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| Classic flux balance analysis | | Evaluation of metabolic engineering strategies |
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Limitations

e Strictly applicable only to balanced growth

| Preliminary experimental validation |

e Cannot account for batch and fed-batch cultures

e Limited capability for including cellular regulation

e Inadequate for feeding policy optimization & cellular engineering in fed-batch culture

S. cerevisiae Genome-scale metabolic network

e Saccharomyces cerevisiae IND750 (Duarte et al., 2004)

e Genome-scale reconstruction of genes, transcripts, & reactions in S. cerevisiae metabolism

e Anaerobic batch experiments were conducted to compare with model predictions

e Wild-type S. cerevisiae (ATCC 32167) was grown with a defined medium 1n a nitrogen sparged environment

e Biomass was directly weighed following centrifugation and drying

e Ethanol and glucose were measured online with a YSI 2700 biochemistry analyzer

¢ A dynamic programming approach was used to estimate the glucose uptake parameters , vgy, and K

e 750 genes & 1149 reactions; compartmentalized and fully charge & elementally mass balanced Parameter ~ Previous Value ~ Experiment A~ ExperimentB  Average Value Units
646 un; tabolites. 1059 bal d s & 1249 fl Vgm 20.0 20.9 22.9 21.9 mmol/g/h
o unique metabolites, alanced species uxes
d b K, 0.50 0.82 0.70 0.76 g/L
Dynamic flux balance analysis | Dynamic flux balance model predictions show quantitative
agreement with anaerobic batch experiments
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| Objectives |

e Analysis of regulatory effects

Comparison of model predictions (lines) and experimental measurements (symbols) for batch A (left) and batch B
(right) where the average of the estimated parameter values were used for both simulations.

‘ Conclusions |

e Analysis of regulatory effects

— Consider gene expression data from a recent study by Akesson et al. (2004)

— Evaluate the effect of genetic regulation on dynamic flux balance model predictions by constraining reaction fluxes
that are exclusively associated with experimentally absent genes

— Analyze model predictions with respect to the oxygen uptake rate — Showed that quantitatively accurate predictions of cellular growth and the exchange rates for primary metabolites

¢ Evaluation of metabolic engineering strategies such as ethanol and glycerol can be obtained in the absence of detailed regulatory data

— Apply previously identified metabolic engineering strategies to the dynamic flux balance model ¢ Evaluation of metabolic engineering strategies

— Assemble and directly screen a library of candidate gene insertion targets for fed-batch ethanol performance — Showed that metabolic engineering strategies can be dynamically screened for fed-batch performance

¢ Preliminary experimental validation — Uncovered several new experimentally testable genetic manipulation targets for enhanced ethanol production in

— Estimate model parameters from experiments and compare model predictions fed-batch culture

| Analysis of regulatory effects |

Quantitatively accurate predictions can still be obtained in the absence
of detailed gene expression data by constraining oxygen uptake

¢ Preliminary experimental validation

— Demonstrated quantitative agreement between anaerobic batch experiments and model predictions
e Future work

— Incorporate dynamic regulatory effects
— Develop more sophisticated dynamic optimization strategies
— Experimentally evaluate computationally identified mutants for ethanol overproduction
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