The differences in the excretion patterns suggests that the TEGCOOH nanomaterials are
not easily cleared from mice, as it shows nor or very small liver excretion and accumulation in
Kidney and Spleen in comparison with its TTMA and ZW counterparts. To improve our
understanding of the NPs excretion in the suborgan regions of the liver, we performed a series of
images in LA-ICP-MS, from D1 and D6 liver tissue and the results are displayed in Figure 5.6. The
scale on the images corresponds to a concentration scale, since the LA-ICP-MS experiments were
performed using a calibration standard. Using our software for image reconstruction and analysis
we calculated the average concentration, using all the tissue pixels and its standard deviation, to

properly get an assessment of NPs distribution, results are displayed Table 5.1.
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Figure 5.5. concentration of Au in each of the organs by ICP-MS in solution digestion. D1 and D6 were
evaluated for each of the three nanomaterials. Each bar corresponds to experiments performed on 3 mice.
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Figure 5.6. LA-ICP-MS images from tissue sections obtained from NPs injected mouse.

The table and images in Figure 5.6 and Table 5.1 clearly shows that TTMA and ZW
nanoparticles show a decrease in concentration in the tissues as shown by the tissue average. On
the other hand, TEGCOOH nanoparticles show an increase in liver concentration, showing an
accumulation of this type of nanomaterials in the tissue sections. Finally, we evaluated the
distribution of all the tissue pixels using histograms as shown in Figure 5.7, and we determined that
the TEGCOOH pixels shift towards higher concentration and broadens in its distribution as the NPs
accumulate in the liver. These offer us already more information about the nature of the
accumulation, showing that certain parts of the tissue section accumulate more of these NPs in

time. To get a better picture of the accumulation process we could analyze the distribution per
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suborgan regions, which would require the implementation of techniques that can improve the

resolution of the images, such as Image Fusion.

Table 5.1. Tissue average concentration in tissue sections injected with TTMA, ZW and TEGCOOH NPs on
day 1 and day 6.

Tissue NP Day Mouse Tissue Avg Tissue std
Liver TTMA D1 M1 43.11 23.39
Liver TTMA D1 M2 24.08 11.18
Liver TTMA D1 M3 23.97 10.59
Liver TTMA D6 M1 19.65 5.56

| Liver TTMA D6 M2 8.89 2.92
Liver W D1 M1 37.59 10.45
Liver W D6 M1 40.92| 12.47

|_Liver ZW D6 M2 25.02 14.18
Liver COOH D1 M1 57.10 21.78
Liver COOH D1 M2 66.76) 24.91)
Liver COOH D6 M1 101.35 53.62
Liver COOH D6 M2 99.75) 50.58
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Figure 5.7. Evaluation of pixel distribution on liver tissues injected with TTMA, ZW and TEGCOOH.
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APPENDIX A

Jupyter Notebook RecSeglmage-LA: Reconstruction, Segmentation of

LA-ICP Imaging Data

Here, we display the content of the Jupyter notebook used for the reconstruction and segmentation
of LA-ICP data. The use of this code is described in Chapter 2. The workflow consists of six steps
showed in the image below, orange circles show input parameters, while gray boxes show the
workflow steps. Each of the steps is documented in the Jupyter notebook showing the variable type
(“integer”, “string”, “float”, etc) and the input required in each case.

sDatafiles eSpot size * Background Index
#Dataname e=Scan Rate * Line
*Number metals * Std threshold

* Metal numerator M1
* Metal denominator M2

l

|

|

Step 1. Image reconstruction
Reconstructed image of all
metals M1, M2

Step 2. Background Subtraction
Background subtracted image
using 1 and 0 mask

Step 3. Normalization
Normalized image M1/M2

2

Step 6. ROIs statistics
Averages, errors and number of
pixels in segmented areas

Step 5. Segmentation borders
Introduction of spatial
awareness to segmentation

Step 4. Segmentation
Segmented image with n clusters

t

* Areas of interest ROls
cutoffs

import sys

sys.path.append ("../"
from recsegimage import

import numpy as np

1

* Type of filtering

go to parent dir

import matplotlib.pyplot as plt

import glob
import re
smatplotlib inline
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Reconstruction of images for the analyzed metals

