a covariate and RA as a dependent variable.  

Overall, RTs can be incorporated in modeling test data in various ways to identify and measure 

cognitive processes.  

In educational measurement, RT is widely used to provide relevant information about 

examinees. First, RT is used to identify disengaged test-taking behavior-that is, a response occurs 

so rapidly that an examinee does not take the necessary time to read, understand, and fully 

consider the item (i.e., rapid guessing) (Schnipke, 1995; Wise & Kong, 2005). Second, RT is 

used to improve item and person parameter estimates (van der Linden, 2007; Guo et al., 2016; 

Wise & Kong, 2005). Most recently, RTs have accounted for omitted, not-reached items, and 

disengaged test-taking behavior to reduce bias of the item and person parameter estimates (Pohl, 

Ulitzsch, & von Davier, 2019; Ulitzsch et al., 2019; Ulitzsch et al., 2020).  

1.2 Statement of the Problem and Its Significance 

Since the LSAs are low-stakes tests, examinees can exhibit disengaged test-taking 

behavior. Unmotivated examinees might not take the necessary time to consider the item; 

instead, they are likely to omit some of the items (i.e., item-level nonresponse) or generate 

nonresponses for the last few items due to the time limit (i.e., not-reached items). As a result, the 

LSA data can contain a significant number of missing responses. In 2012 PIAAC, for example, 

the rate of omitted responses ranged from 2% for the numeracy domain in South Korea to 25.9% 

for the literacy domain in Chile (OECD, 2013). In the National Assessment of Educational 

Progress (NAEP) mathematics assessment of 1990, the highest rate of not-reached items was 
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45% (Koretz et al., 1993). In PISA 2006, the proportion of omitted responses and not reached 

items varied substantially from 1% in Netherlands to 16% in Kyrgyzstan and 0.3% in Azerbaijan 

to 13% in Colombia, respectively (OECD, 2009, p.220).  

This considerable amount of missing responses needs to be taken into account in 

psychometric analysis of test data. In particular, ignoring or not appropriately dealing with 

omitted and not-reached items can lead to biased item parameter and proficiency estimates 

(Lord, 1974; Mislevy & Wu, 1996; Pohl, Gräfe, & Rose, 2014) as well as biased estimates of 

group statistics. Furthermore, the presence of nonignorable omitted and not-reached items in the 

data set can lead to a different country ranking and biased regression coefficients for predicting 

test performance from explanatory variables (Köhler, Pohl, & Carstensen, 2015a; Rose, von 

Davier, & Xu, 2010). 

1.3 Purpose of Study 

The purpose of the present research is to investigate the impact of omitted responses on 

item and person parameter estimates with the ad hoc and the model-based approaches in the 

context of LSAs. In particular, the performance of the simultaneous modeling of item response 

and nonresponse behavior as well as the associated RTs and NRTs (Ulitzsch et al., 2020) is 

compared with the current approaches on omitted response treatments in LSAs. To that end, this 

research addresses the following research questions.  

First, how do ad hoc and model-based approaches for handling omitted responses 

compare in terms of item and person parameter estimation in IRT in a simulation study? In 

particular, what factors (e.g., omission rates, sample size, test length, correlation between 

proficiency and omission propensity) in simulation conditions substantially affect the item 

parameter estimates and proficiency estimates? Further, it is of interest to investigate the 
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accuracy and efficiency associated with item parameter estimates and proficiency estimates 

under different data-generating conditions (i.e., whether proficiency is related to omission 

propensity). In particular, the bias and root mean square error/mean absolute error of values of 

all parameters as well as the means of standard deviations of proficiency estimates are of interest. 

Second, in real data analyses, is there a practical difference between ad hoc and model-

based approaches to handling omitted responses? We illustrate the practical implications of 

selecting a certain approach for handling the omitted items in LSAs through an empirical 

analysis. It is also of interest to investigate the accuracy and efficiency associated with item 

parameter estimates and proficiency estimates under different conditions. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Brief Review of Item Response Theory 

In educational measurement, item response theory (IRT) models the probability of 

answering an item correctly, given the characteristics of item and examinee proficiency. In other 

words, IRT provides a scale for the underlying latent variable (i.e., proficiency), measured by the 

test items (Thissen, & Orlando, 2001). The common assumptions of IRT models include 

unidimensionality (e.g., there is a single dominant proficiency being measured), local 

independence (e.g., item responses are mutually independent given a proficiency level), and 

monotonicity (e.g., probability is the dependent variable; as the probability of a correct answer 

increases, the proficiency also increases) (Holland & Rosenbaum, 1986).  

Compared to classical measurement models, IRT has several advantages (Hambleton, 

Swaminathan, & Rogers, 1991, p 5):  

1) Item characteristics are not group-dependent;  

2) Scores describing examinee proficiency that are not test-dependent; 

3) A model that is expressed at the item level rather than at the test level; 

4) A model that does not require strictly parallel tests for assessing reliability; 

5) A model that provides a measure of precision for each ability score.  

Given the desired features of IRT, it has been widely used in large-scale test development and 

scoring.  

Let there be 𝑖 = 1,… , 𝐼 items and 𝑗 = 1,… ,𝑁 examinees. For examinee j, let 𝑌𝑖𝑗 be the 

observed response and 𝑦𝑖𝑗 a possible value. Under the IRT model, the conditional probability 

function of the complete data for examinee 𝑗 is defined as:  
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𝑃(𝑌1𝑗 = 𝑦1𝑗, … , 𝑌𝐼𝑗 = 𝑦𝐼𝑗|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖 , 𝑐𝑖) =∏𝑓𝜃(𝑦𝑖𝑗|𝑎𝑖, 𝑏𝑖, 𝑐𝑖

𝐼

𝑖=1

) (2.1.1) 

where 𝜃𝑗  represents the proficiency parameter of examinee j, 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 denotes the 

discrimination, difficulty, and guessing parameters for item i, respectively (See Figure 4) and 𝑓𝜃 

is a likelihood function 𝐿(𝜃|𝑌𝑖𝑗). More specifically, the three-parameter logistic model (i.e., 3PL 

model) is assumed and the probability of success of an item is defined as 

𝑃𝑖(𝑌𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖) =  𝑐𝑖 + (1 − 𝑐𝑖)
𝑒𝑎𝑖(𝜃𝑗−𝑏𝑖)

1 + 𝑒𝑎𝑖(𝜃𝑗−𝑏𝑖)
  (2.1.2) 

and 𝑃𝑖(𝑌𝑖𝑗 = 0|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) = 1 − 𝑃𝑖(𝑌𝑖𝑗 = 1|𝜃𝑗 , 𝑎𝑖, 𝑏𝑖, 𝑐𝑖). When 𝑐𝑖 = 0, the 3PL model reduces 

to a 2PL model. Further, when 𝑐𝑖 = 0 and 𝑎𝑖 = 1, the 3PL model reduces to the Rasch model. 

