January 2012

Genetics and Breeding of the Genus Mentha: a Model for Other Polyploid Species with Secondary Constituents

Arthur O. Tucker III
Delaware State University, atucker@desu.edu

Follow this and additional works at: http://scholarworks.umass.edu/jmap

Part of the Plant Sciences Commons

Recommended Citation
DOI: 10.7275/R54B2Z7Q
http://scholarworks.umass.edu/jmap/vol1/iss1/7

This Review is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Journal of Medicinally Active Plants by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Genetics and Breeding of the Genus Mentha: a Model for Other Polyploid Species with Secondary Constituents

Arthur O. Tucker III
Delaware State University, atucker@desu.edu

Follow this and additional works at: http://scholarworks.umass.edu/jmap

Recommended Citation
DOI: https://doi.org/10.7275/R54B2Z7Q
Available at: http://scholarworks.umass.edu/jmap/vol1/iss1/7

This Review is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Journal of Medicinally Active Plants by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Genetics and Breeding of the Genus Mentha: a Model for Other Polyploid Species with Secondary Constituents

Arthur O. Tucker*

Claude E. Phillips Herbarium, Department of Agriculture & Natural Resources, Delaware State University, Dover, DE 19901-2277 U.S.A.

*Corresponding author: atucker@desu.edu

Manuscript received: February 1, 2011

Keywords: Complement fractionation, cytomixis, peppermint, transgressive segregation,

Abstract
The greatest amount of research on the biochemical pathways and inheritance of the constituents of essential oils has been with the model systems of the genus Mentha. In particular, the genetic work of Dr. Merritt Murray and the biotechnological work of Dr. Rodney Croteau stand out for the amount of good, new data. However, new insights on previously published research in Mentha reveal that cytomixis provides a physical opportunity for complement fractionation, which, in turn, produces transgressive segregation in Mentha. Assimilating almost a century of breeding and biotechnological methods in Mentha, two approaches stand out: (1) γ-irradiation and (2) controlled hybridizations in the field. Are these methods applicable in other polyploid species with essential oils? Are they applicable for other plant constituents?

Introduction
While disparaged until relatively recently, hybridization has been shown to be extremely important in evolution. Wissemann (2007) has written “Hybridization is important, because life on earth is predominantly a hybrid plant phenomenon.” We now know that post-hybridization events, such as genetic and epigenetic alterations and genome doubling, further propel hybridization and polyploidization as major phenomena in the evolution of plants (Paun et al., 2007). Worldwide cultivation of the genus Mentha centers around two primary constituents and four species, all of hybrid, polyploid origin. (−)-Menthol is the primary constituent of the essential oil of peppermint (Mentha × piperita L. ‘Mitcham’ and derived cultivars) and Chinese cornmint or Japanese peppermint (Mentha canadensis L.). (−)-Carvone is the primary constituent of the essential oil of Scotch spearmint (Mentha × gracilis Sole ‘Scotch’) and Native or “American” spearmint (Mentha × villosonervata Opiz/M. spicata L.) (Tucker and Naczi, 2007).

‘Mitcham’ peppermint arose in England as a hybrid of M. aquatica L. × M. spicata, prior to the 18th century. The plant has 2n=72 and is extremely sterile. Chinese cornmint is a naturally occurring hybrid of M. arvensis L. × M. longifolia (L.) L. that probably arose in the Lower Tertiary; it has 2n=96 and is fertile, but gynodioecious. Scotch spearmint arose in Scotland as a hybrid of M. arvensis × M. spicata prior to the 18th century, has 2n=84, and is almost completely sterile. Native Spearmint arose as a hybrid of M. spicata × M. longifolia or as a self of M. spicata prior to the 18th century, has 2n=36, and is almost completely sterile (Tucker and Naczi, 2007).

Pioneer genetic work on the Mendelian inheritance of essential oil components in Mentha was published by Dr. Merritt Murray and his associates 1954-1986. Most of the work on the biosynthetic pathways of the essential oil components in Mentha has been published by Dr. Rodney Croteau and his associates 1971 to the present. These two...
lines of research have been assimilated by Tucker and Kitto (in press). However, while the genetic work of Murray was current for its time, he failed to recognize some genetic phenomena in Mentha that influence the phenotypic expression of essential oil patterns.