The following lines of code perform image reconstruction of LA-ICP-MS data, save the data in the
results folder and generate plots of the reconstructed images. The final images are in order of
acquisition in the raw data (Metal1, Metal2, Metal3, ... , Metaln)

o foldername = string, name of the folder that includes the raw data files and the ipython
script RecSeglmage-LA.ipynb

e data_name = string, name given to the data (no blank spaces allowed in the name)

e spot_size = integer, spot size in microns of the laser used to acquire the data

e scan_rate = integer, scan rate of the laser in microns/second

e nmetals = integer, number of metals analyzed, when performing the images

o Idiscard = integer, number of columns on the far left side of the image to be eliminated
in case there is sample carryover. Default value is 0

foldername = "data/"
data name = "Example"
spot size = 50
scan_rate = 15
nmetals = 4

ldiscard = 0

# Image reconstruction of the LA-ICP-MS raw data

final matrices, sumdata =

image reconstruction (foldername, ldiscard, "*.x1", nmetals, spot size, sca
n rate

# Save the analysis in .csv files in the folder RegSegImage-
LA/results folder

write data analysis(final matrices, ldiscard, sumdata, nmetals

# Generate the image plots of all the analyzed metals
generate plot all metals(final matrices, nmetals
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Reconstruction of the image of a single metal

Image reconstruction of one of all the analyzed metals. The metal index of the metal needs to be
specified. The metal index corresponds to the order in which the metal is analyzed by the ICP-MS.
For this particular example, the ICP-MS performs the readings of the metals in the following order:
Bi, Fe, Zn, S. This means that the associated indexes are: Bi (Metall, metal_index=1), Fe (Metal2,
metal_index=2), Zn (Metal3, metal_index=3) and S (Metal4, metal_index=4)

e metal_index = integer, index of the metal that we want to plot. For example, for Metal 2
(Fe), the index is 2.

metal index = 2

# Functions to generate image of one metal plot
generate metal plot(final matrices,metal index,nmetals

Metal2

2000
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Background subtraction

Use the Zn image (or other metal that marks the tissue boundary) to differentiate tissue from
background

e background_index = integer, index of the image used for background subtraction. In this
case is the Zn image

o line = integer, row or column from which the standard deviation will be calculated. By
default, the value is 1, which corresponds to the first row and column. The script will
calculate the smallest standard deviation among the selected rows and columns

e std_threshold = integer, how many standard deviations will be tolerated to set the
threshold of what is considered to be tissue and background

background index = 3
line =1
std threshold = 4

background mask =
remove background (final matrices,background index,line, std threshold

background plot = generate background plot (background mask

Background mask

Normalization with background subtraction

Normalization of the image with background subtraction. Background subtraction should be done
first to obtain the background mask. The normalization corresponds to a pixel/pixel division of the
images, so metal_numerator/metal_denominator should be specified in the following parameters:

e metal_numerator = integer, index of the metal that will correspond to the metal numerator
in the division operation

e metal_denominator = integer, index of the metal that will correspond to the metal
denominator in the division operation

The normalized image with background subtraction is saved as a text file in the results folder. The
name of the file is: "Normalization Background Metal_numerator / Metal_denominator"
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metal numerator = 1

metal denominator 3

normalization with background(final matrices, background mask,metal nu
merator,metal denominator

Normalization BKG Metall/Metal3

40000
30000
20000

10000

k-means segmentation
Segmentation of the images using k-means clustering. This is without spatial awareness.

e metal_segmentation_index = integer, index of the metal used for segmentation. In this
example we use Fe and the index of Fe in the reconstructed data corresponds to 2

o clusters = integer, number of clusters to perform k-means segmentation. For this particular
common example we had determined that the ideal number of clusters is 2

metal segmentation index = 2
segmentation clusters = 2

label image, segmented image =
segmentation (final matrices,background mask,metal segmentation index
segmentation clusters
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k-means multimetal segmentation with neighboring pixel evaluation

