2002

Elementary Transversality in the Schubert Calculus in any Characteristic

Frank Sottile

University of Massachusetts - Amherst, sottile@math.tamu.edu

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
ELEMENTARY TRANSVERSALITY IN THE SCHUBERT CALCULUS IN ANY CHARACTERISTIC

FRANK SOTTILE

Abstract. We give a characteristic-free proof that general codimension-1 Schubert varieties meet transversally in a Grassmannian and in some related varieties. Thus the corresponding intersection numbers are enumerative in all characteristics. Existing transversality results do not apply to these enumerative problems, emphasizing the need for additional theoretical work on transversality. We also strengthen some results in enumerative real algebraic geometry.

Introduction

Schubert [15] declared enumerative geometry to be concerned with all questions of the following form: How many geometric figures of some type satisfy certain given conditions? For conditions imposed by general fixed figures, the approach—then, as now—is to interpret the conditions as subvarieties of a parameter space of figures, which give cycle classes in the Chow ring of that parameter space. Then the degree of the product of these cycle classes provides an algebraic count of the solutions, counting the solutions weighted with certain intersection multiplicities. Thus this degree solves the original problem of enumeration—if each solution occurs with multiplicity one, that is, if the subvarieties meet transversally at each point of intersection.

This demonstrates how the validity of the standard approach to enumerative geometry via multiplying cycles classes in a Chow ring rest upon the following basic premise in enumerative geometry: General subvarieties of the parameter space meet transversally at each point of intersection. An intersection number is enumerative if this basic premise holds for the corresponding intersection. Kleiman [8] established this basic premise in characteristic zero, when an algebraic groups acts transitively on the parameter space. The restriction to characteristic zero is necessary. General translates of arbitrary subvarieties simply do not meet transversally in positive characteristic. Kleiman [8] exhibits a subvariety of a grassmannian that does not meet any translate of a particular codimension-2 Schubert variety transversally.

However, Kleiman’s example does not arise in an enumerative geometric problem. In fact, in every known case, general Schubert subvarieties of flag varieties meet generically transversally (transverse along a dense subset of each component), in any characteristic. Thus the question remains: To what extent does this basic principle of enumerative geometry hold in positive characteristic? Laksov and Speiser develop a...
general theory for transversality—they give a condition, using tangent spaces to families of subvarieties, that implies a general member of a family meets any fixed subvariety transversally \[9, 10, 25\]. By Kleiman’s example, families of codimension-2 Schubert subvarieties do not satisfy this condition.

By Theorem E of [17], general Schubert subvarieties of a grassmannian of 2-planes in a vector space meet transversally, in any characteristic. Here, we give an elementary and characteristic-free proof that general simple (codimension-1 or divisorial) Schubert varieties meet transversally, when the ambient space is one of the following: (i) the grassmannian, (ii) the flag manifold for the special linear group, (iii) the orthogonal grassmannian, or (iv) the space of parameterized rational curves of a fixed degree in a grassmannian. While these results are rather special in that they only involve simple Schubert varieties, such enumerative problems are in fact quite natural. More importantly, these results suggest that transversality is ubiquitous in enumerative geometry.

Thus, the corresponding intersection numbers are enumerative for fields of any characteristic (except characteristic 2 for the orthogonal grassmannian). This includes some genus zero Gromov-Witten invariants of the grassmannian, by (iv). For example, given 12 general 4-planes in 7-dimensional space, there are exactly 462 3-planes that meet all 12. (This number was computed by Schubert [13].) Similarly, given \(N = 5q + 6 \) general points \(s_1, s_2, \ldots, s_N \) in \(\mathbb{P}^1 \) and \(N \) general 3-planes \(K_1, K_2, \ldots, K_N \) in 5-dimensional space, there are exactly \(F_{5+5q} \) (the \((5 + 5q) \)th Fibonacci number) degree \(q \) maps \(M \) from \(\mathbb{P}^1 \) to the grassmannian of 2-planes in 5-space satisfying \(M(s_i) \cap K_i \neq \{0\} \), for each \(i = 1, \ldots, N \) [7, 13].

We use the formalism of [21] to show transversality. While that was developed to construct real-number solutions to these enumerative problems, it can also be used to show transversality. We state our results in Section 1, review the formalism of [21] in Section 2, and prove our results in Section 3. In Section 4, we strengthen the real enumerative geometric results of [19, 20, 21]. Finally, in Section 5, we show that families of simple Schubert varieties do not satisfy the condition of Laksov and Speiser.

While the simple Schubert varieties we study are members of a linear series of sections of an ample line bundle, the general section is not a Schubert variety, and so standard Bertini-type theorems in positive characteristic do not apply. Our results, together with the inapplicability of the general theory of Laksov and Speiser, emphasize the need for new, perhaps less general or more specific, criteria that imply transversality. For example, is there a Bertini-type theorem for the Grassmannian concerning intersections with a general codimension 1 Schubert variety?

Similarly, our results and extensive computer calculations (for example, see [22, §4.3]) suggest that the classical Schubert calculus of enumerative geometry (and the quantum Schubert calculus) is enumerative in all characteristics (except characteristic 2 for the orthogonal groups). Specifically, we make the following conjecture, for which we feel there is ample support (both theoretical and examples).

Conjecture. Let \(K \) be an algebraically closed field and \(X \) a flag variety for a reductive algebraic group defined over \(K \). If \(X_1, X_2, \ldots, X_s \) are Schubert varieties of \(X \) in general position, the sum of whose codimensions equals the dimension of \(X \), then the intersection

\[X_1 \cap X_2 \cap \cdots \cap X_s \]

is transverse.
We thank Dan Laksov for his thoughtful and constructive comments on an earlier version of this manuscript.

1. Statement of results

Let \mathbb{K} be any infinite field. We describe the spaces and simple Schubert varieties for which we prove transversality.

(i) Let $0 < r < n$ be integers. Let $G(r, n)$ denote the grassmannian of r-planes in \mathbb{K}^n.