IRT models are commonly used to estimate examinee proficiency in LSAs. In TIMSS (Martin, 

Mullis, & Hooper, 2016) and PIRLS (Martin, Mullis, & Hooper, 2017), for dichotomously 

scored items, a 2PL model is used for the short-constructed response items and a 3PL model is 

used for the multiple-choice items. In addition, the Rasch model had been used in prior PISA 

cycles (2000-2012) for dichotomously scored responses, while the 2PL model is implemented in 

PISA 2015 (OECD, 2017). For this paper, the marginal estimation (Martin et al., 2016; Martin, 

et al., 2017) is used for ad hoc approaches, while the Bayesian estimation (Ulitzsch et al., 2019; 

van der Linden, 2007) is used for model-based approach.   

2.2 Missing Data Mechanism and Ignorability 

Missing data are inevitable in educational measurement. Even worse, any method for 

compensating for missing data requires unverifiable assumptions, and further, missing data 

complicate likelihood-based inferences (Little, 2009). To evaluate the consequences of missing 

data, it is important to consider potential reasons for the missingness. Missing data patterns are 
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characterized by three different processes: missing completely at random (MCAR), missing at 

random (MAR), and missing not at random (MNAR) (Rubin, 1976).  

Let 𝑌𝑖 be the observed response for item i and 𝑌 = (𝑌1, … 𝑌𝐼) be the vector of observed 

response to all items. The missing data indicator 𝐷𝑖 is defined:  

𝐷𝑖 = {
0      if 𝑌𝑖  is observed    
1      otherwise.               

 (2.2.1) 

and 𝐷 = (𝐷1, … 𝐷𝐼) be the vector of missing data indicator to all items. The Y is also partitioned 

into two parts: observed data 𝑌𝑜 for which 𝐷𝑖 = 1 and missing data 𝑌𝑚 for which 𝐷𝑖 = 0. Under 

the IRT model, the probability function of the complete data is defined as the Equation 2.1.1. 

Inferences about the proficiency, 𝜃 need to be based on the observed data, (𝑌𝑜 , 𝐷) and our beliefs 

about the missing mechanism (Mislevy, 2017).  

2.2.1 MCAR 

When the probability of missingness is independent of the observed responses, the 

missing mechanism can be described as MCAR (Rubin, 1976). In other words, the probability of 

a missingness pattern does not depend on the missing responses and observed responses 

(Mislevy, 2017):  

𝑔𝜙(𝐷|𝑌) =  𝑔𝜙(𝐷). (2.2.2) 

where 𝜙 indicates the vector of parameters of missing mechanism and 𝑔𝜙(𝐷|𝑌) (i.e., 

𝑃{𝐷;  𝜙 | 𝑌}) represents the missing mechanism. Under a MCAR mechanism, the process of 

generating the missing values can be ignored. In other words, simple averages of the observed 

data provide unbiased estimates of the corresponding population means; thus, observed data can 

be treated as a random sample of the complete data set (Molenberghs & Kenward, 2007). For 

instance, when missing values result from a priori fixed incomplete test and calibration designs, 

they can be treated as MCAR, since the design has been fixed in prior (Holman, & Glas, 2005). 
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Another example of MCAR in educational measurement is a random assignment of alternate test 

forms (Mislevy, & Wu, 1996).  

2.2.2 MAR 

Under MAR, the probability of missingness pattern does not depend on the missing 

responses, but conditionally depends on the observed responses (Mislevy & Wu, 1996; Rubin, 

1976). The process of MAR is defined as (Mislevy, 2017): 

𝑔𝜙(𝐷|𝑌) =  𝑔𝜙(𝐷|𝑌
𝑜). (2.2.3) 

For instance, given the income data on gender and age, the missing value on income for a male 

aged 40 or more can be predicted to have a high income because other males aged 40 or more 

have high income. If a probabilistic relationship can be derived from the observed data, the 

missingness is MAR. In the IRT context, the data collected from the computerized adaptive 

testing (CAT) and multistage testing (MST) are MAR because the items administered are 

completely directed by the observed responses, but independent from the unobserved responses 

(Holman & Glas, 2005). 

2.2.3 MNAR 

Under MNAR, the probability of a missingness pattern may depend on unobserved 

variables. Specifically, if neither MCAR nor MAR assumption holds, it can be addressed as 

MNAR. Inferences can be drawn by making further assumptions about which observed 

responses carry no information, and there are three popular models for handling a MNAR 

mechanism: selection models (Heckman, 1976, 1979), pattern-mixture models (Little, 1993, 

2009), and shared-parameter models (Follmann, & Wu, 1995). For instance, when the 

probability that an item response is missing is due to the response itself, the missing data are 

MNAR (Lord, 1974; Mislevy, & Wu, 1996). As an example, missing values might occur when 
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examinees fail to give responses to specific items due to a lack of motivation (e.g., omitted 

responses). 

2.2.4 Ignorability 

For IRT, we can consider the joint parameter space (𝜃, 𝜆, 𝜙). If the joint parameter space 

of (𝜃, 𝜆, 𝜙) factors into a 𝜃, 𝜆 and 𝜙 space, they are independent and missingness process is 

ignorable. In other words, likelihood estimation and inference for 𝜃 and 𝜆 can be carried out 

while ignoring the missing data mechanism. On the other hand, if the missingness process 

depends on 𝜃 or 𝜆, the parameter space cannot be factored out and the missingness process is 

nonignorable (Mislevy, 2017). Further, within the likelihood framework, both MCAR and MAR 

are ignorable missing processes (Rubin, 1976). Taken together, if both MAR (or MCAR) 

assumption and distinctiveness of parameters hold, ignorability results where likelihood function 

can be factorized into the likelihood for observed responses and that for missing mechanism 

(Feldman, & Rabe-Hesketh, 2012). However, if neither MCAR nor MAR holds, the missingness 

process is MNAR. For instance, if 𝑔𝜙(𝐷|𝑌) also depends on 𝜃. 

To address MCAR, listwise deletion (e.g., each individual with any missing value is 

excluded) or pairwise deletion (e.g., given a pair of variables, examinees missing either item in 

the pair are excluded) are adequate approaches. However, MAR and MNAR mechanisms make 

untestable assumptions, and there is no valid method to select the most appropriate model (Little 

& Rubin, 2002; Molenberghs, Beunckens, Sotto & Kenward, 2008). Thus, it is only possible to 

compare the model fit (or parameter estimates) under MAR and MNAR (Sterba & Gottfredson, 

2015). Consequently, model choice should be based on theories, and sensitivity analyses are 

recommended for investigating the impact of different assumptions on the substantive 

conclusions (Feldman & Rabe-Hesketh, 2012). 
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2.3 Omitted and Not-Reached Items in LSAs 

If missingness process is MAR or MNAR, the missing data raise various concerns for 

statistical analyses because they reduce statistical power and cause bias in parameter estimates. 