Application of neighboring pixel evaluation using average filtering. The k-means segmentation part
of the code should be run first before performing neighboring pixel evaluation. The number of
clusters and metal segmentation index are the ones specified in the k-means segmentation part of
the code. If the user wants to change these parameters, this can be done in the k-means segmentation
part of the code. No inputs are required here by the user

Multimetal segmented images correspond to the segmented images using Fe and the background
mask (Zn) for segmentation. A weighted image corresponds to the image after filtering to determine
the tissue boundaries.

weighted pixels = neighbouring average (label image,background mask

Multimetal segmented image Weighted Image

200

175
150
125
100
0.75
050
0.25

0.00

Image masks of the segmented areas

It is possible to set up to four different areas determined by segmentation and neighboring pixel
evaluation. It is necessary to set up the cutoffs of the areas in relation to the weighted image (0 to
18 scale). For this particular example we set up the cutoff values for:

Area 1 = Background (values between 0 and 5)
Area 2 = Red Pulp (values between 6 and 10)

Area 3 = Marginal zone (values between 11 and 14)
Area 4 = White pulp (values between 15 and 18)

The variables shown should specify the low and high cutoff of a particular area:

low_A1 = integer, low cutoff of Area 1
high_A1 = integer, high cutoff of Area 1
low_A2 = integer, low cutoff of Area 2
high_A2 = integer, high cutoff of Area 2
low_A3 = integer, low cutoff of Area 3
high_A3 = integer, high cutoff of Area 3
low_A4 = integer, low cutoff of Area 4
high_A4 = integer, high cutoff of Area 4
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low Al = 0
high Al = 0.59

low A2 0.60
high A2 1.19

low A3 = 1.20
high A3 = 1.49

low A4 = 1.50
high A4 = 2.0

areal, area2, area3, aread
image masks (weighted pixels,low Al ,high Al,low A2 ,high A2, low A3, high
_A3,1low A4,high A4

Areal Area 4

Quantitation in different segments

Quantitation of pixels in the different segments determined by the image masks. Four different
areas of a tissue were determined after segmentation. The segmented areas can be use to get the
number of pixels in each of the particular areas, find the average and error of any of the metals in
each of the segmented areas. It is necessary to choose the metal that we desire to quantify in each
of the areas as the (quantitation_index). In this particular example, we want to quantify the Bismuth
(quantitation_index=1) so the index needs to be set to the Bi index (Bismuth index is 1). It is also
possible to quantify the average signal of any of the other metals, for example if we want to quantify
the Fe in each of the segmented areas we should set (quantitation_index=2) as the Fe corresponds
to the metal with the index=2.

e quantitation_index = int, index of the metal that we want to quantify in each of the
segments

quantitation index 2

quantitation segments (final matrices, areal, area2, area3, aread4, quantita
tion index

Area 1 Quantitation:

Area 1 pixels are: 5308

Area 1 average 1is: 518.7432395475972
Area 1 error is: 7.172345137306754

103



Area
Area
Area
Area

Area
Area
Area
Area

Area
Area
Area
Area

w w w w NN NN

B DD

Quantitation:

pixels are: 4822

average is: 3890.3483368180314
error is: 15.287243249381316

Quantitation:

pixels are: 1545

average 1is: 2777.1852567092023
error is: 23.262159826047085

Quantitation:

pixels are: 1509

average is: 1337.1421460333133
error is: 9.673310098229521
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APPENDIX B

Source code of RecSeglmage-LA: Reconstruction, Segmentation of LA-

ICP Imaging Data

Here we have generated a copy of the functions used for reconstruction and segmentation of LA-
ICP data, as defined in the module _functions.py of the RecSegImage-LA repository, as shown in
the following github link (git@github.com:Vachet-Lab/RecSeglmage-LA.git). The use of this code
is described in Chapter 2. The comments for each of the functions are shown in red, the description
contains a brief explanation of the function, input and outputs description with its variable type.

import numpy as np

import matplotlib.pyplot as plt

import glob

import re

import warnings; warnings.simplefilter ('ignore')
from sklearn.cluster import KMeans

global ldiscard
ldiscard=0

def atoi (text):

LI B
Natural Sorting of data: Functions used to organize the data in terms
of type. Import the package re. Allow the use of
backslashes to indicate special forms without evoking the special
meaning.