An $(n-r)$-dimensional subspace $((n-r)$-plane) K defines a simple (codimension-1) Schubert subvariety of $G(r, n)$

$$\Omega(K) := \{ H \in G(r, n) \mid H \cap K \neq \{0\} \}.$$

(ii) For a sequence $r : 0 < r_1 < r_2 < \cdots < r_m < n$ of integers, let E_{ℓ_r} be the variety of m-step flags

$$E_{\bullet} : E_1 \subset E_2 \subset \cdots \subset E_m \subset \mathbb{K}^n$$

with $\dim E_i = r_i$ for $i = 1, \ldots, m$. An $(n-r_i)$-plane K defines a simple Schubert subvariety of E_{ℓ_r}

$$\Phi_i(K) := \{ E_{\bullet} \in E_{\ell_r} \mid E_{r_i} \cap K \neq \{0\} \}.$$

(iii) Suppose that the characteristic of \mathbb{K} is not 2 and $n = 2r+1$ is odd. Let $\langle \cdot, \cdot \rangle$ be a non-degenerate split symmetric bilinear form on \mathbb{K}^n, that is, one for which there is a basis e_1, \ldots, e_n of \mathbb{K}^n such that

$$\langle e_i, e_j \rangle = \begin{cases} 1 & \text{if } i + j = n + 1 = 2r + 2 \\ 0 & \text{otherwise} \end{cases}.$$

The resulting quadratic form is

$$q \left(\sum x_i e_i \right) = 2x_1x_{2n-1} + 2x_2x_{2n-2} + \cdots + 2x_rx_{r+2} + x_{r+1}^2.$$

A subspace H of \mathbb{K}^n is isotropic if $\langle \cdot, \cdot \rangle|_H \equiv 0$, and isotropic subspaces have dimension at most r. The orthogonal grassmannian $OG(r)$ is the space of maximal (dimension-r) isotropic subspaces of $((\mathbb{K}^n, \langle \cdot, \cdot \rangle))$. This has dimension $\binom{n+1}{2}$ and, by our choice of the form $\binom{1,2}$, the \mathbb{K}-rational points are dense. (This may be deduced, for example from the coordinates for Schubert cells of the orthogonal flag manifold given in [F, p. 67].) An isotropic r-plane K of \mathbb{K}^n defines a simple Schubert subvariety of $OG(r)$

$$\Psi(K) := \{ H \in OG(r) \mid H \cap K \neq \{0\} \}.$$

(iv) For an integer $q \geq 0$, let $M^q_{r,n}$ be the space of degree q maps $M : \mathbb{P}^1 \to G(r, n)$. A point $s \in \mathbb{P}^1$ and an $(n-r)$-plane K define a simple (quantum) Schubert subvariety of $M^q_{r,n}$

$$Z(s, K) := \{ M \in M^q_{r,n} \mid M(s) \cap K \neq \{0\} \}.$$

Each of these spaces have more general Schubert varieties. We will prove the following theorem.

Theorem 1.1. Suppose \mathbb{K} is infinite. Let X be either $G(r, n)$, E_{ℓ_r}, $OG(r)$, or $M^q_{r,n}$, and suppose $Z \subset X$ is any Schubert variety of X. Then general simple Schubert varieties $Y_1, Y_2, \ldots, Y_{\dim Z}$ meet Z transversally on X.

We prove Theorem 1.1 by exhibiting 1-parameter families of simple Schubert varieties having properties which imply that general members of these families intersect transversally. We remark that in each case except the classical flag manifold, there is only one simple Schubert variety, up to the action of the relevant group \((GL_n(\mathbb{K}), O_{2n+1}(\mathbb{K}), GL_n(\mathbb{K}) \times PGL_2(\mathbb{K}))\). However, the theory we use involves the action of the 1-dimensional torus \(G_m\) and the families we use are parameterized by \(G_m\), so our arguments really do involve different families.

2. The Method of Schubert Induction

We review the method of Schubert induction introduced in [21]. Let \(G_m\) be the group scheme whose \(\mathbb{K}\)-rational points are the invertible elements \(\mathbb{K}^\times\) of \(\mathbb{K}\), considered as a group under multiplication. While this theory holds for families of subvarieties over any curve, we use \(G_m\) as the base for our families. Suppose that \(X\) is a projective variety and we have a subvariety \(E \subset X \times G_m\), where the fibres \(E \rightarrow G_m\) are equidimensional, that is, a family \(E \rightarrow G_m\) of subvarieties of \(X\). Then the scheme-theoretic limit \(\lim_{s \to 0} E(s)\) is defined to be the fibre over 0 of the closure \(\overline{E}\) of \(E\) in \(X \times \mathbb{K}\). Since \(G_m\) is a curve, this fibre has the expected dimension. (See Remark 9.8.1 of [6].)

A Bruhat decomposition of an irreducible variety \(X\) defined over a field \(\mathbb{K}\) is a finite decomposition \(X = \bigsqcup_{w \in I} X_w\) satisfying the following conditions.

1. Each stratum \(X_w\) is a locally closed irreducible subvariety defined over \(\mathbb{K}\).
2. The closure \(\overline{X_w}\) of a stratum is a union of some strata \(X_{w'}\).
3. There is a unique 0-dimensional stratum \(X_\emptyset\).

For \(w \in I\), define the Schubert variety \(X_w\) to be \(\overline{X_w}\). The space \(X\) is the top-dimensional Schubert variety. By condition (2), the intersection \(X_w \cap X_{w'}\) of two Schubert varieties is a union of some Schubert varieties. The Bruhat order on \(I\) is the order induced by inclusion of Schubert varieties: \(u \leq v\) if \(X_u \subseteq X_v\). Set \(|w| := \dim X_w\).

Let \(\mathcal{Y} \rightarrow G_m\) be a family of divisors on \(X\). For \(s \in G_m\), let \(Y(s)\) be the fibre of \(\mathcal{Y}\) over the point \(s\). We say that \(\mathcal{Y}\) respects the Bruhat decomposition if, for every \(w \in I\), the (scheme-theoretic) limit \(Z := \lim_{s \to 0} (Y(s) \cap X_w)\) is supported on a union of Schubert subvarieties \(X_{w'}\) of codimension 1 in \(X_w\). Write \(v \prec_{\mathcal{Y}} w\) when \(X_v\) is the support of a component of the limit scheme \(Z\). This relation generates a suborder of the Bruhat order, and, as we explain below, the number of solutions to an enumerative problem given by simple Schubert varieties equals the number of saturated chains in such a suborder. Our notation for this suborder, \(\prec_{\mathcal{Y}}\), reflects its dependence on the family \(\mathcal{Y}\). A family \(\mathcal{Y} \rightarrow G_m\) of divisors of \(X\) is multiplicity-free if it respects the Bruhat decomposition and if each component of the scheme-theoretic limit \(Z\) is reduced at its generic point.