In theory, the impact of missing data can be statistically adjusted (i.e., treated as ignorable), if all 

the process variables associated with the missing data are identified and modeled appropriately 

(Little & Rubin, 1987). In practice, however, it is extremely challenging to find all the process 

variables for the corresponding missing data. In educational measurement, test data usually 

include missing responses due to various reasons: 1) items that are not administered, 2) omitted 

items, or 3) not-reached items because of time limits.  

In particular, the amount of missing data in LSAs is not negligible. In 2012 PIAAC, for 

example, the average proportion of nonresponse (i.e., omitted or not-reached) for computer-

based items is 7.2% for literacy domain and 4.9% for numeracy domain; however, the proportion 

of nonresponses varies markedly across countries, ranging from 2% for the numeracy domain in 

South Korea to 25.9% for the literacy domain in Chile (OECD, 2013). In PISA 2006, the average 

proportion of omitted responses and not reached items varied substantially from 1% in 

Netherlands to 16% in Kyrgyzstan and 0.3% in Azerbaijan to 13% in Colombia, respectively 

(OECD, 2009, p.220). For the mathematics in NAEP 1990, the average rate of omitted items 

differed by grades: 9% for Grade 12, and only 5% for Grade 4, and the rate of not-reached items 

was 8% (Koretz et al., 1993). For the science in TIMSS 2003, the average proportion of not-

reached items noticeably differed by booklets from 0.4% to 17% (Mullis, Martin, & Diaconu, 

2004, p. 249).   
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2.3.1 Definitions of Omitted and Not-Reached Items 

In LSAs, omitted and not-reached items are defined in different ways. In TIMMS and 

PIRLS, omitted responses are defined as “the respondent had a chance to answer the question but 

did not do so, leaving the corresponding item or question blank” and not-reached items as the 

“items that student did not attempt due to a lack of time” (Martin, Mullis, & Hooper, 2016, p. 

390-391; Martin, Mullis, & Hooper, 2017, p.9.11). Not-reached items are identified as following: 

First, the last answer given by an examinee is identified and then the first missing response after 

this last answer is treated as omitted, while all the following missing responses are treated as not-

reached items. For instance, the response pattern “1 9 3 2 9 9 9” (e.g., “9” indicates missing 

responses) is recoded as “1 M 3 2 M N N” (e.g., “M” indicates omitted, while “N” indicates not-

reached items).  

In NAEP, omitted responses are defined as “a missing response prior to the last observed 

response” and not-reached items as “an item to which the student did not response because the 

time limit” (NCES, 2018). For instance, a single missing response at the end of the test is coded 

an omitted response (Ludlow & O’Leary, 1999). In other words, not-reached items are identified 

when there are at least two consecutive missing responses at the end of test. 

In PISA, omitted and not-reached items are defined likewise as “students did not answer 

the given question but answered at least one subsequent question” and “students did not answer 

the given item nor the subsequent items within that cluster,” respectively (OECD, 2017, p.133). 

In PIACC, omitted responses are defined as “any missing response followed by a valid 

response,” whereas not-reached responses as “missing responses at the end of a block” (OECD, 

2013, pp. 417-418). Overall, there is a consensus on definition and treatment of omitted items in 

LSAs, while the question of how many missing responses at the end of test indicate not-reached 
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items instead of omitted items has been a controversial issue (Rose, von Davier, & Nagengast, 

2017).       

Oftentimes, item nonresponses due to omission or time-constraints do not occur 

randomly (Mislevy & Wu, 1996); instead, they are correlated with examinee proficiency 

(Holman & Glas, 2005; Rose, Von Davier, & Xu, 2010), up to -0.45, indicating the more 

proficient a person, the smaller number of missing responses (Pohl, Gräfe, & Rose, 2014). To 

treat omitted responses appropriately, the missingness mechanism is modeled by an additional 

latent variable which represents the examinee’s propensity to omit items (i.e., omission 

propensity) (Holman & Glas, 2005; Rose et al., 2010). For instance, the omission propensity can 

be included in the IRT model and computed like the examinee proficiency through jointly 

modeling responses and nonresponses. Further, the covariance of proficiency and omission 

propensity is computed for the population model. Likewise, Rose et al. (2010) reported a 

negative correlation (e.g., -0.33) between observed item responses and nonresponses (i.e., easier 

items are more likely to be answered than difficult items). Further, in the analysis of PISA data, 

relatively high correlations between proficiency and omission propensity are found across all 

countries, domains, and cycles which implies that missing data due to omission are nonignorable 

in all data sets (Sachse, Mahler, & Pohl, 2019). Through the empirical analysis, it is shown that 

item nonresponses depend on examinee proficiency and item characteristics; accordingly, it is 

not safe to assume that the missingness mechanism is ignorable.      

The item nonresponses due to omissions and not-reached items result from different test-

taking behaviors. On a timed test, for example, examinees may not reach the end of the test due 

to time limits (e.g., not-reached items). On the other hand, item omissions merely result from 

examinees’ decision and may occur due to lack of motivation (Cosgrove, 2011; Köhler et al., 
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2015a; Wise & Gao, 2017). The omitted and not-reached items differ in two important ways. 

First, not-reached items occur at the end of the test, whereas omitted items can occur anywhere 

in the test. Second, not-reached items can be considered as to be independent of item content and 

of the response that would be obtained if the item has been reached; however, omitted items 

occur when examinee has the opportunity to consider the item, but decides not to generate a 

response (Tijmstra, & Bolsinova, 2018). Since the process underlying omissions and not-reached 

items has different characteristics, they should be treated differently in IRT measurement models 

(Rose, 2013). Further, not adequately modeling the omitted and not-reached items may lead to 

biased parameter estimates in IRT (De Ayala, Plake, & Impara, 2001; Hohensinn & Kubinger, 

2011; Lord, 1974; Mislevy & Wu, 1996) and considerably affects trend estimation, especially 

when omissions are scored as incorrect (Sachse et al., 2019). 

Several methods have been proposed to treat omitted and not-reached items in LSAs. In 

the following sections, those methods are sorted by whether timing information is incorporated 

or not. Each method is described conceptually or its advantages and limitations are highlighted.   