atoi function:

input = str, text
output = str and int, text
LI B
return int (text) 1if text.isdigit () else text

def natural keys (text):

T
alist.sort (key=natural keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)

v

return [ atoi(c) for c in re.split('(\d+)', text) I

def processfile(filename,ldiscard,spot size,scan rate):
T

Function processfile used to load and read the data in a single file

Input:
filename = str, name of the folder where the data files are stored
ldiscard = integer, number of columns on the far left side of the
image to be eliminated. Default value is 0

spot size = integer, spot size in microns of the laser used to
acquire the data
scan rate = integer, scan rate of the laser in microns/second
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Ouput:
new matrix = nd array, reduced data summed by sumdata amounts
sumdata = int, number of data points that make one pixel (depends
on laser spot size and scan rate)
T
data matrix = np.loadtxt(filename, delimiter=",", skiprows=(2+ldiscard))
pixel time = spot_size/scan_rate
data point time = data matrix[6,0]-data matrix[5,0]
sumdata = int (round(pixel time/data point time))
nrows = data matrix.shape([0]//sumdata
ncols = data matrix.shape[l]-1
new matrix = np.zeros((nrows+l,ncols))
for n in range (nrows) :
new matrix[n,:] =
np.sum(data matrix[n*sumdata: (n+l) *sumdata,l:],axis=0)
new matrix[n+l,:] = np.sum(data matrix[(n+l)*sumdata:,1:],axis=0)
return new matrix, sumdata

def
image reconstruction(foldername,ldiscard,extension,ncolumns,spot size,scan rate
) =

Function image reconstruction used for load files in a directory

Input:
foldername = str, folder in which the data files and script are
located
ldiscard = integer, number of columns on the far left side of the
image to be eliminated. Default value is 0

extension = str, extension of the data files

ncolumns = int, number of columns in the reduced matrix (equal to
the number of metals)

spot size = integer, spot size in microns of the laser used to
acquire the data

scan_rate = integer, scan rate of the laser in microns/second

Output:

final matrices = dic, dictionary composed of np.arrays of the final
data of different analyzed metals

sumdata = int, number of data points that make one pixel (depends

on laser spot size and scan rate)
T

files = glob.globl (foldername, extension)
files.sort (key=natural keys)
nfiles = len(files)

dic _data = {}
for n in range(ncolumns) :
dic data[n]=[]
for file in files:
processed matrix,sumdata =
processfile (foldername+'/'+file, ldiscard, spot_size,scan_rate)
for col in range (ncolumns) :
dic_data[col].append (processed matrix[:,col])
final matrices={}
for n in range (ncolumns) :
final matrices([n]=np.array(dic_data([n])
return final matrices, sumdata

def
write data analysis(final matrices,ldiscard, sumdata,nmetals, foldername="'results
I):

v
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Function write data analysis use to write the processed data into
separate csv files

Input:
final matrices = dic, dictionary composed of np.arrays of the final
data of different analyzed metals
ldiscard = int, number of datapoints discarded in each of the
files, if needed

sumdata = int, number of data points that make one pixel (depends
on laser spot size and scan rate)
nmetals = int, number of metals analyzed, when performing the
images
Output:

files for each of the analyzed metals writen in .csv inside the

/results directory
T

dic_of metals = {}

keys = range (nmetals)
for i in keys:
dic of metals[i+1] = "Metal" + str(i+l)
for metal in final matrices:
filename = foldername + "/Reconstruction-%s.xl1l" %