The general fibre \(Y(s)\) of such a multiplicity-free family of divisors on \(X\) meets each Schubert variety \(X_w\) generically transversally. Indeed, if the general fibre of \(\mathcal{Y}\) did not meet \(X_w\) generically transversally, then every intersection \(Y(s) \cap X_w\) would have a non-reduced component. This would imply that \(\lim_{s \to 0} Y(s)\cap X_w\) has a non-reduced component, violating our assumption that the family \(\mathcal{Y}\) is multiplicity-free.
Thus when X is smooth and $Y(s)$ is a general member of the family \mathcal{Y}, we have the formula
\begin{equation}
[X_w] \cdot [Y(s)] = [X_w \cap Y(s)] = \sum_{v \prec yw} [X_v]
\end{equation}
in the Chow ring of X. The second equality in (2.1) expresses the rational equivalence of the fibres of the family $\mathcal{Y} \cap (X_w \times \mathbb{K})$ and the first equality is a basic property of any intersection theory, namely that a generically transverse intersection of subvarieties of X represents the product of their cycle classes, as the intersection multiplicities are equal to 1 [4, Remark 8.2, p. 138].

A collection $\mathcal{Y}_1, \ldots, \mathcal{Y}_l$ of families of divisors of X meets the Bruhat decomposition of X properly1 if for all $w \in I$, for general $s_1, s_2, \ldots, s_l \in G_m$, for each $1 \leq k \leq l$, and for every k-subset $\{i_1, i_2, \ldots, i_k\}$ of $\{1, 2, \ldots, l\}$, the intersection
\begin{equation}
Y_{i_1}(s_{i_1}) \cap Y_{i_2}(s_{i_2}) \cap \cdots \cap Y_{i_k}(s_{i_k}) \cap X_w
\end{equation}
is proper in that either it is empty or else it has (the expected) dimension $|w| - k$.

Suppose that we have a collection $\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_l$ ($l = \dim X$) of multiplicity-free families of divisors of X with each meeting the Bruhat decomposition of X properly. Recall that 0 is the index of the minimal Schubert variety, which is a single point. For $w \in I$, let $\deg(w)$ count the number of (saturated) chains in the Bruhat order
\begin{equation}
\hat{0} \prec_1 w_1 \prec_2 w_2 \prec_3 \cdots \prec_{k-1} w_{k-1} \prec_k w_k = w,
\end{equation}
where $\prec_i = \prec_{\mathcal{Y}_i}$ and $|w| = k$. This is the degree of the intersection
\begin{equation}
Y_1(s_1) \cap Y_2(s_2) \cap \cdots \cap Y_k(s_k) \cap X_w.
\end{equation}

A result of [21] asserts that this intersection is free of multiplicities.

Proposition 2.1 ([21]). Suppose X has a Bruhat decomposition, $\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_l$ are multiplicity-free families of divisors in X over G_m meeting the Bruhat decomposition of X properly, and each respects the Bruhat decomposition. Then, for every $1 \leq k \leq l$ and every $w \in I$ with $|w| = k$, the intersection (2.4) is transverse for general $s_1, s_2, \ldots, s_k \in G_m$ and has degree $\deg(w)$. In particular, when \mathbb{K} is algebraically closed, such an intersection consists of $\deg(w)$ reduced points.

The point of Proposition 2.1 is that while we only assume that the intersections (2.2) have the expected dimension, we are able to conclude that (2.4) is transverse and to compute the number of solutions without reference to the Chow ring. There is a simple criterion (Lemma 2.4 of [21]) which implies that a collection of families meets the Bruhat decomposition properly.

Lemma 2.2. Suppose a variety X has a Bruhat decomposition. Let $\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_l$ be a collection of families of divisors of X. If each family $Y_k \to G_m$ satisfies
\[
\bigcap_{s \in G_m} Y_k(s) = \emptyset,
\]
then the collection of families $\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_l$ meets the Bruhat decomposition properly.

1The term ‘in general position with respect to the Bruhat decomposition’ is used in [21].
The elementary methods of [21] are illustrated by the following proof. If the families \(\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_l \) do not meet the Bruhat decomposition properly, then after possibly reindexing, there is a \(w \in I \), integer \(k \), and points \(s_1, s_2, \ldots, s_k \in \mathbb{G}_m \) such that

\[
(2.5) \quad Y_1(s_1) \cap Y_2(s_2) \cap \cdots \cap Y_k(s_k) \cap X_w
\]

has (the expected) dimension of \(|w| - k \geq 0 \), but for every \(s \in \mathbb{G}_m \), the intersection

\[
Y_1(s_1) \cap Y_2(s_2) \cap \cdots \cap Y_k(s_k) \cap Y_{k+1}(s) \cap X_w
\]

also has dimension \(|w| - k \). But then some component of \((2.5)\) lies in every subvariety \(Y_{k+1}(s) \), contradicting the assumption of the lemma. \(\square \)

3. Proof of Theorem 1.1

By Proposition 2.1, for each space \(G(r, n), \mathbb{F}_r, OG(r) \), and \(M^q_{r,n} \), we need only to construct multiplicity-free families of simple Schubert subvarieties over \(\mathbb{G}_m \) such that the entire collection meets the Bruhat decomposition properly. For the space \(M^q_{r,n} \) of rational curves in a grassmannian, we work in Drinfeld’s compactification \(K^q_{r,n} \), also called the quantum grassmannian.