2.3.2 Omitted and Not-Reached Items, and RTs 

The goal of testing is to provide valid scores from a test administration. To attain this 

goal, it is critical to have motivated examinees who actively and effortfully engage with test 

items. Test-taking effort is associated with RT (Schnipke & Scrams, 2002) and can be 

distinguished by two distinct test-taking behaviors: solution behavior and rapid guessing 

behavior. Examinees can show either solution behavior that they apply their knowledge, skills, 

and abilities to attempt the item, or rapid guessing behavior that they randomly guess the correct 

response without applying their effort (Wise, 2017). The empirical evidence supports this 

argument that the amount of time examinees spend on each behavior is considerably different 
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(Wise, 2017) and solution behavior and rapid guessing behavior have different accuracy rates 

(Schnipke, 1995). Test engagement can be explained as solution behavior, while disengaged 

behavior can be explained as rapid guessing (Schnipke, 1995; Wise, & Kong, 2005) and 

nonresponse behaviors (Ulitzsch et al., 2020). 

The reason why examinees show rapid-guessing behavior varies by the different types of 

tests. For high-stakes tests, test scores may have important consequences for the examinees; thus, 

rapid guessing behavior can be explained as test speededness, that is, as examinees respond 

rapidly to items due to time limits, the accuracy will be at or near the chance level (Schnipke, 

1995). In contrast, LSAs such as NAEP, PISA, PIAAC, TIMSS, and PIRLS are low-stakes tests 

that test scores have little or no consequences for examinees. Consequently, examinees can 

exhibit disengaged behavior due to lack of motivation (Köhler, Pohl, & Carstensen, 2015a; Wise 

& Gao, 2017). 

More specifically, a rapid guessing can be explained by three different scenarios (Wise, 

2017). First, motivated examinees can exhibit rapid guessing as a strategic behavior due to the 

time limit during high-stakes tests. Second, unmotivated examinees may show rapid guessing as 

a random guessing behavior during low-stakes tests. Third, when attempting an item, examinees 

recognize that they don’t have the required skills or knowledge to solve the problem and they 

may respond with a random guess. Under the first two scenarios, rapid guessing can be 

considered as uninformative; however, under the third scenario, it is informative on examinee 

proficiency (Wise, 2017). Likewise, nonresponse behavior can be explained by a similar fashion: 

lack of motivation vs. skill-related reasons. Since the presence of rapid guessing in test data may 

lead to biased item parameter estimates (Schnipke, 1999) and aggregated scores (Rios, Guo, 
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Mao, & Liu, 2017), it is critical to identify the level of disengagement for drawing valid 

inference on examinee proficiency.   

Then, how can we identify disengaged behavior? The amount of time examinees spends 

responding to an item differs by individuals due to various factors, including proficiency level, 

reading speed, or motivation. However, the response process underlying disengaged behavior is 

different from that of engaged behavior and this distinction can be revealed by the associated RT 

distribution, which oftentimes results in bimodal frequency distributions (Schnipke, 1995; Wise 

& Kong, 2005). By analyzing the NAEP data, Lee and Jia (2014) show that rapid responses are 

uncorrelated to the examinee proficiency, whereas responses, made after a certain time period 

are positively correlated with proficiency. Further, Weeks, von Davier, and Yamamoto (2016) 

found that the RT distribution for nonresponse behavior is distinctive from that for engaged 

behavior across countries by using the PIAAC data. Hence, test engagement can be evaluated at 

individual item responses by using the RT information. 

The rise of CBAs allows the collection of RT information. The RT, defined as the time an 

examinee spends on an item, has been used as a method to obtain information about mental 

activity for an extensive period of time, as long as the field of psychology itself (Schnipke, & 

Scrams, 2002). Recently, analysis of RT has gained increasing attention in educational 

measurement. For high-stakes tests, for example, RT information has been used to improve item 

selection method in computerized adaptive testing (van der Linden, 2008), to detect differential 

speededness (van der Linden, Scrams, & Schnipke, 1999), and to detect cheating between pairs 

of examinees (van der Linden, 2009b). For low-stakes tests, RT information has been used for 

monitoring examinee effort and motivation such as solution behavior index (Wise, 2006; Wise, 

Kingsbury, Thomason, & Kong, 2004) and RT effort (Wise, & Kong, 2005). 
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RT information can also be used to improve item parameter estimation in LSAs. RTs, for 

instance, can be used to detect data fabrication (i.e., unmotivated responses) by investigating the 

cases which RT may be too short or inconsistent with expected times across different countries 

(Yamamoto, & Lennon, 2018). By using the RT information, the problematic responses can be 

excluded and this data cleaning procedure can improve item parameter and proficiency 

estimation (Wise & DeMars, 2006). Likewise, RTs can provide meaningful information about 

item-level nonresponse behavior and improve item parameter and proficiency estimates (Pohl, 

Ulitzsch, & von Davier, 2019; Ulitzsch, von Davier, & Pohl, 2019; Ulitzsch, von Davier, & Pohl, 

2020). 

Further, RT information can be included in the population model as additional covariates 

to enhance the modeling of group-level proficiency distributions in LSAs. The RT information 

needs to be incorporated in the population model for the following two reasons. First, given a 

substantial relationship between RTs and proficiency, ignoring the RT information in the 

population model can result in biased estimates of correlations between proficiency estimates 

and RTs in secondary analyses (von Davier et al., 2019). Secondly, RTs can help to classify 

examinees into groups that can be associated with test-taking strategies and motivation (Lee & 

Jia, 2014; Weeks, von Davier, & Yamamoto, 2016). To examine whether the RT data are 

comparable across countries, von Davier et al. (2019) analyzed PISA 2015 data and found that 

the item-level RT distribution in each domain appears similar across countries, suggesting that 

data cleaning and data quality analyses need to be conducted at the country level, instead of 

aggregate-level of all countries. Building upon the support of incorporating RTs in population 

modeling, more research is still needed on how to include RT information in the conditioning 

model (von Davier et al., 2019).      
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Detecting disengaged behavior is critical because it indicates the presence of item 

responses that are uninformative about an examinee’s proficiency level; besides, rapid guessing 

leads to a negative bias of proficiency estimates because the correct rate of item responses for 

rapid guessing is substantially lower than that for solution behavior (Wise & Ma, 2012). To 

address this problem, several methods have been developed to identify disengaged behavior (i.e., 

rapid-guessing, unmotivated responses) by using the RTs. 

2.4 Ad-Hoc Methods for Omitted and Not-Reached Items 

This section discusses the treatment of omitted and not-reached items in LSAs, when the 

item and person parameters are estimated. The ad-hoc methods can be broadly differentiated by 

ignoring or incorporating timing information. Estimation then proceeds using typical marginal 

maximum likelihood (MML) estimation (e.g., Bock & Aitkin, 1981). 