(dic_of metals[metal+l])
np.savetxt (filename, final matrices[metal], delimiter=',',
newline="'\n")

def generate plot all metals(final matrices,nmetals):
LI B

Function genetate plot all metals to plot all the metal images in one

plot
Input:
final matrices = dic, dictionary composed of np.arrays of the final
data matrices of different analyzed metals
nmetals = int, number of metals analyzed, when performing the
images
Output:

matplotlib image of the analyzed metals in one image (in the
Jupyter notebook)
T
dic_of metals = {}
keys = range (nmetals)
for i in keys:
dic_of metals([i+1] = "Metal" + str(i+l)
fig = plt.figure(figsize=[10,8])
for n in range(l,nmetals+1):
ax = fig.add subplot(2,2,n)
plt.imshow (final matrices[n-1], interpolation='None', cmap=plt.cm.hot)
plt.title("%s" % dic_of metals([n])
plt.axis ('off")
plt.colorbar ()
plt.show ()

def generate metal plot(final matrices,metal index,nmetals):
LR

Function generate metal plot used to generate a plot of one metal

Input:
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final matrices = dic, dictionary composed of np.arrays of the final

data matrices of different analyzed metals
metal index = int, index of the specified metal in the dictionary

(1 to nmetals)
nmetals
images
Output:

= int, number of metals analyzed, when performing the

matplotlib image of a particular metal inline

v

dic of metals =

{1

keys = range (nmetals)

for i in keys:

dic of metals[i+1] = "Metal" + str(i+l)
fig = plt.figure(figsize=[5,4])
ax = fig.add subplot(1,1,1)

plt.imshow (final matrices[metal index-1], interpolation='None',

cmap=plt.cm.hot)

plt.title("%s" % dic_of metals[metal index])
plt.axis ('off")

plt.colorbar ()

plt.show ()

def populate border (matrix):

v

Function populate border used to fine tune, delimitate border of the

tissue sample, based on any metal content. This function is

concatenated with the remove background function

Input:
matrix = np array, correspond to the matrix index threshold. This

is the matrix that have the applied condition

matrix < threshold, this matrix correspond to a boolean matrix

which have defined True and False values.

Output:
border = np array
T
border = np.ones (matrix.shape)
for n in range (matrix.shape([0]) :
for m in range(matrix.shapel[l]):

if matrix[n, m] == True:
border[n, m] = 0

elif matrix[n, m] == False:
break

for n in range (matrix.shape[0]) :
for m in range(matrix.shapel[l]):

if matrix[n, matrix.shape[l] - m - 1] == True:
border[n, matrix.shape[l] - m - 1] = 0

elif matrix[n, matrix.shape[l] - m - 1] == False:
break

for m in range (matrix.shape([l]):
for n in range(matrix.shapel[0]):

if matrix[n, m] == True:
border[n, m] = 0

elif matrix[n, m] == False:
break

for m in range (matrix.shape([l]):
for n in range(matrix.shapel[0]):

if matrix[matrix.shape[0O] - n - 1, m] == True:
border[matrix.shape[0] - n - 1, m] = 0
elif matrix[matrix.shape[0] - n - 1, m] == False:
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break
return border

def remove background(final matrices,background index,line,std threshold):
LI B
Function remove background used to calculate the average and std of the
background and set the theshold values

Input:
matrix = np array, data matrix with the Zn data
final matrices([Zn_ index]
line = int, index of the line that will be used to perform the
background calculation, usually 0
tolerance std = int, tolerance of the std, usually is 3

Output:
background mask = np array, background mask of the image data

T
matrix = final matrices[background index-1]
average col = np.mean (matrix[:, line-1])
std col = np.std(matrix[:, line-1])
average row = np.mean (matrix([line-1, :])
std row = np.std(matrix[line-1, :])
if std col < std row:

average = average col
std = std col

else:
average = average row

std = std row
threshold = average + std threshold*std
index threshold = matrix < threshold
background mask = populate border (index threshold)
return background mask

def generate background plot (background mask) :
LI B
Function generate background plot used to generate a plot of the
background mask

Input:
background mask = np array, background mask of the image data

Output:
matplotlib inline image of the background mask

T
fig = plt.figure(figsize=[5,4])
ax = fig.add subplot(1,1,1)
plt.imshow (background mask, interpolation='None', cmap=plt.cm.hot)
plt.title('Background mask')
plt.axis ('off")
plt.show ()

def
normalization with background(final matrices,background mask,metal numerator,me
tal denominator,vmin=None, vmax=None, inter='None',
foldername='results') :
T
Function normalization with background to divide two matrices
(metall/metal2), saved the data and plotted it inline