3.1. The grassmannian. Let \(e_1, e_2, \ldots, e_n \) be an ordered basis for \(\mathbb{K}^n \). For a sequence \(\alpha : 1 \leq \alpha_1 < \alpha_2 < \cdots < \alpha_r \leq n \), the Schubert variety \(\Omega_\alpha \) is

\[
\Omega_\alpha := \{ H \in G(r, n) \mid \dim H \cap F_{\alpha_j} \geq j \text{ for } j = 1, 2, \ldots, r \},
\]

where \(F_i \) is the linear span of \(e_1, e_2, \ldots, e_i \). Set \(\Omega_\alpha^\circ := \Omega_\alpha \setminus \{ \Omega_\beta \mid \beta \leq \alpha \} \). Here, \(\leq \) is given by componentwise comparison, \(\alpha \leq \beta \) if and only if \(\alpha_i \leq \beta_i \) for all \(i \). Write \(\binom{[n]}{r} \) for the resulting partial order on this set of sequences. With these definitions, the grassmannian \(G(r, n) \) has a Bruhat decomposition

\[
G(r, n) = \prod_{\alpha \in \binom{[n]}{r}} \Omega_\alpha^\circ,
\]

indexed by sequences \(\alpha \in \binom{[n]}{r} \). For \(\alpha \in \binom{[n]}{r} \), set \(|\alpha| = \sum (\alpha_i - i) \), which is the dimension of \(\Omega_\alpha \). Write \(\beta < \alpha \) when \(\beta < \alpha \) with \(|\beta| = |\alpha| - 1 \).

If \(H \) is the row space of an \(r \) by \(n \) matrix, then the \(\binom{n}{r} \) maximal minors of that matrix are the Plücker coordinates of \(H \). Write these as \(p_\alpha \) for \(\alpha \in \binom{[n]}{r} \). These Plücker coordinates give an embedding of \(G(r, n) \) into \(\mathbb{P}^{\binom{n}{r}-1} \).

We use the following elementary set-theoretic fact, originally due to Schubert [16].

\[
(3.1) \quad \Omega_\alpha \cap \{ p_\alpha = 0 \} = \bigcup_{\beta \leq \alpha} \Omega_\beta,
\]

and the intersection is generically transverse. This is a consequence of the related ideal-(or scheme-) theoretic fact, which may be deduced from the combinatorics of the Plücker ideal of \(G(r, n) \). There are, however, very elementary reasons that intersection \((3.1)\) is as claimed (set-theoretically) and is generically transverse. Indeed, if we set

\[
K := \text{Span} \langle e_i \mid i \in \{1, 2, \ldots, n\} - \{\alpha_1, \ldots, \alpha_r\} \rangle,
\]
then \(\Omega(K) \) has equation \(p_\alpha = 0 \) in the Plücker coordinates, and a simple computation in local coordinates proves the equality in (3.1), as well as showing that it is generically transverse. (For a synthetic argument, see Theorem 2.4(2) of [13].)

Proof of Theorem 1.1 for \(\mathbf{G}(r,n) \). Let \(K \subset \mathbb{K}^n \) be an \((n-r)\)-plane, none of whose Plücker coordinates vanish. Since no Plücker coordinate vanishes identically on the grassmannian, such a plane exists as \(\mathbb{K} \) is infinite. Let \(\mathbb{G}_m \) act on \(\mathbb{K}^n \) by \(s.(e_j) = s^j e_j \) and set \(K(s) := s.K \). Let \(\mathcal{Y}(K) \to \mathbb{G}_m \) be the family of simple Schubert varieties whose fibre over \(s \in \mathbb{G}_m \) is the Schubert variety \(\Omega(K(s)) \).

Theorem 1.1 is a consequence of Proposition 2.1 and the following claim.

Claim. Let \(K_1, K_2, \ldots, K_l \) be \((n-r)\)-planes, each with no vanishing Plücker coordinates.

(i) Each family \(\mathcal{Y}(K_i) \) preserves the Bruhat decomposition of \(\mathbf{G}(r,n) \) and is multiplicity-free.

(ii) The collection of families \(\mathcal{Y}(K_1), \mathcal{Y}(K_2), \ldots, \mathcal{Y}(K_l) \) meets the Bruhat decomposition properly.

Proof of Claim. Represent \(K_i \) as the row space of an \((n-r)\) by \(n \) matrix \(K_i \). Then \(K_i(s) \) is represented by the same matrix, but with column \(j \) multiplied by \(s^j \). If a \(r \)-plane \(H \) is the row space of an \(r \) by \(n \) matrix \(H \), then

\[
H \cap K_i(s) \neq \{0\} \iff \det \left[\begin{array}{c} K_i(s) \\ H \end{array} \right] = 0.
\]

Laplace expansion of the determinant along the rows of \(H \) gives the equation in Plücker coordinates for \(H \) to lie in \(\Omega(K_i(s)) \)

\[
(3.2) \quad 0 = \sum_{\beta \in \ell([n])} p_\beta k_\beta s^{r(n-r)+(n-r+1)-|\beta|},
\]

where \(k_\beta \) is the appropriately signed maximal minor of \(K_i \) for the columns complementary to \(\beta \). Up to a sign, this is a Plücker coordinate of \(K_i \).

If we restrict (3.2) to the Schubert variety \(\Omega_\alpha \) and divide by the common factor \(s^{r(n-r)+(n-r+1)-|\alpha|} \), the result is a polynomial with constant term \(p_\alpha k_\alpha \). Thus the limit scheme \(\lim_{s \to 0}(\Omega_\alpha \cap \Omega(K_i(s))) \) is defined in \(\Omega_\alpha \) by \(p_\alpha = 0 \), and so by (3.1),

\[
\lim_{s \to 0}(\Omega_\alpha \cap \Omega(K_i(s))) = \sum_{\beta < \alpha} \Omega_\beta,
\]

which proves the first claim.

