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tals is highly desirable as it would equip us to define quantitative metrics to measure

various aspects of “chain packing” such as thickness, volumes and shapes of domain

geometry. These features are connected to packing frustration experienced by BCPs

in addition to being essential ingredients of thermodynamic models of BCP assembly.

Inter-material !
dividing surface"

(IMDS)

Figure 1.4. Imagined configurations of the showing arrangement of diblock copoly-
mer chains in alternating domains. The anatomy of the chain packing is described
in the text.Note that chains extend by different amounts within these domains to fill
space.

We focus on a simple class of BCPs, diblock copolymers (dBCPs) where chemically

distinct blocks are bonded together at the junction. Each block consists of monomers

covalently bonded together. Varying interaction strength between unlike blocks cou-

pled with changing relative block lengths leads to microphase seperation of domains

into ordered arrangements of natural phases described above. In the schematic in

Fig. (1.4) we show the imagined packing of chains (drawn as squiggly lines where un-

like blocks are colored as red and blue) into hypothetical alternating domains. Within

the mean field theory of BCP assembly based on the Gaussian chain model of flexible

chains, the domains are represented by values of density φα(x) for each block α = A,B

at a position x within each domain. Region within the phase where the junctions
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between unlike blocks are localized is referred to as “interfacial region” whose width

w is proportional to the interaction strength χN between the blocks [27] where χ is

the inter-block repulsion and N is the number of coarse-grained statistical segments.

Typically, the inter-material dividing surface (IMDS) is defined as level set function

where φA(x) = φB(x) = 0.5. In the limit of strong segregation where χN → ∞, it

has been shown that w/D → 0 and allowing the interfacial region to be approximated

by a sharp 2D surface [27]. The mean trajectories of the blocks extending into the

domains from the IMDS is treated as straight lines and such a packing of chains is

reminiscent of polymer brushes attached to a substrate. The tips of these brushes or

the region containing the end segments of the chains undergo interpenetration from

opposing brushes that originate from either different IMDS or distinct parts of same

IMDS. Again, the width of the interpenetration window p/D → 0 in the limit of

strong segregation [28].

In this thesis, for studying the thermodynamics of BCP assembly we primarily

use strong segregation theory (SST) valid in the asymptotic limit of χN → ∞ [29,

30, 31]. SST fully samples the relevant conformational fluctuations of underlying

BCP molecules, and yet the free energy reduces to purely geometric measures of

competing phases. Enthalpy due to contact between unlike domains is proportional

to the area of the IMDS while the entropic cost of stretching Gaussian chains is

proportional to the second moment of volume relative to the IMDS. Such a theory

has the advantage of providing valuable physical insights on equilibrium self-assembly,

especially for understanding why a particular phase is equilibrium over others. We

present the details of SST along with underlying assumptions in later chapters of this

thesis. Additionally, we use mean field approach based on self-consistent field theory

(SCFT) [32, 33] at finite segregation to compare and contrast observed signatures of

chain packing in the χN →∞ limit. SCFT has been the gold standard for computing

the equilibrium phase diagram for BCPs. To describe SCFT at a very high level, a
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single chain is discretized into statistical segments and the random walk statistics of

segments interacting with the mean field derived from remaining chains int the system

is solved using a modified diffusion equation. We generally begin with a guess field

that has the symmetry and topology of the candidate morphology and iteratively

update the field while keeping the constraints on the symmetry of the phase and

fixing molecular details such as volume fraction of blocks and interaction strength.

We compute the free energy per chain for at each step in the iteration process and

the updates to the field along with changing the length of the unit cell are aimed at

finding the minimum. This process is repeated for all candidate phases at a fixed

molecular parameters and the lowest free energy solution corresponds to equilibrium

phase. Comprehensive details about SCFT can be found in review article by Matsen

[32] and others [33, 34]. In this thesis, we used PSCF [33] developed by Morse and

co-workers for SCFT studies and made custom changes to their software to compute

relevant metrics of chain packing described in chapters 2 and 5.