Transgressive Segregation

The most comprehensive, recent review of transgressive segregation (Rieseberg *et al.*, 1999) defines it as:

“The presence of phenotypes that are extreme relative to those of the parental line...a major mechanism by which extreme or novel adaptations observed in new hybrid ecotypes or species are thought to arise.”

This is not a rare phenomenon. From a survey of 171 studies that report phenotypic variation in segregating hybrid populations, the authors found 155 of the 171 studies (91%) reported at least one transgressive trait, and 44% of the 1229 traits examined were transgressive. They observed that transgression occurred most frequently in intraspecific crosses involving inbred, domesticated plant populations and least frequently in interspecific crosses between outbred, wild animal species. The primary cause was diagnosed as the action of complementary genes, although overdominance and epistasis also contribute. The overall conclusion is that “hybridization may provide the raw material for rapid adaptation and provide a simple explanation for niche divergence and phenotypic novelty often associated with hybrid lineages.”

In Mentha, an example of transgressive segregation is the origin of ‘Mitcham’ peppermint. Murray *et al.* (1972) crossed *M. aquatica* (*2n*=96) and *M. spicata* (*2n*=48) to create 32,000 field-grown plants that survived from 120,000 seedlings. With a preliminary organoleptic analysis, followed by an essential oil analysis by gas chromatography of several selected hybrids with a peppermint aroma, only a few hybrids even came close to ‘Mitcham’ peppermint and none matched exactly. The closest match (#57-1577-191) had the morphology and major essential oil constituents of ‘Mitcham’ peppermint, but also had a strong “nasturtium” aroma, probably from an unidentified hydrocarbon. Other close matches in morphology and major essential oil constituents had “soapy, musty, fishy, or terpenic” aromas. However, enough evidence on morphology and essential oil constituents was presented to support the hypothesis that *M. × piperita* is a hybrid of *M. aquatica × M. spicata*.

As another example, the accidental re-synthesis of *M. canadensis* by Tucker and Chambers (2002) resulted in some high menthol/omenthol/menthone forms. Against three commercial standard clones with 57-73% menthol, only one hybrid (#23-41) had 31% menthol out of 39 hybrids which were analyzed by gas chromatography. However, enough evidence on morphology and essential oil constituents was presented to support the hypothesis that *M. canadensis* is a hybrid of *M. arvensis × M. longifolia*.

Menthol is only available at economically important levels in the genus Mentha, and its origin in peppermint and cornmint represents a major shift in ecological fitness. Menthol affects the TRPM8 channel in animals that results in a flux of ions similar to that produced by physical cold (McKemy, 2005).

Tucker and Chambers (2002) crossed two clones of *M. arvensis*, one high in pulegone and 1,8-cineole, the other high in linalool, with *M. longifolia*, which had high *trans*-piperitone oxide and germacrene D. Most of the *F*₁ hybrids had the essential oil constituents of the parents. However, the authors also found hybrids with high levels (>10%) of isomenthone, menthone, *trans*-isopulegone, menthol, neomenthol, 3-octanol, *cis*-piperitone oxide, *trans*-piperitone oxide, carvone, limonene, piperitenone oxide, *trans*-carveol, *trans*-sabinene hydrate, 3-octanone, terpenin-3-ol, (Z)-beta-ocimene, geranyl acetate, citronellyl acetate and/or β-caryophyllene. The high levels of these constituents in the *F*₁ hybrids were not predicted from the essential oil patterns in the parents, and probably a wider range could be generated with more hybrids.

As another example of transgressive segregation in Mentha, Tucker and Fairbrothers (1990) and Tucker *et al.* (1991) attempted to re-synthesize Scotch spearmint. Examining 20 cultivated and wild clones of *M. × gracilis* and 932 *F*₁ hybrids, only one hybrid (#27-19) matched one of the clones in morphology, essential oil constituents, and chromosome number. However, enough evidence was presented to support the hypothesis that *M. × gracilis* is a hybrid of *M. arvensis × M. spicata*.

Tucker: Genetics and Breeding of the Genus Mentha: a Model for Other Poly
Cytomixis

Cytomixis was first observed in pollen mother cells of saffron (*Crocus sativus*) (Körnicke, 1902) and later defined by Gates (1911) as “an extrusion of chromatin from the nucleus of one mother-cell through cytoplasmic connections, into the cytoplasm of an adjacent mother-cell.” The definition of cytomixis now includes the cellular transfer of organelles or other cytoplasmic constituents, but there is still a substantial lack of understanding of the function of cytomixis (Guo and Zheng, 2004).