For a fixed \(H \in \mathbf{G}(r,n) \), (3.2) is a non-zero polynomial in \(s \), and so there are finitely many \(s \in \mathbb{G}_m \) with \(H \in \Omega(K_i(s)) \). In particular, \(\bigcap_{s \in \mathbb{G}_m} \Omega(K_i(s)) = \emptyset \). By Lemma 2.2, this implies the second claim and completes the proof of Theorem 1.1 for \(\mathbf{G}(r,n) \). □

3.2. The flag manifold.

Fix an ordered basis \(e_1, e_2, \ldots, e_n \) for \(\mathbb{K}^n \). Let \(r : 0 < r_1 < r_2 < \cdots < r_m < n \) be integers. The flag manifold \(\mathbb{F}^{\ell_r} \) has a Bruhat decomposition

\[
\mathbb{F}^{\ell_r} = \coprod X^o_w,
\]

indexed by those permutations \(w = w_1 w_2 \ldots w_n \) in the symmetric group \(\mathcal{S}_n \) on \(n \) letters whose descent set \(\{ i \mid w_i > w_{i+1} \} \) is a subset of \(\{ r_1, r_2, \ldots, r_m \} \). Here, \(X^o_w \) is a Schubert cell of \(\mathbb{F}^{\ell_r} \) (see §9 of [3]).
Let G_m act on \mathbb{K}^n by $s.e_i = s^i e_i$. Suppose K is an $(n-r_i)$-plane, none of whose Plücker coordinates vanish. For $s \in G_m$, set $K(s) := s.K$. Let $\mathcal{Y}(K) \to G_m$ be the family whose fibre over $s \in G_m$ is the simple Schubert variety $\Phi_i(K(s))$. The projection $\mathbb{F}_r \to G(r_i, n)$ sends a flag $E_\bullet \in \mathbb{F}_r$ to its ith component $E_i \in G(r_i, n)$, and $\Phi_i(K(s))$ is the inverse image of $\Omega(K(s))$. It is an easy consequence (see [21, §2] for details) of the results proven in §3.1 that the family $\mathcal{Y}(K)$ preserves the Bruhat decomposition of the flag variety \mathbb{F}_r and is multiplicity-free. (This last fact follows from Monk’s formula [12].) Since $\bigcap_{s \in G_m} \Omega(K(s)) = \emptyset$, we have $\bigcap_{s \in G_m} \Phi_i(K(s)) = \emptyset$, and so we conclude that if we have any $i_1, i_2, \ldots, i_l \in \{1, 2, \ldots, m\}$ and $(n-r_i)$-planes K_j for $j = 1, \ldots, l$, none of whose Plücker coordinates vanish, then the families $\mathcal{Y}(K_1), \mathcal{Y}(K_2), \ldots, \mathcal{Y}(K_l)$ meet the Bruhat decomposition properly.

These facts together establish Theorem 1.1 for the flag manifold \mathbb{F}_r. \hfill \blacksquare

3.3. The orthogonal grassmannian. Suppose that the characteristic of \mathbb{K} is not 2 and $n = 2r + 1$ is odd. Let e_1, e_2, \ldots, e_n be a basis for \mathbb{K}^n for which the symmetric bilinear form is as given by (1.1). The orthogonal grassmannian has a Bruhat decomposition

$$OG(r) = \coprod X^0_\lambda,$$

indexed by decreasing sequences λ of integers $n \geq \lambda_1 > \lambda_2 > \cdots > \lambda_l > 0$. This decomposition is induced from that of $G(r, n)$ by the inclusion $\iota: OG(r) \hookrightarrow G(r, n)$. As before, X^0_λ is a Schubert cell of $OG(r)$.

Let G_m act on \mathbb{K}^n by $s.e_i = s^i e_i$. This induces an action of G_m on the orthogonal grassmannian, as the quadratic form (1.2) is homogeneous of degree 2$n + 2$ under this action. Given $K \in OG(r)$ with no vanishing Plücker coordinates, set $K(s) := s.K$ and let $\mathcal{Y}(K) \to G_m$ be the family of simple Schubert varieties with fibres $\Psi(K(s)) (= \iota^{-1}(\Omega(K(s)))$, set-theoretically).

As in §3.2 (see [21, §3]), the results proven for the family $\Omega(K(s))$ in §3.1 imply the corresponding results for the family $\mathcal{Y}(K)$, and any collection of such families. (Multiplicity-freeness follows from a cohomological formula due to Chevalley [2].)

In this way, we establish Theorem 1.1 for the orthogonal grassmannian $OG(r)$. \hfill \blacksquare

3.4. The space of rational curves in the grassmannian. The space $M^q_{r,n}$ of degree q maps $M: \mathbb{P}^1 \to G(r, n)$ is a smooth quasi-projective variety of dimension $qn + r(n-r)$. The Plücker coordinates of such a map are homogeneous forms of degree q. Choosing $K \subset \mathbb{K}^1$, these forms are polynomials of degree q in the parameter $s \in K$. Let $z_{\alpha(a)}$ be the coefficient of s^{q-a} in the ath Plücker coordinate of a map M. These coefficients give quantum Plücker coordinates for $M^q_{r,n}$, determining the Plücker embedding of $M^q_{r,n}$ into the projective space $\mathbb{P}(\wedge^p \mathbb{K}^{m+p} \otimes \mathbb{K}^{q+1})$. The closure of $M^q_{r,n}$ in this embedding is the singular Drinfeld compactification or quantum grassmannian $K^q_{r,n}$.

Let $C^q_{r,n} := \{\alpha^a | \alpha \in \binom{n}{r} \text{ and } 0 \leq a \leq q\}$ be the set of indices of quantum Plücker coordinates. This set is partially ordered as follows

$$a^a \leq b^b \iff a \leq b \text{ and } \alpha_i \leq \beta_{b-a+i} \text{ for } i = 1, 2, \ldots, p-b+a.$$

The quantum Schubert varieties

$$Z_{\alpha^a} := \{z \in K^q_{r,n} | z_{\beta(b)} = 0 \text{ if } \beta(b) \not\leq \alpha^a\},$$
are the Schubert varieties of a Bruhat decomposition of $\mathcal{K}_{q_{r,n}}$ \[20\]

$$\mathcal{K}_{q_{r,n}} = \coprod_{\alpha(a) \in \mathcal{G}_{q_{r,n}}} Z^\circ_{\alpha(a)}.$$

Here $Z^\circ_{\alpha(a)}$ is the set of points in $\overline{Z_{\alpha(a)}}$ with non-vanishing coordinate $z_{\alpha(a)}$.

Let $I_{q_{r,n}}$ be the ideal of the quantum grassmannian. The ideals of quantum Schubert varieties have a very simple description, which generalizes (I.1).

Proposition 3.1 \[24\].

