Managing Surface Water Inputs to Reduce Phosphorus Losses from Cranberry Farms

Casey Kennedy
U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Unit, East Wareham, MA, Casey.Kennedy@ARS.USDA.GOV

Peter Kleinman
U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Unit, University Park, PA, Peter.kleinman@ars.usda.gov

Carolyn J. DeMoranville
UMass Amherst Cranberry Station, carolynd@umass.edu

Kyle Elkin
U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Unit, University Park, PA, kyle.elkin@ars.usda.gov

Ray Bryant
U.S. Department of Agriculture, Agricultural Research Service, Pasture Systems and Watershed Management Unit, University Park, PA, ray.bryant@ars.usda.gov

Follow this and additional works at: http://scholarworks.umass.edu/nacrew
Presenter Information
Casey Kennedy, Peter Kleinman, Carolyn J. DeMoranville, Kyle Elkin, Ray Bryant, and Anthony Buda

This event is available at ScholarWorks@UMass Amherst: http://scholarworks.umass.edu/nacrew/2017/papers/15
Managing Surface Water to Reduce Phosphorus Loss from Cranberry Bogs

Casey Kennedy
USDA-ARS
NACREW, Plymouth, Massachusetts USA
August 30, 2017
Why Water Quality?

• TMDL
• Total Maximum Daily Load
• Implemented to meet water quality standards of Clean Water Act
• Point and non-point discharges
EPA’s 303d List

Program Overview: 303(d) Listing of Impaired Waters

What is a 303(d) list of impaired water?

The term "303(d) list" or "list" is short for a state’s list of impaired and threatened waters (e.g., stream/river segments, lakes). States are required to submit their list for EPA approval every two years. For each water on the list, the state identifies the pollutant causing the impairment, when known. In addition, the state assigns a priority for development of Total Maximum Daily Loads (TMDL) based on the severity of the pollution and the sensitivity of the uses to be made of the waters, among other factors (40 C.F.R. §130.7(b)(4)).

In general, once a water body has been added to a state’s list of impaired waters it stays there until the state develops a TMDL and EPA approves it. EPA reporting guidance provides a way to keep track of a state’s water bodies, from listing as impaired to meeting water quality standards. This tracking system contains a running account of all of the state’s water bodies and categorizes each based on the attainment status. For example, once a TMDL is developed, a water body is no longer on the 303(d) list, but it is still tracked until the water is fully restored.

How do states identify impaired waters?

States may use any number of ways to determine whether or not a water body meets the water quality standard. However, federal regulations say states must evaluate “all existing and readily available information” in developing their 303(d) lists (40 C.F.R. §130.7(b) (5)). This means that states cannot select what data/information they use and purposely disregard other. EPA’s regulations contain a nonexclusive list of information that must be considered.
Monponsett Pond TMDL
A key to the success of this TMDL is the reduction of TP load from local cranberry bogs whose discharge is tributary to the lake. The cranberry bog discharge must be limited to 0.5 kg/ha/yr (0.45 lb/ac/yr), the same as recommended in Mattson (2009) and used in White Island Pond (Mattson, 2015). This level of phosphorus export can be achieved by limiting water discharge rates to 3.5 acre-feet per acre of bog (see below) with average total phosphorus concentrations of 0.05 mg/l (the acceptable concentration of inputs to lakes from EPA, 1986 “Gold Book”). A
Objective

• Develop low-cost, field-scale method for reducing the P concentration of surface water
 – **Rationale:** Industry uniquely adapted for traditional water treatment methods
 ✓ Manage large water volume
 ✓ Existing delivery mechanism (i.e., sand barge)
 – **Lab Experiment:** Test several common P-reducing materials
 – **Field Study:** Apply one material to two irrigation ponds, varying in area and depth
Gypsum

- Calcium sulfate (CaSO$_4$)
- Neutral (no pH effect)
- Moderately soluble in water ($S = 0.26$ g/100g)
- Drywall, plaster, and fertilizer
Slaked Lime

- Calcium hydroxide (Ca(OH)_2)
- Basic (raise pH)
- Moderately soluble in water ($S = 0.17 \text{ g/100g}$)
- Waste water coagulant, paper production, pickling foods, Ca supplement
Calcite

- Calcium carbonate (CaCO$_3$)
- Basic (raise pH)
- Weakly soluble in water ($S = 6.2 \times 10^{-4} \text{ g/100g}$)
- Primary constituent of limestone and marble
- TUMS
Iron Sulfate

- Ferric sulfate ($\text{Fe}_2(\text{SO}_4)_3$)
- Acidic (lower pH)
- Moderately soluble in water ($S = 28.8 \text{ g/100g}$)
- Waste water coagulant, dye
- Composition of Mars
Alum

- Aluminum sulfate \((\text{Al}_2(\text{SO}_4)_3 \cdot 18\text{H}_2\text{O}) \)
- Readily soluble in water \((S = 36.4 \text{ g/100g}) \)
- Waste water coagulant, dye, pickling agent
Sediment Flocculation
Sand Barge
Conclusions

• 80-90% reduction in pond P load
• Treated pond P concentration was 7-16 ug/L (TMDL target = 50 ug/L)
• Treatment of 8 mgal (30,000 m³) of water totaled $1000 total (barge and alum)
• Possible application to harvest flood, but further research is needed
Acknowledgements

- US EPA for funding
- Sophie Wilderotter, Brian Leib, and Nicole Henderson for field and lab work
- AD Makepeace for site access
- Skid Whipple for operating sand barge
Questions?