Input:
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final matrices = dic, dictionary composed of np.arrays of the final
data matrices of different analyzed metals

background mask = np array, background mask of the image data

metal numerator = integer, index of the metal that will correspond
to the metal numerator in the division operation

metal denominator = integer, index of the metal that will
correspond to the metal denominator in the division operation

Output:
file inside the results directory with the results of the
metal numerator/metal denominator division
matplotlib inline image of the metal numerator/metal denominator
division
LI B
old err state = np.seterr(divide='raise')
ignored states = np.seterr(**old err state)
fig = plt.figure(figsize=[5,4])
ax = fig.add subplot(1,1,1)
division background = (final matrices[metal numerator-
1]1/final matrices[metal denominator-1]) *background mask
division background[np.isnan(division background)] = 0
np.savetxt (foldername+'/Normalization-Background-
Metal'+str (metal numerator)+'-
'+'Metal'+str (metal denominator),division background,delimiter=',"',newline="\n'

)

plt.imshow (division background, interpolation=inter, vmin=vmin, vmax=vmax, cmap=plt
.cm.hot)

plt.title('Normalization BKG
'+'Metal'+str (metal numerator)+'/Metal'+str (metal denominator))

plt.axis ('off")

plt.colorbar ()

plt.show ()

def
segmentation (final matrices,background mask,metal segmentation index,segmentati
on clusters):
_'l'
Function segmentation for the segmentation of the images using k-means
clustering without filtering

Input:
final matrices = dic, dictionary composed of np.arrays of the final
data matrices of different analyzed metals
background mask = np array, background mask of the image data

metal segmentation index = int, index of the metal used for
segmentation.
segmentation clusters = int, number of clusters to perform k-means
segmentation.
Output:

label image = np array, segmented image with its labels
segmented image = np array, segmented image with its centroids

LR

metal segmentation = final matrices[metal segmentation index-

1] *background mask

rows = metal segmentation.shape[0]

columns = metal segmentation.shape[l]

metal segmentation vector = metal segmentation.reshape(rows*columns, 1)

# specifies that kmeans will be applied with n-clusters

kmeans = KMeans (segmentation clusters)

# Perform kmeans over metal segmentation vector
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kmeans.fit (metal segmentation vector)
# Find cluster center associated with each data point
segmented vector =
kmeans.cluster centers [kmeans.predict (metal segmentation vector)]
# Find labels associated with each cluster
centroids = np.sort (np.unique (segmented vector))
labels = np.zeros(segmented vector.shape)
for index, centroid in enumerate (centroids) :
labels[segmented vector==centroid] = index
label image = labels.reshape (rows, columns)
# Reshaped of the image, plotting and comparison with raw data
segmented image = segmented vector.reshape (rows, columns)
# Image plot of the labels
plt.imshow(label image, cmap='jet')
plt.colorbar ()
plt.axis ('off")
plt.show ()
return label image,segmented image

def neighbouring average (label image,background mask) :
T

Function neighbouring average for filtering the multimetal image

Input:
label image = np array, segmented image with its labels
background mask = np array, background mask of the image data

Output:
weighted pixels = np array, filtering of label image data
LI B
# Re-asignation of zero values
label image[label image == 0] = 2
# Differentiation of bacgkround using the background mask
M = label image*background mask
# Weighted pixel calculation
weighted pixels = np.zeros (M.shape)
for n in range(l, M.shape[0]-1):
for m in range(l, M.shape[l]-1):
weighted pixels[n, m]= (M[n-1,m-1] + M[n-1,m] + M[n-1,m+1] + M[n,m-
1] + M[n,m] 4+ M[n, m+1l] + M[n+l, m-1] + M[n+1l, m] + M[n+1, m+1])/9
# Image generation of the multimetal segmentation
plt.figure(figsize=(9, 4))
axl=plt.subplot(l, 2, 1)
plt.imshow (M, cmap='jet')
plt.colorbar ()
plt.axis ('off")
plt.title('Multimetal segmented image')
# Image generation of the weighted image
axl=plt.subplot(l, 2, 2)
plt.imshow (weighted pixels, interpolation='none', cmap='jet")
plt.colorbar ()
plt.axis ('off")
plt.title('Weighted Image')
plt.show ()
return weighted pixels

def image masks (weighted pixels, low Al, high Al, low A2, high A2, low_ A3,
high A3, low A4, high A4):

