2010 Cranberry Management Update: Molecular Detection of Parasites in Bumblebees

Anna Morkeski
UMass Amherst, morkeski@psis.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/cranberry_extension

Part of the Horticulture Commons

Recommended Citation
Retrieved from https://scholarworks.umass.edu/cranberry_extension/93

This Article is brought to you for free and open access by the Cranberry Station Outreach and Public Service Activities at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Cranberry Station Extension meetings by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Commercial Pollinators

Updates on bumble bees, migratory honey bees, and CCD

Highlights of CCD research findings

- Heavy focus on:
 - Varroa mite,
 - Pesticides,
 - Queen breeding – resistant strains of honey bees

- Debate over whether migratory bees are less healthy than stationary bees
 - Some work to show negative physiological effects, but may not translate into economic difference
 - Pathogens and parasites are problematic, but not consistently
 - Hard to say whether renters will be economically impacted this year.
RNA interference (RNAi)

• New technology to change the world
 • Very safe method for disease control
 • Highly specific

• Method
 • Gene specific, naturally occurring materials that can be fed to bees to inhibit gene expression of parasites and pathogens

• New Market—First use to be approved by FDA
 – Beeologics has several products to improve pollinator health
 • Viruses
 • Nosema
 • Varroa mite

Bumble bees

• Bumblebees pollinate about 15% of our food crops (valued at $3 billion)
• Close to 50 species in US and Canada
• Commercial rearing was on the rise in the early 1990’s
Initiative to regulate bumble bee importation

- Professor Emeritus Robbin Thorp, an entomologist at UC Davis
- Monitored bumble bee populations
 - Found that two species disappeared
- Hypothesized that commercial rearing had something to do with it

1997: Koppert had outbreak of Nosema bombi that wiped out west coast commercial bumble bee stock
- Biobest suffers also
- USDA Animal Plant Health Inspection Service (APHIS) allowed queens to be shipped to Europe for domestication from 1992-1994
 - Queens were reared alongside a common European species
- Thorp believes North American species acquired an exotic strain of Nosema bombi at this time.
Bumble bee decline

• The bumble bee species that suddenly became rare all belong to the same sub-genus.
 – Used as evidence to suggest that pathogen introduction was cause of decline
 • Purely circumstantial
 • No evidence to show that pathogens in populations of wild bees are the same strains as recovered from Europe
 • Pathogen outbreak in rearing facilities could have been from native queens used for interbreeding

Managed Pollinator CAP (Coordinated Agricultural Project)
A National Research and Extension Initiative to Reverse Pollinator Decline

• Molecular techniques
 – Pathogen detection (PCR)
 – DNA sequence comparison
 – Possible transmission patterns
 • Important to look at more than 1 gene

• Stationary Apiary
• Pesticides
Our Hypothesis

• Techniques currently used don’t detect differences between populations so transmission patterns can’t be discerned.
• We can create tools that provide us with the right data to answer some of those questions
• Same approach can be applied to many pathogens and parasites including:
 • *Nosema bombi*
 • *Crithidia bombi*
 • Tracheal mite
 • Viruses

Methods

• Sampling
• Sample preparation
• Nucleotide purification
• PCR
• Sequencing
Collections

- 2008
- 2009
- Stationary Apiary
 - Honey bee pathogens can potentially infect bumble bees that forage in the same location
- Biobest
- Koppert

2008 Highlights

Crithidia bombi
2009 Highlights

• Made protocol for detecting tracheal mite
• Detected in Koppert bees
• Very rarely detected in wild collected bees
 – Except near where commercial bees are potentially used

2009 Highlights

• *Nosema* only found at 7 of 35 sites tested
• *Crithidia* found at 20 of 35 sites tested
• Koppert
 • *Nosema bombi*
 • Tracheal mite
 • DWV
• Biobest
 – *Crithidia bombi*
Stationary Apiary

- **Minnesota (98 bees)**
 - No *Crithidia bombi*
 - No tracheal mite
 - Only one bee with *Nosema bombi*
 - Only bee of that species in the collection
 - # of bees positive for DWV

Stationary Apiary

- **Maine (37 bees)**
 - 23 of 37 have *Crithidia bombi*
 - 7 of 9 species of bumble bees represented
 - No tracheal mite
 - No *Nosema bombi*
 - No bees positive for DWV

 - 9 different species of bumble bee including 2 very rare species
 - No commercial bumble bees used in the area for approximately 15 years
Invasive bumble bees

• Enter ecosystems and compete with native bees (larger and disease resistant)
 – Direct competition
 • Nesting sites
 • Food resources
 • Mates
 • Reproduction – socially parasitic workers
 – Reproductive disturbance
 • Commercial colonies can reproduce earlier in the season, males try and mate with whatever queens they can find

Bumble bees like:

• Nesting sites:
 – Piles of debris
 • Mulch, rocks, old containers
 – Abandoned rodent homes
 – Flowers (common weeds) when crops aren’t flowering
 • Dandelions
 • Goldenrod
 • Clover