(i) The ideal $I_{\alpha(a)}$ of $\overline{Z_{\alpha(a)}}$ is $I_{r,n} + \langle z_{\beta(b)} \mid \beta(b) \notin \alpha(a) \rangle$.

(ii) $\langle I_{\alpha(a)}, z_{\alpha(a)} \rangle = \bigcap_{\beta(b) < \alpha(a)} I_{\beta(b)}$.

This was established modulo embedded primes of lower dimension (which is sufficient for our purposes) in \[13, 20\].

Proof of Theorem 1.1 for $\mathcal{M}_{q_{r,n}}$. Let $K \subset \mathbb{K}^n$ be an $(n-r)$-plane, none of whose Plücker coordinates vanish. Let G_m act on \mathbb{K}^n by $s(e_i) = s^i e_i$ and set $K(s) := s.K$. Consider the family of simple Schubert varieties of $\mathcal{M}_{q_{r,n}}$

\[(3.3)\]

$$Z(s, K) := \{ M \in \mathcal{M}_{q_{r,n}} \mid M(s^n) \cap K(s) \neq \{0\} \}.$$

Let $\mathcal{Y}(K) \rightarrow G_m$ be the family of subvarieties of $\mathcal{K}_{q_{r,n}}$ whose fibre $\overline{Z(s, K)}$ over $s \in G_m$ is the closure of $Z(s, K)$. As in \[20, \S3\], expanding the determinantal equation for M to lie in $Z(s, K)$ gives the linear equation for this fibre

\[(3.4)\]

$$0 = \sum_{\alpha(a) \in \mathcal{G}_{q_{r,n}}} z_{\alpha(a)} k_{\alpha(s) s} m^{n-r(r-n)+\left(\frac{n-r+1}{2}\right) - |\alpha(a)|}.$$

As in \S3.1, the form of this equation and Proposition 3.1 show that the family $\mathcal{Y}(K)$ respects the Bruhat decomposition of $\mathcal{K}_{q_{r,n}}$ and is multiplicity-free. Furthermore, given any $(n-r)$-planes K_1, K_2, \ldots, K_l in \mathbb{K}^n, none of whose Plücker coordinates vanish, the resulting families $\mathcal{Y}(K_1), \mathcal{Y}(K_2), \ldots, \mathcal{Y}(K_l)$ meet the Bruhat decomposition properly. Thus general members of these families meet transversally on the quantum grassmannian $\mathcal{K}_{q_{r,n}}$, and hence on its dense subset $\mathcal{M}_{q_{r,n}}$. This completes the proof of Theorem 1.1.

\[\square\]

In general, all points of intersection of general members of the families $\mathcal{Y}(K_1), \mathcal{Y}(K_2), \ldots, \mathcal{Y}(K_{\dim \mathcal{M}_{q_{r,n}}})$ lie in the space $\mathcal{M}_{q_{r,n}}$ of curves. An argument given in \[20\] uses work of Bertram \[1\] concerning the quot scheme compactification of $\mathcal{M}_{q_{r,n}}$. This argument is valid here, as the pertinent results of Bertram hold for over arbitrary fields. (See \[23\] for a survey of this quantum intersection problem.)

4. **Some more reality**

We strengthen the results of \[19, 21, 22\]:

Proposition 4.1. Suppose $\mathbb{K} = \mathbb{R}$. Let X be one of the spaces $G(r, n), \mathbb{F} \ell_r, OG(r)$, or $\mathcal{M}_{q_{r,n}}$. There exist simple Schubert varieties $Y_1, Y_2, \ldots, Y_{\dim X}$ that meet transversally in the complexification X_C of X, and every point of intersection is real.
In [13, 20, 21], we constructed families of simple Schubert varieties defined by subspaces $K(s)$ which osculate a given rational normal curve. Unlike the families constructed in §3, those families respect the Bruhat order only in characteristic zero. The calculations of §3 enable a more flexible choice of subspaces.

An action of the torus \mathbb{R}^\times on a real vector space V of dimension n is \textit{general} if V is a direct sum of 1-dimensional eigenspaces, each with a different character. Given such an action, we say that a linear subspace $L \subset V$ is \textit{general} if it none of its Plücker coordinates vanishes, where we define Plücker coordinates with respect to a basis of eigenvectors. When $n = 2r+1$ and V is equipped with a non-degenerate (split) symmetric bilinear form of signature ± 1, we require the form to be homogeneous with respect to this action. See (1.1) for an example of such a split form for the general spaces.

Theorem 4.2. Let V be an n-dimensional real vector space equipped with a general action of the torus and equip \mathbb{P}^1 with a general action of the torus. Let X be one of the spaces $G(r,n)$, \mathbb{F}^ℓ_r, and $OG(r)$. We obtain a torus action on $M_{r,n}^q$ by having \mathbb{R}^\times act on the source \mathbb{P}^1 of the maps via $s.[a,b] := [a,s^N b]$, for some integer N. This action on \mathbb{P}^1 will be general (and induce a general action on $M_{r,n}^q$) when $N > N_0$, for some N_0 (described below) depending upon the given general torus action.

There is a second part to Proposition 2.1 of [21], which we use for the proof below.

Proposition 4.3 (21). Under the same hypotheses as Proposition 2.1, but with $K = \mathbb{R}$, there exist points $s_1, s_2, \ldots, s_l \in \mathbb{R}$ such that for every $1 \leq k \leq l$ and every $w \in I$ with $|w| = k$, the intersection

$$Y_1(s_1) \cap Y_2(s_2) \cap \cdots \cap Y_k(s_k) \cap X_w$$

is transverse and each of its deg(w) points are real.