Conformational 

Asymmetry

Architectural 

Asymmetry

Figure 1.5. Schematics showing coarse-grained statistical segments in a diblock
copolymer. All segments have the same volume. These schematics illustrate different
ways to engineer elastic asymmetry ε.
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In addition to using SST and SCFT combined with novel geometric analysis to

analyze chain packing into domains and their connection to thermodynamic stability

of complex phases in BCP melts, we also study the role of elastic assymetry ε between

unlike blocks and their connection to thermodynamics of BCP assembly in particular

how they contribute to “relieving” packing frustration. Following Milner [35], elastic

asymmetry ε = (maA)/(naB) for AnBm miktoarms which encodes both conforma-

tional asymmetry (unlike statistical segment lengths) and architectural asymmetry

(unequal number of branches per block) Fig. (1.5). Within SST, the stretching energy

per block using parabolic brush theory [36] has the form

Fst =
κ′A
ε
IA + εκ′BIB (1.1)

where Iα for block type α = A,B is the second moment of volume Vα relative to

the IMDS and κ′α = 3π2ρ
8Na2

1
f2α

contains the molecular and architectural details. Each

segment has a volume ρ−1 and a ≡ √aAaB is the geometric mean of statistical seg-

ment lengths. Effectively, from Eq. 1.1, elastic assymmetry ε tunes the relative

contributions from stretching of the blocks when κ′α is fixed for a given phase. The

thermodynamic selection of FK phases over canonical phases is attributed to elastic

asymmetry ε between unlike blocks and volume asymmetry among distinct polyhe-

dral cell types [19]. In this thesis, we find a previously unrecognized non-monotonic

dependence of DG stability on the elastic asymmetry.

Mathematical modeling of dry foams which originally were built to find minimal

area shapes of polyhedral cells [37] have often been of interest to researchers trying

to rationalize appearance of FK phases in soft matter. In chapter 2, we use so called

diblock foam model (DFM) [38, 39], a geometric model valid in the strong segregation

limit is based on polyhedral cell area and second moment of volume within it to

study optimal FK phases of dBCPs. Additionally, this model is valid in a specific

limit where the interface between core and coronal domains adopts the shape of
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the polyhedral cell. We revise this model by relaxing the constraint on volumes of

individual polyhedral cells and show that optimal FK phases have volume asymmetry

among cells which is far greater than previous assumptions that cells in these phases

are same as Voronoi partitioning based on centers of the core domains. These studies

reveal that optimal FK lattice σ neither has optimal area nor second moment of

volume. We further test assumptions and compare results of this model by a more

realistic molecular theory i.e self-consistent field theory where we find that the volume

asymmetry of distinct core domains matches well with our predictions from DFM.

We also analyze the effect of elastic asymmetry among blocks on how chains pack

within domains and uncover the “discoidal” to “radial” stretching of the blocks that

accompanies the increase in volume asymmetry among core domains. Together, these

findings using DFM and SCFT, help us uncover molecular scale mechanisms leading

to equilibirium FK phases in dBCP melts.

In chapter 3, we define quantitative metrics of sub-domain geometry which are

both generic to all morphologies and are applicable to both theory and experimental

data alike. To quantify domain thickness within complex phases, its imperative to

know how far chains stretch from the IMDS into the domains. much like interna-

tional date line or ridges on top of mountains, we define “terminal boundaries” as

a geometric construct based on sense of probability that defines a surface (within

volumes filled with blocks of same type) where segments have equal probability to be

associated to different IMDS or a distinct patch on the same IMDS. Here, we ignore

the interpenetration among the tips of brushes but nevertheless such a definition has

the advantage of being relevant to thermodynamics of BCP assemblies using SST and

also for defining packing frustration within complex domains. In the absence of data

on the chain configurations within the domains, we propose medial sets–a generic

geometric measure of the center of complex shapes as a proxy for terminal bound-

aries and subsequently quantify local variations to thickness of domains. We compute
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medial sets of DG from both theoretical models and tomographic data and compute

the domain thickness and compare with previous methods which assumed one dimen-

sional skeletal graphs as terminal boundaries [2, 40]. We also compute medial sets in

Frank-Kasper A15 and C15 phases using data from SCF and highlight that constrast

between polyhedral cells (terminal boundaries for coronal domain) and Voronoi cells.

Also, we highlight medial sets of core domains within a FK phase which reveals two

distinct geometries of chain packing– quasi-lamellar or pan-cake like where terminal

boundaries are spread out versus terminal boundaries localized around centroid of

the domain.