Function image masks to obtain the masks images of the segmented areas

Input:
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low Al = integer, low cutoff of Area 1
high Al = integer, high cutoff of Area 1

low A2 = integer, low cutoff of Area 2
high A2 = integer, high cutoff of Area 2
low A3 = integer, low cutoff of Area 3
high A3 = integer, high cutoff of Area 3
low A4 = integer, low cutoff of Area 4

high A4 = integer, high cutoff of Area 4

Output:
areal = image of image mask of area 1
area?2 = image of image mask of area 2
area3 = image of image mask of area 3
area4 = image of image mask of area 4
LI B
areal = (weighted pixels <= high Al

( )
area2 = (weighted pixels <= high A2) (weighted pixels <= low A2)
area3 = (weighted pixels <= high A3) ~ (weighted pixels <= low A3)
area4 = (weighted pixels <= high A4) (weighted pixels <= low A4)
# Image generation

plt.figure(figsize=(12, 9))

ax=plt.subplot (1, 4, 1)

plt.imshow (areal, cmap='gray')

plt.axis ('off")

plt.title('Area 1")

ax=plt.subplot (1, 4, 2)

plt.imshow (area2, interpolation='none', cmap='gray')

plt.axis ('off")

plt.title('Area 2')

ax=plt.subplot (1, 4, 3)

plt.imshow (area3, interpolation='none', cmap='gray')

plt.axis ('off")

plt.title('Area 3')

ax=plt.subplot(l, 4, 4)

plt.imshow(area4, interpolation='none', cmap='gray')

plt.axis ('off")

plt.title('Area 4")

plt.show()

return areal, area2, area3, aread

def
quantitation segments(final matrices,areal,area2,area3,aread4,quantitation index
) :
LI B
Function quantitation segments to obtain the masks images of the
segmented areas

Input:
final matrices = dic, dictionary composed of np.arrays of the final
data matrices of different analyzed metals

areal = image of image mask of area 1

area? = image of image mask of area 2

area3 = image of image mask of area 3

area4 = image of image mask of area 4

quantitation index = int, index of the metal that we want to

quantify in each of the segments

Output:
inline results of the averages, standard error and number of pixels
of the segmented areas

[}

metal quantitation = final matrices[quantitation index-1]
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# Area 1
print ('Area 1 Quantitation:')

pixels Al = len(metal quantitation[areall)
avg Al = np.mean (metal quantitation[areall])
error Al = np.std(metal quantitation[areal])/np.sqgrt (pixels Al)

print ('Area 1 pixels are:', pixels Al)

print ('Area 1 average is:', avg Al)

print ('Area 1 error is:', error Al)

# Area 2

print (' ")

print ('Area 2 Quantitation:'")

pixels A2 = len(metal quantitation[areaZ2])

avg A2 = np.mean (metal quantitation[areaZl])

error A2 = np.std(metal quantitation[area2])/np.sqrt (pixels A2)
print ('Area 2 pixels are:', pixels A2)

print ('Area 2 average is:', avg A2)

print ('Area 2 error is:', error A2)

# Area 3

print (' ")

print ('Area 3 Quantitation:')

pixels A3 = len(metal quantitation[area3])

avg A3 = np.mean(metal guantitation[area3])

error A3 = np.std(metal quantitation[area3])/np.sqrt(pixels A3)
print ('Area 3 pixels are:', pixels A3)

print ('Area 3 average is:', avg A3)

print ('Area 3 error is:', error A3)

# Area 4

print (' ")

print ('Area 4 Quantitation:')

pixels A4 = len(metal quantitation[area4])
avg A4 = np.mean (metal quantitation[area4])

error A4 = np.std(metal quantitation[aread])/np.sqrt(pixels A4)
print ('Area 4 pixels are:', pixels A4)

print ('Area 4 average is:', avg_ A4)

print ('Area 4 error is:', error A4)
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APPENDIX C