2.4.1 Methods that Ignore Timing Information 

There are three ad hoc methods: partially-correct scoring, score as incorrect, or ignore. 

These ad hoc methods are commonly used to treat omitted and not-reached items in LSA. In 

NAEP, the omitted responses to multiple-choice items are scored as partially correct (i.e., 

reciprocal of the number of response alternatives) throughout the analysis and if the item is not a 

multiple-choice, the omitted response is scored as the lowest response category, whereas the not-

reached items are ignored for both item and person parameter estimation (NCES, 2018).  

On the other hand, in TIMSS (Martin, Mullis, & Hooper, 2016, p.13.12) and PIRLS 

(Martin, Mullis, & Hooper, 2017, p.12.7), omitted responses are coded as incorrect throughout 

the analysis, but not reached items are ignored for item parameter estimation, but coded as 

incorrect for person parameter estimation.  
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Similarly, in PISA, the omitted responses are scored as incorrect and the not-reached 

items are ignored for item parameter estimation. However, not-reached items are accounted for a 

covariate in the latent regression model as a part of the proficiency estimation in the generation 

of plausible values (OECD, 2017).  

2.4.2 Methods that Incorporate Timing Information 

There are several ad hoc methods that incorporate timing information: 5-second rule, 

visual inspection method, normative threshold method, and combining RT and response 

accuracy method. First, a 5-second rule uses a common time threshold (5 seconds) for all items. 

It is a special case of the common time threshold method, which uses a common time threshold 

(usually 3-5 seconds) for all items (OECD, 2013; Wise, Kingsburry, Thomason, & Kong, 2004) 

The advantage of this method is its simplicity, as it does not require any information about RT 

distribution or item’s surface features. PIAAC, for example, uses a common time threshold 

method (e.g., 5-second rule) which is illustrated as a red vertical line in Figure 1. That is, if 

examinees spend more than or equal to five seconds on an item, the missing response is treated 

as incorrect, while examinees spend less than 5 seconds, the missing response is ignored 

(Yamamoto, Khorramdel, & von Davier, 2016). However, this method often produces variation 

in classification errors across items as RT distribution typically varies by items (Goldhammer, 

Martens, Christoph, & Lüdtke, 2016).  

Second, a visual inspection (VI) method inspects the RT distribution to identify a 

threshold-gap which separates two distinct behaviors (i.e., engaged and disengaged behavior) for 

each item (Schnipke, 1995; Wise, 2006). In Figure 1, for instance, such a gap occurs at around 7 

seconds. The VI method is congruent with the theoretical conceptualization of rapid guessing 
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and solution behavior; however, observed RT distribution is not always bimodal, especially, 

when item is easy that solution behavior occurs at relatively short period of time (Wise, 2017).  

Third, normative threshold (NT) method (Wise & Ma, 2012) examines the mean RT for 

each item and then evaluates different percentage values (e.g., NT10, NT15, NT20) to find a 

threshold value which may reflect random guessing, up to a maximum threshold value of 10 

seconds. For example, if examinees take 50 seconds on average to respond to a particular item, a 

10 percent threshold (NT10) would be 5 seconds, while a NT15 would be 7.5 seconds. In 

particular, Wise and Ma (2012) recommend for using the NT10 method (i.e., 10% of the mean 

RT for each item) for a computer adaptive test. 

Lastly, combining RT and response accuracy method extends the VI method by 

incorporating the response accuracy information. The previous research show that when 

examinees exhibit rapid guessing behavior, the correct rate of item responses is expected to be 

similar to that produced by random guessing (Lee & Jia, 2012; Schnipke, & Scrams, 2002; Wise 

& Ma, 2012). Bringing all together, this method searches for the point at which accuracy exceeds 

what would be expected from random guessing-the reciprocal of the number of response options 

(Goldhammer et al., 2016; Guo et al., 2016; Lee & Jia, 2012). For instance, this value would be 

0.2 with five response options. The disadvantage of this method, however, is that it requires 

significant amount of response data per item to accurately identify the increase in accuracy 

needed to find the threshold (Wise, 2017).   

Recently, Weeks et al. (2016) explored how missing values can be evaluated with RTs by 

using a logistic regression. However, they only reported the quantile values for expected 

probability levels without suggesting a guideline for setting a threshold value. To reduce 

classification errors, it is critical to identify a reliable time threshold value for each item which 
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can accurately detect disengaged item responses. However, the sparse observations in the short 

time intervals and fluctuation of examinee accuracy across the RT range make it difficult to 

determine the threshold values which oftentimes lead to the subjective choice (Guo et al., 2016). 

Even though various threshold identification methods have been proposed, none of the methods 

is flawless. Hence, researchers need to be well aware of the limitations of each method and apply 

them in practice. 

2.5 Model-Based Methods for Omitted and Not-Reached Items 

There is a growing body of literature on the model-based approaches for dealing with 

omitted and not-reached items in IRT models. In the model-based approaches, the nonignorable 

missing propensity for omitted and not-reached items (Mislevy & Wu, 1996) is accounted for 

item and person parameter estimates. The performance of such models depends on the 

appropriate assumptions of missing mechanisms; however, due to the untestable assumptions 

that underlie MNAR mechanism, there is no valid method to select the most appropriate model 

(Little & Rubin, 2002). Hence, to address the nonignorable missing mechanism caused by 

omitted and not-reached items, a model choice should be based on theories and sensitivity 

analyses need to be conducted for exploring the impact of different assumptions on the item or 

person parameter estimation. 

Several models have been developed to treat omitted and not-reached responses in IRT 

models. Typically, the missing propensity is included either via models that ignore timing 

information (e.g., Holman, & Glas, 2005; O'muircheartaigh, & Moustaki, 1999; Rose et al., 

2010) or by models that incorporate timing information (Pohl, Ulitzsch, & von Davier, 2019; 

Ulitzsch, von Davier, & Pohl, 2019; Ulitzsch, von Davior & Pohl, 2020). In the following 

sections, each method is described conceptually by highlighting its advantages and limitations.   
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2.5.1 Models That Ignore Timing Information 

2.5.1.1 Latent approach 

In social science, the survey literature addresses the concern about the nonresponses that 

may lead to biased parameter estimates. To deal with this problem, O'muircheartaigh and 

Moustaki (1999) attempt to obtain the information about the latent variable from nonresponses, 

by fitting the extended two-dimension factor model (Albanese & Knott, 1992). They assume that 

in the survey analysis there are two dimensions: an attitude dimension and a second dimension of 

response propensity, which underlies the respondent’s response decision for each item. For 

modeling responses and nonresponses, two parallel matrices of binary data are created and a 

mixed model is fitted to handle the nonresponses.    