Until the mid-20th century, however, cytomixis was considered an anomaly. Maheshwari (1950) wrote: “In some plants individual chromosomes, or groups of chromosomes, or even whole spindles are said to be carried from one cell into another. It is believed, however, that it is a pathological phenomenon, or that such appearances are caused by faulty fixation.”

In 1981, Tucker and Fairbrothers (1981) counted the chromosome numbers of crosses of *M. arvensis* (2n=72) × *M. spicata* (2n=48) and found 2n=48, 60, 72, 84, and 96 in the F₁ hybrids. At the time of publication, the mechanisms that produced this euploid series were unknown to the authors. These unexpected chromosome numbers in *Mentha* were later confirmed by Kundu and Sharma (1985), Tyagi and Ahmad (1989), and Tyagi (2003), and attributed to observed cytomixis. Tyagi (2003) wrote on *M. spicata*: “The phenomenon of cytomixis was observed in leptotene to pachytene states of the first meiotic prophase. The migration of nuclear material involved all of the chromosomes or part of the chromosomes of the donor cell. The occurrence of PMCs [pollen mother cells] with chromosome numbers deviating from the tetraploid number (n=48), derived from the chromosome numbers deviating from the tetraploid number (n=48), derived from the process of cytomixis indicated the possibility of aneuploid and polyploid gamete production.”

Tucker and Chambers (2002) also observed unreduced gametes in their re-synthesis of *M. canadensis*. The expected chromosome number from crossing *M. arvensis* (2n=72) with *M. longifolia* (2n=24) should have been 48 (36+12) with normal meiosis, but almost all the hybrids that were counted had 2n=96.

Cytomixis, while routinely omitted from most textbooks on genetics and plant breeding, is not a relatively rare phenomenon. Cytomixis has been observed in both mitotic and meiotic cells, from mosses to flowering plants. A brief survey of papers that reported cytomixis in vascular plant families, obtained by the search term “cytomixis, Table 1”, and probably other existing papers have observed this phenomenon, but did not use this term in the key words or titles.

The natural causes of cytomixis are postulated to be: (1) genes, especially male-sterile genes, altered by environmental factors (pollution, fungal infection, and others); (2) abnormal formation of the cell wall during premeiotic division; and/or (3) the microenvironment of the anthers. However, cytomixis can also be artificially induced by: (1) colchicine; (2) MMS (methylmethane sulfonate), EMS (ethyl methane sulfonate), rotenone, sodium azide, Trifluralin, and others, and/or (3) γ- irradiation (Bhat et al., 2006, 2007a, 2007b; Bobak and Herich, 1978; Kumar and Tripathi, 2008; Narayana et al., 2007; Sheidai et al., 2002). Whether these could aid in plant breeding can be questioned, as these artificial agents are extremely toxic, and many precautions would have to be taken.

Complement Fractionation

Complement fractionation was first coined as a term by Thompson (1962) while working with the genus *Rubus*: “I propose the term ‘complement fractionation’ for the general phenomenon wherein the chromosome complement is subdivided into independently operating groups within a cell. The consequence of this phenomenon will be cell-division products with variable chromosome numbers.” This term is suitable to explain the results of cytomixis in *Mentha* in which Tucker and Fairbrothers (1981) crossed *M. arvensis* (2n=72) × *M. spicata* (2n=48) and found 2n=48, 60, 72, 84, and 96 in the F₁ hybrids. In this instance, chromosomes migrated in multiples of the monoploid number, x=12. Normal meiosis would have produced progeny with 2n=60 (36+24), and simple unreduced gametes would have produced progeny with 2n=120 (72+48), 84 (36+48), and 96 in the F₁ hybrids. In this instance, chromosomes migrated in multiples of the monoploid number, x=12. Normal meiosis would have produced
Table 1. A brief survey of cytomixis in vascular plant families.

