Session D3 - Fish Passage Restoration at the Briggsville Dam: Using Sediment Transport Analysis for Natural Channel Design

Ashley Ficke
Colorado State University Department of Fish, Wildlife, and Conservation Biology

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Ficke, Ashley, "Session D3 - Fish Passage Restoration at the Briggsville Dam: Using Sediment Transport Analysis for Natural Channel Design" (2012). International Conference on Engineering and Ecohydrology for Fish Passage. 43.
http://scholarworks.umass.edu/fishpassage_conference/2012/Jun5/43

This is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Evaluation of Two Rock Ramp Fishways in a Colorado Transition Zone Stream

Ashley D. Ficke
Christopher A. Myrick
Department of Fish, Wildlife, and Conservation Biology
Colorado State University
Matthew C. Kondratieff
Colorado Parks and Wildlife
Overview

Introduction to transition zone streams
South Boulder Creek study
 - Methods
 - Preliminary results
Conclusions & future work
Transition Zone Streams

- Unique Environments
 - Warmwater and coldwater fishes
 - Extensive human influence

- Vertical Distance
- Horizontal Distance

- Lower ↔ Temperature → Higher
- Larger ↔ Substrate → Smaller
- Steeper ↔ Slope → Flatter

Photo: Roy Winkelman

Photo: Koreen Zelasko
Study Area: South Boulder Creek

- Extensive human effects
 - Agricultural, urban land use
 - Historic dredging, channelization
 - Agricultural diversions
 - Some have rock ramp fishways
 - Efficacy not tested
Study Area: South Boulder Creek

- Species presence controlled by
 - Stream network position
 - Temperature, gradient
 - Channel work and barrier presence
 - Species must tolerate limited floodplain
 - Species must persist in upstream fragment
The Big Question

- Do these rock ramps work??
- Are passage rates comparable to the control site?
- Is the timing of passage similar to the control site?
Methods: a PIT Tag Study of Small Fish

- PIT tag advantages
 - Accurate identification
 - Capture probabilities
- Disadvantages
 - Fish size limitations
- Tests of assumptions
 - Survival and swimming performance of nonsalmonid fishes given PIT tags
Monitoring Fish Passage

- Fish marked with 23-mm half-duplex PIT tags

- Six swim-through antennae maintained for one year
Antenna Placement

- Paired antennae
 - Bracketed the two diversions and the control site
 - Maintained year-round from May 2010 through July 2011

- Detection assumptions
 - Success = detection at paired antennae within one day
 - If paired antennae were not crossed, we assumed fish did not move.
Data Analysis

- Program MARK allows hypothesis testing
 - Current analysis only examines upstream movement
 - Monthly time steps
- Roles of structure, distance, and time analyzed with AIC_c
Hypothesis Testing in MARK

Model	Transition Probabilities
Null | $\Psi_1 = \Psi_2 = \Psi_3 = \Psi_4 = \Psi_5 = \Psi_6$
Distance Only | $\Psi_1 = \Psi_2 = \Psi_3; \Psi_4 = \Psi_5; \Psi_6$
Distance * Structure | $\Psi_1; \Psi_2; \Psi_3; \Psi_4; \Psi_5; \Psi_6$
Time | Transitions would vary seasonally
Preliminary Results: Movement Rates

<table>
<thead>
<tr>
<th>Transition</th>
<th>Number of fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower diversion only</td>
<td>58</td>
</tr>
<tr>
<td>Control reach only</td>
<td>57</td>
</tr>
<tr>
<td>Upper diversion only</td>
<td>15</td>
</tr>
<tr>
<td>Lower diversion & control reach</td>
<td>2</td>
</tr>
<tr>
<td>Upper diversion & control reach</td>
<td>10</td>
</tr>
<tr>
<td>Both diversions</td>
<td>4</td>
</tr>
</tbody>
</table>

- 1,143 fish marked, 660 detected at least once
 - 137 (12%) marked fish moved past antenna pairs
 - Fish of all species moved over both diversions
 - 9 of the 137 made multiple upstream movements
- Movement rates lower over upper (steeper) diversion
Preliminary Results: Seasonal Patterns

- Movement minimal between November and March
- Structure-related differences in seasonal movement?
Implications for Fishway Design

- Fishway channel morphology affects passage success
 - Increased slope may decrease upstream movement
 - Confinement of low-flow channel may decrease upstream movement, even if slope is relatively low
 - May alter seasonal movement patterns
- Little standardization in rock ramp design
 - Few attempts to relate passage success with rock ramp design in Colorado
 - But we have plans...
In the Works...

- Relating rock ramp design to passage success
 - Laboratory studies
 - Measures of velocity profiles, Reynolds stress in unit width rock ramp models
 - Experiments with passage success run with four fish species
 - Longnose dace and longnose sucker included
 - Field studies
 - Combined study with sites on a nearby transition-zone stream
 - LIDAR mapping of structures for detailed hydraulic information
 - Passage rates will be estimated with MARK
Acknowledgements

✦ Funding: Matt Kondratieff (Colorado Parks and Wildlife)
✦ Graduate Committee: Chris Myrick, Kurt Fausch, Kevin Bestgen, and Chris Thornton
✦ City of Boulder: Don D’Amico, Bob Crifasi, Bill Dimond, Will Keeley
✦ Indispensable help with fieldwork and statistics: Jordan Anderson, Mike Avery, Andre Breton, Harry Crockett, Justin Callison, Chris Craft, Paul Doherty, Erin Donnelly, Eric Fetherman, Ryan Fitzpatrick, Brian Fox, Cory Gardner, Eric Gardunio, Adam Herdrich, Adam Hansen, Scott Hoyer, Jake Ivan, Paul Lucaks, Kristin Oles, Dylan Pruitt, Zack Underwood, Jon Wardell
✦ GEI Consultants, Inc.