In line with this research, Holman, and Glas (2005) propose a model-based approach for 

handling the omitted and not-reached items by using IRT models. In this approach, the extended 

version of generalized partial credit model (GPCM) is fitted to include more latent traits and this 

approach can access the extent to which the missing data are nonignorable from the factor 

loadings of the probability of missingness or observed responses on latent traits. In simulation 

studies, it is shown that ignoring the missing data mechanism leads to substantial bias in the item 

parameter estimates and further this bias increases as a function of the correlation between the 

proficiency and the latent variable governing the missing data process (Holman, and Glas, 2005). 

In summary, in latent approach, the missing tendency is included via a latent missing 

propensity by fitting a multidimensional IRT model, which is depicted in Figure 2, where 𝑌𝑖 

indicates observed responses on the test items, 𝐷𝑖 represents missing indicators, 𝜃 indicates an 

examinee’s latent proficiency and 𝜉 represents the latent missing propensity. There are several 

limitations on latent approaches. First, this model makes an assumption that missing indicators 
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fit a unidimensional measurement model. Since the items are not constructed that the missing 

indicators meet a unidimensional IRT model, this assumption may not be negligible (Pohl, Gräfe, 

& Rose, 2014). Second, if a possible multidimensionality of the latent missing propensity is not 

accounted for, the latent approach may fail to address the omitted and not-reached responses 

(Rose, 2013). Lastly, the latent approach may result in estimation problems, when the sample 

size and the proportion of missing responses are small (Rose, 2013).  

2.5.1.2 Manifest approach 

To address the estimation problems of latent approach, the manifest approach (Rose et 

al., 2010) is proposed. As shown in Figure 3, the average number of missing responses (i.e., �̅�) is 

included in the measurement model. Compared to the latent approach, the manifest approach is 

easier to implement and there are fewer estimation problems. 

Rose et al. (2010) also compare the performance of model-based approaches (e.g., 

between and within MIRT models, manifest approach) and ad hoc methods (e.g., IRT model that 

ignores the missing data and that treats omissions always as wrong). In the between and the 

within MIRT models, a second latent trait (i.e., response propensity) is incorporated to capture 

the nonresponse information, while the latent regression based on missing data model uses a 

predictor based on the observed count of omitted responses to improve the proficiency 

estimation. Findings from the simulation studies show that model-based approaches are equally 

appropriate to account for omitted responses; however, the simple IRT model that ignores the 

omissions also shows relatively good performance under the condition of moderate amounts of 

missing data (Rose et al., 2010).  

There are several limitations on the manifest approach. First, it is implicitly assumed that 

there is a unidimensional missing propensity, which cannot be tested in the model (Pohl et al., 
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2014). Further, if a fallible measure of missing propensity is included, this may distort the 

correlation and lead to a less-efficient bias reduction (Lord, 1960). 

2.5.2 Models That Incorporate Timing Information 

Examinee’s responses on test items, as well as corresponding RTs, reveal important 

information about proficiency. To account for a speed-accuracy tradeoff, van der Linden (2007) 

proposed a hierarchical framework. Hierarchical regression model is useful to incorporate 

predictors at different levels of variation (Gelman et al., 2013). For instance, the achievement test 

may include information about individual students (e.g., math and verbal scores), class-level 

information (e.g., characteristics of teachers), and school-level information (e.g., types of 

schools). With predictors at multiple levels, the classical regression is extended to introduce as 

predictors a set of indicator variables for each of the higher-level units in the data (Gelman et al., 

2013).  

Most recently, a hierarchical framework for modeling speed and accuracy (van der 

Linden, 2007) is applied to account for the not-reached items (Pohl, Ulitzsch, & von Davier, 

2019), omitted responses (Ulitzsch, von Davier, & Pohl, 2020), and disengaged behavior (e.g., 

guessing and omission) (Ulitzsch, von Davior & Pohl, 2019). Instead of using ad hoc methods 

(e.g., ignoring, scoring as wrong, common time threshold method), these models can 

simultaneously account for either the omitted or not-reached items in the estimation of item 

parameter and proficiency.    

In this section, we introduce the speed and accuracy (SA) model (van Der Linden, 2007), 

SA+Engagement (SA+E) model (Ulitzsch et al., 2019), and SA+Omission (SA+O) model 

(Ulitzsch et al., 2020).        
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2.5.2.1 Speed-Accuracy (SA) Model (van der Linden, 2007) 

The concept of a speed-accuracy tradeoff is based on the observation that examinees need 

to choose between working faster with lower accuracy or working slower with higher accuracy, 

while taking the test. This notion is motivated by the fact that examinees have control of their 

working speed and have to accept the accuracy, followed by the choice of speed (van der Linden, 

2009a). Typically, speed is negatively (nonlinear) correlated with accuracy and a speed-accuracy 

tradeoff is a within-person relationship (van der Linden, 2007).   

In educational measurement, the main interest is generally in measuring an examinee’s 

(latent) proficiency rather than (manifest) accuracy; hence, IRT model is commonly used for 

capturing the “effective proficiency” of examinee that does not necessarily match the proficiency 

level that the test intended to measure (i.e., “target proficiency”) (Tijmstra & Bolsinova, 2018). 

For instance, when an examinee has low motivation, the effective proficiency can be lower than 

the target proficiency of the test. Due to the speed-accuracy trade-off phenomenon, the effective 

proficiency is likely to be influenced by the speed level while working on items.  

 To formulate this trade-off, it is useful to consider the hierarchical modeling framework 

that jointly models effective speed and effective proficiency (van der Linden, 2007). Further, 

different levels for person parameters need to be specified: the fixed-person level (e.g., the 

parameters remain constant), and the random-person level (e.g., there is a distribution of 

parameter values across persons) (van Der Linden, 2007). The hierarchical framework can 

incorporate the three distinctive levels and a structure for simultaneously modeling item 

responses and RTs. For example, the measurement models for item response and RTs are 

specified on the first level, while the joint distribution of person and item parameters is specified 

on the second level.  
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 The assumptions of hierarchical modeling framework are as follows: RTs follow a 

lognormal distribution (van der Linden, 2007) and an examinee’s effective speed and effective 

proficiency are constant throughout the test (van der Linden, 2009). Further, it is noteworthy to 

mention that the correlation between examinee proficiency and speed on the second level 

concerns the between-person association. As a result, it is possible that more capable examinees 

who choose to work at a higher speed than the average result in a positive correlation between 

speed and proficiency (van der Linden, 2007), even though the within-person association 

between effective speed and effective proficiency can generally be assumed to be negatively 

correlated (van der Linden, 2009).  