<table>
<thead>
<tr>
<th>Family (genera)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agavaceae (Chlorophytum)</td>
<td>Lattoo et al., 2006</td>
</tr>
<tr>
<td>Alliaceae (Allium)</td>
<td>Bowes, 1973</td>
</tr>
<tr>
<td>Apiaceae (Centella, Tauschia)</td>
<td>Bell, 1964; Consolaro and Pagliarini, 1995</td>
</tr>
<tr>
<td>Apocynaceae (Tabernaemontana)</td>
<td>De and Sharma, 1983</td>
</tr>
<tr>
<td>Boraginaceae (Cordia)</td>
<td>Bedi, 1990</td>
</tr>
<tr>
<td>Brassicaceae (Brassica, Diplotaxis)</td>
<td>Malallah and Attia, 2003; Souza and Pagliarini, 1997</td>
</tr>
<tr>
<td>Cactaceae (Conosea)</td>
<td>Negrón-Ortiz, 2007</td>
</tr>
<tr>
<td>Chenopodiaceae (Beta)</td>
<td>Semyarkhina and Kuptsou, 1974</td>
</tr>
<tr>
<td>Fabaceae (Glycine, Lathyrus, Medicago, Ononis, Vicia, Vigna)</td>
<td>Bellucci et al., 2003; Bione, et al., 2000; Haroun et al., 2004; Morrisset, 1978; Seijo, 1996; Sen and Bhattacharya, 1988</td>
</tr>
<tr>
<td>Fagaceae (Quercus)</td>
<td>Bedi, 1990</td>
</tr>
<tr>
<td>Hemerocallidaceae (Hemerocallis)</td>
<td>Narain, 1979</td>
</tr>
<tr>
<td>Iridaceae (Crocus)</td>
<td>Körnicke, 1902</td>
</tr>
<tr>
<td>Isoetaceae (Isoetes)</td>
<td>Wang et al., 2007</td>
</tr>
<tr>
<td>Lamiaceae (Caryopteris, Leonurus, Leucas, Mentha, Ocimum, Salvia)</td>
<td>Bedi, 1990; Carlson and Stuart, 1936; Datta et al., 2005; Kundu and Sharma, 1985, 1988; Tyagi, 2003; Tyagi and Ahmad, 1989</td>
</tr>
<tr>
<td>Liliaceae (Lilium)</td>
<td>Zheng et al., 1985</td>
</tr>
<tr>
<td>Malvaceae (Alcea, Gossypium)</td>
<td>Mary, 1979; Mary and Suvarnalatha, 1981; Sarvella, 1958</td>
</tr>
<tr>
<td>Moraceae (Morus)</td>
<td>Verma et al., 1984</td>
</tr>
<tr>
<td>Oleaceae (Jasminum)</td>
<td>George and Geethamma, 1985</td>
</tr>
<tr>
<td>Onagraceae (Oenothera)</td>
<td>Davis, 1933; Gates, 1908, 1911</td>
</tr>
<tr>
<td>Orchidaceae (Ophrys)</td>
<td>Feijó and Pais, 1989</td>
</tr>
<tr>
<td>Papaveraceae (Meconopsis, Papaver)</td>
<td>Bahl and Tysgi, 1988; Singhal and Kumar, 2008a</td>
</tr>
<tr>
<td>Pinaceae (Picea)</td>
<td>Guzicka and Wozny, 2005</td>
</tr>
<tr>
<td>Poaceae (Alopecurus, Avena, Brachiaria, Bromus, Coix, Dactylis, Elymus x Psathyrostachys, Lolium, Secale, Sorghum, Triticum, Urochloa, Zea)</td>
<td>Basavaiah and Murthy, 1987; Boldrini et al., 2006; Caetano-Pereira and Pagliarini, 1997; Cheng et al., 1980; Fallistocco et al., 1995; Ghaffari, 2006; Koul, 1990; Omara, 1976; Sapre and Deshpande, 1987; Sheidai and Fadaei, 2005; Sheidai et al., 2003 Wang and Cheng, 1983; Yen et al., 1993.</td>
</tr>
<tr>
<td>Polygonaceae (Polygonum)</td>
<td>Haroun, 1995</td>
</tr>
<tr>
<td>Ranunculaceae (Caltha, Helleborus)</td>
<td>Echlin and Godwin, 1968; Kumar and Singhal, 2008</td>
</tr>
<tr>
<td>Rosaceae (Prunus)</td>
<td>Soodan and Waffai, 1987</td>
</tr>
<tr>
<td>Rubiaceae (Serissa)</td>
<td>Bedi, 1990</td>
</tr>
<tr>
<td>Rutaceae (Citrus, Pilocarpus)</td>
<td>Naithani and Raghuvanshi, 1958, 1963; Pagliarini and Pereira, 1992</td>
</tr>
<tr>
<td>Salicaceae (Salix)</td>
<td>Bedi, 1990</td>
</tr>
<tr>
<td>Solanaceae (Datura, Nicotiana, Solanum, Withania)</td>
<td>Cheng et al., 1982; Datta et al., 2005; Siddiqui et al., 1979; Sicorhuch et al., 2004; Singhal and Kumar, 2008b</td>
</tr>
<tr>
<td>Symplocaceae (Symplocos)</td>
<td>Bedi, 1990</td>
</tr>
</tbody>
</table>
making "doublemints" impossible. Tucker exclusive genes, and cannot be in the same plant, mutually exclusive pathways, controlled by mutually monoterpenes (e.g., progeny with $2n=60$ (36+24), and simple unreduced gametes would have produced progeny with $2n=120$ (72+48), 84 (36+48), and 96 (72+48); the progeny with $2n=48$ could only have arisen with the phenomenon of complement fractionation as described by Thompson.