In chapter 4, we revise our ability to model BCP chain packing in TPN phases in

SST by developing medial strong segregation theory (mSST) that allows us to assess

the importance of degrees of freedom associated with terminal spreading along medial

surface and compare our results with previous studies which constrained the tubular

terminal boundary to lie along the one dimensional skeletal graph. To accurately com-

pute entropic cost of stretching of blocks in domains with varying domain thickness,

we tessellate volume in unit cell with triangular wedges that are constructed using

medial maps from generating surfaces to medial sets in respective domains. We illus-

trate subtle yet critical differences between medial thickness and medial packing that

ensures physical constraints at the IMDS arising from connectivity between blocks.

We compute free energy minimizing arrangement of chains within a morphology for

a given chain parameters using a variational approach where we vary the shapes of

the terminal boundaries. Here, we focus on double gyroid as an example to showcase

applications of mSST but can be easily extended to other morphologies with varying

topologies and symmetries.

In chapter 5, we compare medial vs. skeletal SST for DG and show that optimal

arrangements of chains in DG require the terminal boundary for tubular domains

to be spread away from skeletal graphs. We further show that elastic asymmetry is
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necessary for thermodynamic stability of DG resolving long standing puzzle about

equilibrium DG in SST. Also, we show that the composition window of equilibrium

DG widens both for large and small elastic asymmetry, seemingly over-turning the

heuristic view that packing frustration is localized to the tubular domains. We also

analyze morphological features of DG assemblies and their variation with elastic asym-

metry in that derive from medial packing SST but persist at finite segregation using

SCFT which includes chain fluctuation effects and makes no apriori assumptions of

medial packing. We find that in both regimes, increasing elastic asymmetry drives

the IMDS to adopt area-minimizing shapes as seen by reduction in variance of mean

curvature. Additionally, analysis of the stretch vector of the blocks in SCFT reveals

tilt at the IMDS which agrees well tilt of the block trajectories observed in medial

packing SST.

11



CHAPTER 2

ELASTIC ASYMMETRY AND DOMAIN VOLUME
REDISTRIBUTION SELECTS EQUILIBRIUM
FRANK-KASPER PHASES IN BCP MELTS

2.1 Introduction

Spherical assemblies occur in nearly every class of supramolecular soft matter,

from lyotropic liquid crystals and surfactants to amphiphillic copolymers [6]. In

concentrated or neat systems, self-assembled spherical domains (SD) behave as giant

“mesoatoms” adopting periodically ordered crystalline arrangements including canon-

ical examples such as body centered cubic (BCC) or face centered cubic (FCC). Space

filling constraints within bulk results in squishing these spherical domains to con-

form to lower symmetry polyhedral cells. In recent years, equilibrium non-canonical

Frank-Kasper SD phases are observed in an ever increasing range of BCP systems

[10, 18, 41, 42, 43, 21]. These FK phases are a family of periodic packings [44, 45]

whose sites are tetrahedrally close packed and can be decomposed into polyhedral

cells surrounding each site containing 12, 14, 15, or 16 faces. Known as the FK

polyhedra, these cells (Z12, Z14, Z15, and Z16) possess variable volume and envelope

spheres of distinct radii. In this chapter, we revise the model for thermodynamic

selection of optimal SD phases of self-assembled BCPs in melt by taking into account

the variable volumes of FK polyhedra.

Geometry of polyhedral cells of spherical domains in Fig. (2.1A) has previously

received interest in rationalizing appearance of equilibrium SD phases in soft mat-

ter. They were central mathematical modeling of dry foams in the context of Kelvin
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problem which seeks minimal area partitions of space into equal volume cells. Weaire-

Phelan showed using Surface Evolver that equal volume cells A15 phase has lower

mean dimensionless surface area than BCC [37]. Bates and co-workers who first

reported a σ phase in tetra-block copolymers [18] and later in dBCPs with conforma-

tional asymmetry [19] have invoked the minimal surface area argument to rationalize

equilibrium σ phase as it had lower dimensionless area than A15 phase based on

their assumption that different polyhedral cells conform to Voronoi partitioning (or

Wigner-Seitz cells) in these phases. Additionally, Glotzer and co-workers, in their

simulation study involving bidisperse spheres with functional surfaces implicated the

critical role of volume asymmetry in formation of FK lattices [46].