Item responses are modeled as in Section 2.1 and let 𝑇𝑖𝑗 be the response-time to the ith 

item. For the RTs 𝑇𝑖𝑗, a lognormal model is assumed: 

ln𝑇𝑖𝑗 =  𝛽𝑖 − 𝜏𝑗 + 𝜀𝑡𝑖𝑗  , 𝜀𝑡𝑖𝑗~𝑁(0, 𝛼𝑖
−2) (2.5.1) 

where 𝛽𝑖 indicates the time intensity for item i, 𝜏𝑗 indicates the speed parameter of examinee j, 

and 𝛼𝑖 indicates a time discrimination parameter (i.e., the reciprocal of the standard deviation of 

the RTs on item i).  When 𝛼𝑖 is large, the proportion of the RT variance due to the differences in 

speed across examinees also becomes large. 

 On the second level, a dependency of speed and accuracy across examinees is estimated 

by a joint distribution of these random effects by allowing for a correlation between proficiency 

and speed (See Figure 5). The SA model is an extension of IRT model (See Figure 4) which 

allows a dependency between speed and proficiency at both item and population levels. For 

population model, a vector of latent person parameters, 𝜆𝑗 are randomly drawn from a 

multivariate normal distribution:  
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𝜆𝑗  ~ 𝑓(𝜆𝑗|𝜇𝑃, Σ𝑃) (2.5.2) 

with corresponding mean vector  

 𝜇𝑃 = (𝜇𝜃, 𝜇𝜏) (2.5.3) 

and covariance matrix  

Σ𝑃 = (
𝜎𝜃
2 𝜎𝜃𝜏

𝜎𝜃𝜏 𝜎𝜏
2
). (2.5.4) 

For SA+O model, 𝜆𝑗 will be expanded to include additional person parameters.  

For item domain model, the vector of item parameters, 𝜑𝑖 are randomly drawn from a 

multivariate normal distribution:  

𝜑𝑖 ~ 𝑓(𝜑𝑖|𝜇𝐼 , Σ𝐼) (2.5.5) 

with mean vector 

 𝜇𝐼 = (𝜇𝑎, 𝜇𝑏 , 𝜇𝑐, 𝜇𝛼 , 𝜇𝛽) (2.5.6) 

and covariance matrix  

Σ𝐼 =

(

 
 
 
 

𝜎𝑎
2 𝜎𝑎𝑏 𝜎𝑎𝑐 𝜎𝑎𝛼 𝜎𝑎𝛽

𝜎𝑏𝑎 𝜎𝑏
2 𝜎𝑏𝑐 𝜎𝑏𝛼 𝜎𝑏𝛽

𝜎𝑐𝑎 𝜎𝑐𝑏 𝜎𝑐
2 𝜎𝑐𝛼 𝜎𝑐𝛽

𝜎𝛼𝑎 𝜎𝛼𝑏 𝜎𝛼𝑐 𝜎𝛼
2 𝜎𝛼𝛽

𝜎𝛽𝑎 𝜎𝛽𝑏 𝜎𝛽𝑐 𝜎𝛽𝛼 𝜎𝛽
2
)

 
 
 
 

. (2.5.7) 

Lastly, a joint sampling distribution for the observed item responses and RTs, conditional on all 

of the item and person parameters is defined as:  

𝐿 =  ∏∏𝑓(𝑌𝑖𝑗, 𝑇𝑖𝑗

𝐼

𝑖=1

𝑁

𝑗=1

|𝜆𝑗, 𝜑𝑖)𝑓(𝜆𝑗|𝜇𝑃, Σ𝑃)𝑓(𝜑𝑖|𝜇𝐼 , Σ𝐼). (2.5.8) 

There are several assumptions in the SA model (van Der Linden, 2007):  

1) Examinees operate at constant accuracy and speed across the test.  
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2) For each examinee, both the item response and RT are random variables.  

3) Item responses and RTs are conditionally independent between different items. 

4) Item responses and RTs on the same items are conditionally independent.  

Overall, the item responses and RT distributions have separate sets of parameters in the first 

level and the only constraint on them is the shape of their distributions in the population of 

examinees and the domain of items in the second level. One advantage of this model is 

simultaneously but separately modeling item responses and RTs by using a hierarchical 

structure. 

 Recently, Pohl et al. (2019) investigated whether the speed-accuracy (SA) model (van der 

Linden, 2007) can account for the not-reached items due to time limits by making an assumption 

of the propensity of not-reached items as a working speed. They also show the close association 

between the SA model and the manifest missing approach for not-reached items (Rose, von 

Davier, & Xu, 2010), for which speed is indicated by the RTs per item and the number of not-

reached items, respectively. The number of not-reached items can be viewed as a rough 

approximation of RT at the test level. For data analysis, Bayesian estimation with Gibbs 

sampling is used and missing values are imputed based on the specified model. If not-reached 

items occur due to the different speed levels of examinees, the SA model can account for missing 

data process. Further, the SA model can estimate effective proficiency, which results in target 

proficiency for both examinees with and without missing values (Pohl et al., 2019).  

2.5.2.2 SA+Omission Model (Ulitzsch et al., 2020) 

By adopting a hierarchical framework (van der Linden, 2007), Ulitzsch et al. (2020) 

introduce a joint modeling of response and nonresponse behavior (i.e., SA+O model). The SA+O 

model (See Figure 6) is an extension of the SA model (See Figure 5) in that it allows a 
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dependency of speed and proficiency across examinees. However, the dependency on item level 

is reduced; instead, it includes parallel structures for observed and missing responses and allows 

simultaneously modeling item responses and RTs.  

The SA+O model has several advantages. First, the SA+O model provides the 

information on nonresponse behavior by accounting for the degree of nonignorability of missing 

values in item responses, RTs and nonresponse times (NRTs) (Ulitzsch et al., 2020). For 

instance, a latent omission propensity (Holman & Glas, 2005) as well as an omission speed 

factor are accounted by joint modeling of response behavior. Second, the SA+O model can 

provide insights on test-taking strategies by allowing examinees to operate differential speed 

levels for generating observed and missing responses. In other words, it provides a better 

understanding of examinee’s test-taking behavior by taking into account response and 

nonresponse speed variables (e.g., assessing whether examinees use different pacing strategies) 

when they generate engaged or disengaged behavior. Given the empirical data analysis, observed 

RTs of two different psychometric properties-observed and omitted responses had distinctive 

distributions within the same item (Weeks et al., 2016). Thus, estimating the correlation between 

speed and omission speed can provide valuable information on how response processes are 

related to item omission processes (Ulitzsch et al., 2020). Lastly, given the SA+O model as the 

data-generating model, modeling nonresponse behavior jointly with response behavior results in 

less biased person parameter estimates (Ulitzsch et al., 2020), compared to the SA model (van 

der Linden, 2007).  