Code for LA-ICP-MS and MALDI-MS dimensionality reduction,

registration, and validation

Here we present the code used for registration described in Chapter 3. Comments to the code are
shown in (#). The code has the following steps, commented through the code:

e t-SNE dimensionality reduction of MALDI and LA-ICP datasets
- Rendering of MALDI tissue slide
- Image rotation
- Hotspot removal
- Rendering of MALDI images before background subtraction
- Rendering of MALDI images after hotspot removal
- t-SNE dimensionality reduction of each analyte in 3D embedded space
- t-SNE dimensionality reduction for single image representation
- Display of the reduced images in RGB colors
- MALDI t-SNE reduction to one image
- Image pre-processing LA-ICP
- Hotspot removal LA-ICP
e Registration and validation of MALDI and LA-ICP images
- Upload segments masks
- Upload images for registration
- Translation registration
- Rigid registration
- Affine registration
- No-linear registration
- Transformation of the masks
- DSC calculation
- Landmark registration
- Annotated mask registration
- Correlation coefficients calculation
- Transformation of LA-ICP signals into the MALDI coordinate system
- Correlation plot of LA and MALDI signals

t-SNE Dimensionality reduction of MALDI and LA-ICP datasets

Rendering of MALDI tissue slide

from pyimzml.ImzMLParser import ImzMLParser
import matplotlib.pyplot as plt
import numpy as np
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# Parse the data into slide
slide = ImzMLParser ('111920 Liver TTMA D6.imzML'
# Obtain spectrum coordinates for pl

for i X,Vy,z) in enumerate (slide.coordinates
slide.getspectrum (i

# Get the ion image of the slide, import geitionimage class from the parser.

Choose the 796.554 +- 0.501 signal
from pyimzml.ImzMLParser import getionimage

peakMzZ1l = 339.088
tolMZ1l = 0.286

iml = getionimage (slide, peakMZl, tol=tolMZl
plt.figure(figsize=(16, 4

plt.imshow (iml

plt.colorbar

plt.show

print ('Shape of the imzML file', iml.shape

200 400 600

Shape of the imzML file (397, 1461)

Image Rotation

# Function to cut the image from the slide in X and Y

from scipy import ndimage

Y1l = 150
Y2 = 270
X1 = 1035
X2 = 1140

Degree rotation = 180

MALDI image raw = getionimage (slide, peakMZl, tol=tolMZ1l) [Y1:Y2, X1:X2
MALDI rot = ndimage.rotate (MALDI image raw, Degree rotation, reshape=True

print ('MALDI image shape:', MALDI image raw.shape

plt.figure(figsize=(12, 5
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ax=plt.subplot(1l,2,1)
plt.imshow (MALDI image raw)
plt.colorbar ()
plt.axis('off'")
plt.title('Raw image')
ax=plt.subplot(1l,2,2)
plt.imshow (MALDI rot)
plt.colorbar ()
plt.axis('off'
plt.title('Rotated image')
plt.show ()

MALDI image shape: (120, 105)

Raw image Rotated image

Hotspot removal

# We will calculate the 0.99 quantile range and assign the data points above
this value to the 0.99 value.

Quantile 99 = np.quantile (MALDI rot, 0.99)
print ('Quantile 0.99 is:', Quantile 99)

MALDI image hot = MALDI rot.copy ()

MALDI image hot [MALDI image hot > Quantile 99] = Quantile 99
print ('Data points above 99% =', np.count nonzero ([MALDI rot > Quantile 99]))
print ('Data points below 99% =', np.count nonzero ([MALDI rot < Quantile 99]))

# np.savetxt ('D6 mz 796.csv', MALDI image hot)
# box and whisker plots
row_hot, col hot = MALDI image hot.shape

MALDI vector raw = MALDI rot.reshape (row_hot*col hot)
MALDI vector hot = MALDI image hot.reshape (row hot*col hot)

plt.figure(figsize=(18, 10))
ax = plt.subplot (2, 2, 1)
plt.imshow (MALDI rot)
plt.axis ('off'

plt.colorbar ()

ax = plt.subplot (2, 2, 2)
plt.boxplot (MALDI vector raw)
ax = plt.subplot (2, 2, 3)

116