Figure 2.1. (A) Polyhedral volumes, cells, defined by the neighbour packing in
sphere packing (cells and spheres are shown as purple and grey, respectively, with the
central cell highlighted in pink) (B) Chain packing of spherical diblock copolymer do-
mains of the BCC crystal with corresponding limits of weakly coupled (Bottom Left)
and strongly coupled (Bottom Right) of core domain shape of polyhedral (truncated-
octahedron) cell symmetry.

While above mentioned studies allude to the importance of variable volumes of

polyhedral cells and their role in thermodynamic selection of FK phases based on

their minimal area paritioning, these arguments beg critical questions in the context

of BCP assembly as optimal arrangement of SD depends not only on minimizing
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enthalpic contribution from contact of unlike blocks but also on entropic cost of

stretching of the blocks. In particular, how does assembly thermodynamics select

volume asymmetry among polyhedral cells such that it minimizes the overall free

energy of the system and how do these compare with previously assumed Voronoi

partitioning? How does this rebalancing of volumes select equilibrium SD packing

among competing canonical and FK phases? Finally, how does molecular properties

of BCPs select between canonical/non-canonical phases?

In section 2, we briefly overview the diblock foam model DFM previosly introduced

by Olmsted and Milner [31, 38] to study optimal SD phases of BCPs in melts that

is based on a polyhedral interface limit (PIL) where the shape of the inter-material

dividing surface IMDS conforms to the polyhedral cell as shown in Fig. (2.1B).

As an example, we show how introducing volume asymmetry among distinct FK

polyhedra in A15 phase changes free energy of the system. In section 3, we discuss

results from our study on optimal SD phases of BCPs packing using DFM . We

employed SurfaceEvolver [47] and systematically studied various models of volume

asymmetry among polyhedra cells. In section 4, we use self-consistent field theory

(SCFT) of dBCPs with conformational asymmetry and study equilibrium FK phase

among competing SD phases. We also compare these results with our predictions

from DFM. In section 5, we perform geometric analysis of quasi-spherical (qSD)

core domains from SCFT to understand the molecular scale mechanisms that lead to

thermodynamic selection of FK phases in dBCPs upon changing the relative block

stiffness. We further test our assumptions in DFM by computing the area distortion of

qSD in addition to comparing volume redistribution among distinct qSD as predicted

by DFM. In the appendix, we briefly discuss our implementation of DFM in Surface

Evolver.
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2.2 Polyhedral Interface Limit of Strongly-Segregated Di-

block Sphere Phases

In this section, we overview the strong-segregation theory (SST) calculation of

Milner and Olmsted [31, 38] for spherical domains in polyhedral interface limit (PIL).

We assume that the shape of the core domains filled with minority blocks exactly

copies the shape of the polyhedral cells and hence the name polyhedral interface

limit. Polyhedral warping of the interface is favored when the stiffness of the coronal

blocks, which favors a more uniform extension from the interface to the outer cell

wall, dominates over stiffness of core blocks and inter-block surface energy, which

both favor round interfaces. We derive the free energy of competing sphere packings

that is computed from purely geometric measures of the cellular volumes that enclose

distinct spheres [39, 3], which forms the basis for the so called “diblock foam model”

(DFM).

Here, we focus on the case of AB linear diblocks with conformational asymmetry,

but the theory can be generalized to other architectures like miktoarm stars [3]. We

consider a chain with total segment number N = NA + NB, with f = NA/N the

fraction of the A-block. Segments have equal volumes ρ−1
0 and potentially unequal

statistical segment lengths, aA and aB, for the respective blocks. The ratio of segment

lengths defines the conformational asymmetry ε ≡ aA/aB. Within SST, the total free

energy F (X) (in units of kBT ) of a periodic repeat spherical assembly of lattice

packing X decomposes into two terms

F (X) = Fint + Fst, (2.1)

which represents the respective costs of inter-block repulsions at a core/coronal in-

terfaces and the entropic cost of stretching of (Gaussian) chains from random walk

configurations.
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