Despite the advantages of the SA+O model, there are several limitations. First, previous 

studies show that model-based approaches for handling missing responses affect proficiency 

parameter estimates only under the conditions with a large proportion of item nonresponses and a 
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high degree of nonignorability (Holman & Glas, 2005; Pohl et al., 2014; Rose et al., 2010; Rose 

et al., 2017). Therefore, given the complexity of the SA+O model, it is recommended for use 

under conditions with a large sample size (N ≥ 750) or a high omission rate (≥ 17%) for small 

sample sizes (Ulitzsch et al., 2020). Second, the SA+O model assumes stationarity of 

proficiency, speed, omission propensity, and omission speed. This assumption might be violated 

when examinees increase their working speeds to finish the test on time in speeded tests. Further, 

the SA+O model assumes RT and NRT distributions to be lognormal; however, RT distribution 

differed dramatically across items within one test (Ranger & Kuhn, 2012). The violation of RT 

and NRT distribution assumptions might lead to biased item and person parameter estimates.  

2.5.2.2.1 Modeling response behavior 

For the dichotomous item responses 𝑌𝑖𝑗, the two-parameter logistic model (i.e., 2PL 

model) is assumed (See Equation 2.1.1). For the RTs 𝑇𝑖𝑗, the lognormal model is assumed (See 

Equation 2.5.1).   

2.5.2.2.2 Modeling nonresponse behavior 

The missing data indicator is defined in Section 2.2. When the amount of omissions is 

small, the data for nonresponse behavior can be sparse; thus, the simplest IRT model (e.g., Rasch 

model) is assumed. The probability of item omission is modeled as a function of a latent 

omission propensity 𝜉𝑗 and omission difficulty 𝜈𝑖 on item i: 

𝑃𝑖(𝐷𝑖𝑗 = 1|𝜉𝑗 , 𝜈𝑖) =  
𝑒
(𝜉𝑗−𝜈𝑖)

1+𝑒
(𝜉𝑗−𝜈𝑖)

 . (2.5.9) 

Likewise, for the nonRTs 𝑆𝑖𝑗, the lognormal model is assumed as it is defined for the SA model 

(See Equation 2.5.1): 

ln𝑆𝑖𝑗 =  𝛿𝑖 − 𝜁𝑗 + 𝜀𝑡𝑖𝑗  , 𝜀𝑡𝑖𝑗~𝑁(0,𝜔𝑖
−2) (2.5.10) 
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where 𝛿𝑖 represents the omission time intensity for item i, 𝜁𝑗  represents the omission speed that 

examinee j decides to omit items, and 𝜔𝑖 represents an omission time discrimination parameter.   

 Unlike the SA model (van der Linden, 2007), the first-level item parameters are assumed 

to be fixed effects, while person parameters are modeled as random effects. Hence, the vector of 

latent person parameters, 𝜆𝑗 are randomly drawn from a multivariate normal distribution:  

𝜆𝑗  ~ 𝑓(𝜆𝑗|𝜇𝑃, Σ𝑃) (2.5.11) 

with mean vector  

 𝜇𝑃 = (𝜇𝜃, 𝜇𝜏, 𝜇𝜉 , 𝜇𝜁) (2.5.12) 

and covariance matrix  

Σ𝑃 =

(

 
 

𝜎𝜃
2 𝜎𝜃𝜏 𝜎𝜃𝜉 𝜎𝜃𝜁

𝜎𝜏𝜃 𝜎𝜏
2 𝜎𝜏𝜉 𝜎𝜏𝜁

𝜎𝜉𝜃 𝜎𝜉𝜏 𝜎𝜉
2 𝜎𝜉𝜁

𝜎𝜁𝜃 𝜎𝜁𝜏 𝜎𝜁𝜉 𝜎𝜁
2
)

 
 

. (2.5.13) 

Lastly, the likelihood function is defined as following:  

𝐿 =  ∏∏𝑃(𝑌𝑖𝑗|𝜃𝑗 , 𝑎𝑖 , 𝑏𝑖)
1−𝐷𝑖𝑗

𝑓(𝑇𝑖𝑗|𝜏𝑗 , 𝛽𝑖, 𝛼𝑖)
1−𝐷𝑖𝑗

𝐼

𝑖=1

𝑁

𝑗=1

 

𝑃(𝐷𝑖𝑗|𝜉𝑗, 𝜈𝑖)
𝐷𝑖𝑗𝑓(𝑆𝑖𝑗|𝜁𝑗 , 𝛿𝑖, 𝜔𝑖)

𝐷𝑖𝑗  𝑔(𝜃𝑗 , 𝜏𝑗 , 𝜉𝑗 , 𝜁𝑗|𝜇𝑃, Σ𝑃). 

(2.5.14) 

In summary, the SA model can fit item responses and RTs simultaneously, but separately 

through a hierarchical structure: on the lower level, measurement models are specified for item 

response and RTs, while the dependencies between the item and person parameters are modeled 

on the higher level (van der Linden, 2007). Taking this advantage, the SA+O model extends the 

SA model by including a process model for nonresponse behavior, and it also allows examinees 

to operate on different speed levels for generating responses and omitted responses (Ulitzsch et 

al., 2020). Further, Ulitzsch et al. (2020) suggest a possibility of the SA+O model to account for 
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not-reached items, since this model controls for general working speed as well as nonresponse 

speed (Pohl et al., 2019).    

In this research, the SA+O model (Ulitzsch et al., 2020) is used to account for omitted 

responses as well as corresponding NRTs. Further details of simulation conditions are presented 

in Chapter 3.     
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            𝜌∙𝜂 = 0             𝜌∙𝜂 ≠ 0  

           Omission Rate           5%            17% 

 

A.16: Medians and 90% Ranges of Differences between Estimated and True Time 

Intensity Parameters β, Plotted against the True Parameters.  
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           Omission Rate           5%            17% 

 

A.17: Medians and 90% Ranges of Differences between Estimated and True Omission 

Time Intensity Parameters δ, Plotted against the True Parameters.  
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            𝜌∙𝜂 = 0             𝜌∙𝜂 ≠ 0  

           Omission Rate           5%            17% 

 

A.18: Medians and 90% Ranges of Differences between Estimated and True Time 

Discrimination Parameters α, Plotted against the True Parameters.  
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A.19: Medians and 90% Ranges of Differences between Estimated and True Omission 

Time Discrimination Parameters ω, Plotted against the True Parameters.  
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A.20: Medians and 90% Ranges of Person Parameter Variance Estimates 
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A.21: Medians and 90% Ranges of Person Parameter Correlation Estimates 
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