Proof of Theorem 4.2. The characters of \mathbb{R}^\times are the monomials s^i for i an integer. We use the integer i to represent the character s^i. Suppose V is an n-dimensional real vector space equipped with a general action of \mathbb{R}^\times. Assume that e_1, e_2, \ldots, e_n is a basis of eigenvectors of V with respective characters i_1, i_2, \ldots, i_n, where $i_1 < i_2 < \cdots < i_n$. Then the arguments of §§3.1, 3.2, and 3.3 remain valid with this action in place of the action $s.e_i = s^i e_i$. This action induces the action on Plücker coordinates $s.p_\alpha = s^{J(\alpha)}p_\alpha$, where $J(\alpha) := \sum_j i_{a_j}$. The key facts are that the map $\alpha \mapsto J(\alpha)$ is an order preserving map from the poset $(\binom{[n]}{r})$ to the integers, and that the exponent $r(n-r) + \binom{n-r+1}{2} - |\alpha|$ of (3.2) is replaced by $r_{i+1} + \cdots + i_n - J(\alpha)$. The theorem follows from Proposition 4.3 for the spaces $G(r,n), \mathbb{F}^\ell_r$, and $OG(r)$.

For the space of rational curves $M_{r,n}^q$, set $N_0 := i_n - i_{n+1} + 1$ and suppose $N > N_0$ for the torus action on \mathbb{P}^1. Thus the action of $s \in \mathbb{R}^\times$ on the map M is given by the map $t \mapsto s.[M(s^N t)]$. On the quantum Plücker coordinates, this is $s.z_{a(\alpha)} = s^{I(\alpha(\alpha))}z_{a(\alpha)}$,

2We require the form to be split so that $OG(r)$ has sufficiently many real points.
where $I(\alpha^{(a)}) = Na + J(\alpha)$. Again the map $\alpha^{(a)} \mapsto I(\alpha^{(a)})$ is an order preserving map from the poset $C_{r,n}^a$ to the integers. The arguments of §3.4 extend to this more general action, a key point being the exponent $qn + r(n-r) + (n-r+1) - |\alpha^{(a)}|$ of (3.4) is now replaced by $qN + i_{r+1} + \cdots + i_n - I(\alpha^{(a)})$. Thus the theorem follows for the space $\mathcal{M}_{i,n}^q$, by Proposition 4.3.

The proof of Proposition 4.3 in [21] (see [20, §4]) gives further information about the choice of the points s_1, s_2, \ldots, s_l. By $\forall s_1 \gg s_2 \gg \cdots \gg s_l$, we mean

$$\forall s_1 > 0 \exists \epsilon_2 > 0, \text{ such that } \forall s_2 < \epsilon_2 \cdots \exists \epsilon_l > 0, \text{ such that } \forall s_l < \epsilon_l.$$

Thus the existential statement “there exist points $s_1, s_2, \ldots, s_{\dim X} \in \mathbb{R}$” of Theorem 4.2 may be replaced by “$\forall s_1 \gg s_2 \gg \cdots \gg s_{\dim X}$”.

5. Not a determinantal pair

Laksov and Speiser [9, 25, 10, 11] develop the notion of a determinantal family of subvarieties thereby giving a general criterion for proving that a general member of a family meets arbitrary subvarieties transversally. This approach studies the tangent spaces of members of the family with respect to possible tangent spaces for arbitrary subvarieties. To facilitate applications of their theory, they give a local condition which implies that a family is determinantal. We show that this local condition does not hold for families of simple Schubert varieties in $G(r, n)$, and thus does not hold for the other families of simple Schubert varieties of Theorem 1.1. This is not implied by Kleiman’s example [8] of a subvariety in a Grassmannian not meeting any translate of a particular Schubert variety transversally, for his Schubert variety has codimension 2. This emphasizes the need for new, perhaps less general or more specific, criteria that imply transversality.

Let X, Y, Z, and S be smooth equidimensional varieties with π, f, and g the maps of Figure 1, where π is smooth, g is unramified, and f is flat. The fibres of $X \times_Z Y \to S$

![Figure 1. Intersection with a family](image)

are the intersections of the fibres of $X \to S$ with Y (along the maps f and g).

Consider the bundles $E := p_1^*T(X/S)$, the pullback of the relative tangent bundle of $X \to S$ and $F := p_2^*(g^*TZ)/TY$, the pullback of the conormal bundle of g. Let

$$E \xrightarrow{\alpha} F$$

be the map induced by $df: T(X/S) \to TZ$ and define $\Delta \subset X \times_Z Y$ to be the degeneracy locus of the map α, the set of points where the map α does not have full rank. This is
in fact the locus where the intersection is not transverse. Set
\[\rho := |\text{rank} E - \text{rank} F| + 1 \]
\[= \dim X \times_Z Y - \dim S + 1. \quad (\text{when } X \times_Z Y \text{ dominates } S) \]
Then either \(\Delta \) is empty or it has codimension at most \(\rho \) in \(X \times_Z Y \).

Proposition 5.1 ([1]). Suppose either that \(\Delta = \emptyset \) or else the codimension of \(\Delta \) in \(X \times_Z Y \) is equal to \(\rho \). Then there is a non empty open subset \(U \) of \(S \) such that for \(s \in U \) either \(X, \times_Z Y \) is empty, or it is smooth of the expected dimension \(\rho - 1 \).

Laksov and Speiser define the family \(X \) to be *determinantal* if

\[(5.1) \quad \text{For every unramified map } f: Y \rightarrow Z \text{ from a smooth variety } Y, \text{ either} \]
\[\Delta \text{ is empty, or else it has codimension } \rho \text{ in } X \times_Z Y, \text{ where } \rho \text{ is as above.} \]

This condition is quite strong, as it implies that the general member of the family \(X \rightarrow S \) meets every unramified map \(Y \rightarrow Z \) from a smooth variety \(Y \) transversally. Since enumerative geometry is concerned only with those maps \(Y \rightarrow Z \) that are ‘geometrically meaningful’—an admittedly ill-defined class—this condition is perhaps stronger than needed by enumerative geometry.

They introduce a local condition which implies (5.1). Fix \(z \in Z \) and a linear subspace \(L \subset T_z Z \). For any \(x \in f^{-1}(z) \), we have the map

\[(5.2) \quad T_x(X/S) \xrightarrow{\alpha_{L,x}} T_z Z/L. \]

Set \(\rho_L := \dim X - \dim S + \dim L - \dim Z + 1 \) and let \(\Delta_L \subset f^{-1}(z) \) be the locus of points \(x \) where \(\alpha_{L,x} \) has less than maximal rank. Then either \(\Delta_L = \emptyset \) or else it has codimension at most \(\rho_L \). The family \(X \) is *determinantal* at \(z \) if, for every linear subspace \(L \subset T_z Z \), either \(\Delta_L = \emptyset \) or else it has codimension \(\rho_L \) in \(f^{-1}(z) \).