Complement fractionation, like cytomixis, is routinely omitted in textbooks on genetics and plant breeding, but is not relatively rare. A number of papers on vascular plant families and genera have reported complement fractionation (Table 2). This current list was simply generated from the search term “complement fractionation,” and a larger list probably could be created by looking for papers that reported unusual chromosome numbers in polyploids, but did not use the term complement fractionation in their keywords or titles. Tucker and Fairbrothers (1981), for example, observed complement fractionation, but did not use this term. A number of observations on aneuploids have also been made and might be included in a broader discussion of this phenomenon. For example, Darlington and Mather (1944) observed a variety of numbers between 2x and 4x in *Hyacinthus* due to loss of chromosomes during meiosis. Similar phenomena of irregular meiosis and aneuploids also exist in *Fragaria* (East, 1934; Yarnell, 1931), *Malus* (Hegwood and Hough, 1958), *Primula* (Upcott, 1940), *Rosa*, etc. (Lim et al., 2005; Wissemann et al., 2007; Werlemark, 2003).

The meaning of complement fractionation explored by Murray and others (Murray, et al., 1972) in the phenotypic expression of the genes for essential oil constituents remains unresolved. The “Reitsema rule” (Reitsema, 1958) states that 3-oxygenated monoterpenes (e.g., menthol) and 2-oxygenated monoterpenes (e.g., carvone) are biosynthesized on mutually exclusive pathways, controlled by mutually exclusive genes, and cannot be in the same plant, making “doublemints” impossible. Tucker *et al.* (1991) reported, however, on a clone of *M. × gracilis* with 40% carvone/dihydrocarveol, 22% menthol, and 13% limonene. This clone also had $2n=96$ (Tucker and Fairbrothers, 1990), and we can speculate that multiple copies of recessive and dominant genes cause a breakdown of normal Mendelian genetics.

The clones of *M. spicata* designated by Murray (Murray, et al., 1972) as 2n Cr and 2n line 1 were postulated to have genotypes of *AaCcIlIlmMPPrr*, standard workhorse clones, and used in the creation of thousands of hybrids (Tucker and Kitto, 2011). These genes, however, were determined by an organoleptical analysis by trained panels, not by gas chromatography. A selfing Murray’s 2n Cr in our laboratory and analysis by gas chromatography/mass spectrometry indicated the phenotypes with constituents greater than 10% of the oil were: 40 carvone, 5 pulegone, 4 menthol, and 1 piperititone, a distribution that agrees with the genotype postulated by Murray. Selfing of 2n Line 1 and analysis by GC/MS, however, revealed the following phenotypes with constituents greater than 10% of the oil: 21 carvone; 1 carvone/dihydrocarvone; 3 carvone/limonene; 6 carvone/limonene/1,8-cineole; 4 carvone/1,8-cineole; 4 menthone/piperititone oxide; 3 pulegone; 2 pulegone/menthone; 3 pulegone/menthone/isomenthone/1,8-cineole; 1 pulegone/piperitone; 1 menthone/isomenthone/1,8-cineole; 1 menthone/isomenthone/piperitone. Obviously, either the Mendelian genetics of Mentha are more complex than envisioned by Murray or cytomixis aids complement fractionation, which in turn is reflected phenotypically as transgressive segregation.