Proposition 5.2 ([1]). If the family \(X \) is determinantal at every \(z \in Z \), then is it determinantal.

Consider the enumerative problem (i) of §1 involving simple Schubert varieties of \(G(r, n) \). Let \(l \geq 1 \) be an integer, \(Y := G(r, n) \), and \(Z := [G(r, n)]^l \), with the map \(g: Y \rightarrow Z \) the diagonal embedding. Let \(S := [G(n-r, n)]^l \), and set

\[X := \{ (K_1, K_2, \ldots, K_l, H_1, H_2, \ldots, H_l) \in S \times Z \mid \dim K_i \cap H_i = 1 \}, \]

which is the smooth points in the \(l \)-fold product of the universal simple Schubert variety in \(G(n-r, n) \times G(r, n) \)

\[\{(K, H) \in G(n-r, n) \times G(r, n) \mid \dim K \cap H \neq \{0\}\}. \]

In this case, the maps \(\pi \) and \(f \) are just the projections, and the fibre of \(X \times_Y Z \) over a point \((K_1, K_2, \ldots, K_l) \) of \(S \) is the intersection

\[(5.3) \quad \Omega^{sm}(K_1) \cap \Omega^{sm}(K_2) \cap \cdots \cap \Omega^{sm}(K_l), \]

where \(\Omega^{sm}(K) \) consists of the smooth points of \(\Omega(K) \).

Theorem [1] asserts that when \(l = r(n-r) \) (and hence for all \(l \leq r(n-r) \)), there is an open subset \(U \) of \(S \) consisting of points \((K_1, K_2, \ldots, K_l) \) such that the intersection (5.3) is non-empty and is transverse at the generic point of each component. This fact is not implied by the theory of Laksov and Speiser.
Theorem 5.3. When \(r, n - r > 1 \), the family \(X \) is not determinantal at any \(z \in Z \).

Similar arguments show that transversality in the other enumerative problems of Theorem 5.1 cannot be obtained from the theory of Laksov and Speiser. For those, we replace \(Y \) by one of \(\mathbb{F}^r, OG(r) \), or \(M_{r,n}^2 \), and possibly modify \(X, S \), and \(Z \).

Let \(V = \mathbb{K}^n \). For \(H \in G(r, n) \), the tangent space \(T_H G(r, n) \) equals \(\text{Hom}(H, V/H) \). Similarly, if \(K \in G(n-r, n) \) and \(\dim H \cap K = 1 \), then (see, for instance \([8, \text{§}2.9]\))

\[
T_H \Omega(K) = \{ \varphi \in \text{Hom}(H, V/H) \mid \varphi(K \cap H) \subset (H + K)/H \}.
\]

If we let \(v = K \cap H \in \mathbb{P}(H) \) and \(\Lambda = K + H \in \mathbb{P}(V/H) \), a hyperplane containing \(H \), then \(T_H \Omega(K) = \tau_{v, \Lambda} \), where

\[
\tau_{v, \Lambda} := \{ \varphi \in \text{Hom}(H, V/H) \mid \varphi(v) \subset \Lambda/H \}.
\]

The key point is that the set of hyperplanes \(T_H \Omega(K) \), for \(K \in \Omega^m(H) \), forms the proper subvariety of the space \(\mathbb{P}^r(\text{Hom}(H, V/H)) \) consisting of hyperplanes \(\tau_{v, \Lambda} \) for \((v, \Lambda) \in \mathbb{P}(H) \times \mathbb{P}(V/H)\). This also implies that the grassmannian hypothesis \([10, \text{Theorem } 3.3]\) fails to hold. This set of hyperplanes is a single orbit of the stabilizer of \(H \) in \(GL(V) \) of dimension \(n-2 \). (Compare with the hypotheses of \([8, \text{Theorem } 10]\).)

Proof of Theorem 5.3. Let \(z = (K_1, K_2, \ldots, K_l) \in Z \). Then

\[
f^{-1}(z) = \{(K_1, K_2, \ldots, K_l) \in S \mid \dim K_i \cap H_i = 1\} = \prod_{i=1}^l \Omega^m(H_i),
\]

which has dimension \(l[r(n-r)-1] \). Fix any \((v, \Lambda) \in \mathbb{P}(H) \times \mathbb{P}(V/H)\) and set

\[
L := \tau_{v, \Lambda} \times \prod_{i=2}^l T_{H_i} G(r, n).
\]

For \(x = (K_1, K_2, \ldots, K_l) \in f^{-1}(z) \), we have

\[
T_x(X/S) = \prod_{i=1}^l T_{H_i} \Omega(K_1) \subset \prod_{i=1}^l T_{H_i} G(r, n) = T_z Z,
\]

and the map \(\alpha_{L,x} (5.2) \) is the composition

\[
T_x(X/S) \hookrightarrow T_z Z \twoheadrightarrow T_z Z/L \simeq \mathbb{K}.
\]

This map drops rank precisely when \(T_{H_i} \Omega(K_1) = \tau_{v, \Lambda} \), that is, when \(v \in K_1 \subset \Lambda \) (and \(v = K_1 \cap H_1 \)). This defines an open subset \(\Omega'(v, \Lambda) \) of a Schubert subvariety of \(G(n-r, n) \) isomorphic to \(G(n-r-1, r-1) \), which has dimension \((n-r-1)(r-1) = r(n-r)-1-(n-2)\). Thus

\[
\Delta_L = \Omega'(v, \Lambda) \times \prod_{i=2}^l \Omega^m(K_i)
\]

has dimension \(l[r(n-r)-1]-(n-2) \), and hence codimension \(n-2 \) in \(f^{-1}(z) \). However,

\[
\rho_L = \dim X - \dim S + \dim L - \dim Z + 1 = l[r(n-r)-1],
\]

which exceeds \(n-2 \) for all \(l > 0 \) and \(r, n-r > 1 \). \(\square \)
References

Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003, USA
E-mail address: sottile@math.umass.edu
URL: http://www.math.umass.edu/~sottile