Complement fractionation may also restore some fertility to normally completely sterile hybrids. Table 3 presents The fertility of 18 natural clones of *M. × gracilis* is almost complete sterility in the expected chromosome number $2n=60$ (36+24) from a cross of *M. arvensis* ($2n=72$) × *M. spicata* ($2n=48$) (Table 3). The clones with $2n=72$ and 84, however, have pollen fertility of 0-14% and seed fertility of 0-0.2%. The clone with $2n=96$ is essentially complexly sterile.

Successful Breeding Methods in Mentha, Past & Future

During almost a century of conventional breeding and biotechnological methods in the genus Mentha, only two methods have resulted in any release of significantly new germplasm that has benefitted the farmer: γ-irradiation and controlled hybridization in the field. In view of what we now know about the importance of cytomixis, complement fractionation, and transgressive segregation in mints, this is not too surprising.

In 1955-1959, A. M. Todd γ-irradiated 100,000...
Table 2. A brief survey of complement fractionation in vascular plant families.

<table>
<thead>
<tr>
<th>Family (genera)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clusiaceae (Hypericum)</td>
<td>Qu et al., 2010</td>
</tr>
<tr>
<td>Lamiaceae (Mentha)</td>
<td>Kundu and Sharma, 1985; Tyagi, 2003; Tyagi and Ahmed, 1989; Tucker and Fairbrothers, 1981</td>
</tr>
<tr>
<td>Malvaceae (Gossypium)</td>
<td>Menzel and Brown, 1952</td>
</tr>
<tr>
<td>Orchidaceae (Aranda, Phaius)</td>
<td>Teoh, 1981; Teoh and Ong, 1982</td>
</tr>
<tr>
<td>Poaceae (Hordeum, Secale, Triticum)</td>
<td>Geng et al., 1979; Finch et al., 1981</td>
</tr>
<tr>
<td>Rosaceae (Rubus)</td>
<td>Bammi, 1965; Jennings et al., 1967; Thompson, 1962</td>
</tr>
<tr>
<td>Scrophulariaceae (Mimulus)</td>
<td>Tai and Vickery, 1970</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2n = (# of clones)</th>
<th>60 (6 clones)</th>
<th>72 (5 clones)</th>
<th>84 (5 clones)</th>
<th>96 (2 clones)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average fertile pollen</td>
<td>0%</td>
<td>0-4%</td>
<td>0-14%</td>
<td>0%</td>
</tr>
<tr>
<td>Average fertile seeds</td>
<td>0-0.1%</td>
<td>0-0.2%</td>
<td>0-0.2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Plants of ‘Mitcham’ peppermint at Brookhaven National Laboratory (Murray and Todd, 1972; Todd et al., 1977). This resulted in the formal release of two verticillium-wilt resistant clones, ‘Todd Mitcham’ and ‘Murray Mitcham.’ Additional clones currently recognized by the Mint Industry Research Council (MIRC) include M-83-7, B-90-9, and ‘Roberts Mitcham,’ of which all were essentially derived from ‘Mitcham’ through mutation breeding (Morris, 2007).

Controlled hybridization in the field resulted in the release of *M. canadensis* ‘Himalaya’ (U.S. Patent 10935) and ‘Kosi’ (Kumar et al., 1997, 1999). Alternate rows of ‘Kalka’ and ‘Gomti’ were planted and allowed to open-pollinate. The subsequent progeny was evaluated for yield and disease resistance.

Both these methods, γ-irradiation and controlled hybridization in the field, hinge upon two factors, large populations of hybrids and ease of evaluation. With essential oils in *Mentha*, training organoleptic panels for preliminary evaluation is relatively easy, and later confirmation can be done in the laboratory by gas chromatography. This methodology could be beneficial to research in other genera with sufficient labor and a quick and easy method of preliminary evaluation of the constituents.

Acknowledgements
I wish to thank Dr. Susan Yost and Mrs. Sandra Jacobsen for their helpful suggestions.

References

Singhal, V. K., and P. Kumar. 2008b. Cytomixis during microsporogenesis in the diploid and

