Session C7 - Regenerative design applications to sustain baseflow to enhance fish passage in urban channels

Michael Trumbauer
Biohabitats, Inc., mtrumbauer@biohabitats.com

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Trumbauer, Michael, "Session C7 - Regenerative design applications to sustain baseflow to enhance fish passage in urban channels" (2012). International Conference on Engineering and Ecohydrology for Fish Passage. 11.
http://scholarworks.umass.edu/fishpassage_conference/2012/June7/11

This is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Applications of regenerative design to sustain baseflow in urban channels

Mike Trumbauer, Biohabitats, Inc.

National Conference on Engineering and Ecohydrology for Fish Passage
University of Massachusetts, Amherst, MA
Thursday, June 7, 2012
Outline

- Overview of problems with urban channels
- Discussions of traditional and regenerative design approaches
- Present a regenerative design approach for urban channels
- Review monitoring data
- Discuss other applications for this regenerative design approach
Applications of regenerative design to sustain baseflow in urban channels

Overview – What we know

Disappearing headwaters: patterns of stream burial due to urbanization

Andrew J Elmore* and Sujay S Kaushal

*Corresponding author

Figure 2. Stream burial extent for the Gunpowder–Patapsco watershed in eastern Maryland, expressed as a probability of burial based on the distribution of impervious surfaces (shown in shades of gray) in the vicinity of each stream reach.
RELATIONSHIP BETWEEN IMPERVIOUS COVER AND SURFACE RUNOFF

- Impervious cover in a watershed results in increase surface runoff.
- As little as 10 percent impervious cover in a watershed can result in stream degradation.
Applications of regenerative design to sustain baseflow in urban channels

Overview – What we know

URBAN HYDROGRAPH

A - Pre-Urbanized Condition
B - Post Urbanized Condition
C - Post Urbanized with Stormwater Management

DISCHARGE (cfs)
Disturbance to a stream corridor system typically results in an increasingly negative spiral of degradation to stream structure and function.

- Changes in land and stream corridor use
- Changes in geomorphology and hydrology
- Changes in stream hydraulics
- Changes in function such as habitat, sediment transport and storages
- Changes in population composition and distribution, eutrophication, and lower water table elevations
Applications of regenerative design to sustain baseflow in urban channels

Overview – What we know

Our urban streams are getting hammered!
The timing, delivery and quality of water in our river systems is significantly altered in urban systems
Applications of regenerative design to sustain baseflow in urban channels

Overview – What we know

Impacts to fish passage

- Baseflow decreases
- Runoff increases
- Habitat destabilizes
- Water temperature increases
- Turbidity increases
- Water quality impacted
Applications of regenerative design to sustain baseflow in urban channels

Overview – Traditional approaches

Ecological Restoration:
• reestablish an ecosystem’s structure and function, *usually bringing it back to its original (pre-disturbance) state* ... (National Park Service)
• ...the process of assisting the recovery of an ecosystem that has been degraded, damaged, or destroyed. (Society for Ecological Restoration)
• Typically imposes an ideal channel form consistent with contemporary baselines – sinuous, single threaded
• Focuses on *channel* stability and conveyance of a single or limited range of design discharges
Regenerative Design – Moving Beyond Restoration

A design paradigm where human activities are deeply integrated with living systems, continuously building biological diversity, resilience and community spirit.

In severely degraded urban systems

- Focus on the design of a resilient systems that function to meet the ecological and societal needs.
- These systems may not fit our contemporary baseline.
Decide a living system that is stable in the context of an urban watershed that:

- Sustains baseflow
- Buffers runoff events
- Creates persistent habitat
- Stabilizes temperature
- Decreases turbidity
- Enhances ability of channel to process nutrients
Applications of regenerative design to sustain baseflow in urban channels

Approach – Natural analogs
Applications of regenerative design to sustain baseflow in urban channels

Approach – Cross-section
Applications of regenerative design to sustain baseflow in urban channels

Approach - Profile
Applications of regenerative design to sustain baseflow in urban channels

Approach - Profile
Applications of regenerative design to sustain baseflow in urban channels

Approach – low gradient sites

Set weirs to maintain base flow water surface at or slightly above floodplain elevation.
Applications of regenerative design to sustain baseflow in urban channels

Approach – higher gradient sites

Set weirs to contain design storm and force flood flows overbank.

Before (dry weather)

Photos provided by Underwood & Associates

After (during runoff event)
Applications of regenerative design to sustain baseflow in urban channels

Approach

Adaptive to site constraints

- Small construction footprint
- Ability to save mature trees
Results – Sustains baseflow

Applications of regenerative design to sustain baseflow in urban channels

Source: Palmer and Filoso, 2009

Hydro-Modification
Applications of regenerative design to sustain baseflow in urban channels

Results – Buffers runoff

Source: Solange Filoso, University of Maryland
Applications of regenerative design to sustain baseflow in urban channels

Results – Persistent habitat
Applications of regenerative design to sustain baseflow in urban channels

Results – Stabilizes temperature

Source: Solange Filoso, University of Maryland
Applications of regenerative design to sustain baseflow in urban channels

Results – Decreases turbidity

Source: Solange Filoso, University of Maryland
Applications of regenerative design to sustain baseflow in urban channels

Results – Enhanced ability to process nutrients

Source: Solange Filoso, University of Maryland
Applications of regenerative design to sustain baseflow in urban channels

Other Applications

• Replacing closed storm drain networks and traditional BMPs?

• Dam removal?
Applications of regenerative design to sustain baseflow in urban channels
Other applications – replacement for closed stormdrain systems
Applications of regenerative design to sustain baseflow in urban channels

Other applications – replacement for closed stormdrain systems
Applications of regenerative design to sustain baseflow in urban channels
Other applications – replacement for closed stormdrain systems
Applications of regenerative design to sustain baseflow in urban channels

Other Applications – Dam Removal
Applications of regenerative design to sustain baseflow in urban channels

Alternative Approach – Dam Removal

Photo simulation
Applications of regenerative design to sustain baseflow in urban channels

Other Applications – Dam Removal

Seepage berm
Applications of regenerative design to sustain baseflow in urban channels

Other Applications – Dam Removal

Constructed seepage berm
Applications of regenerative design to sustain baseflow in urban channels

Other Applications – Dam Removal

Vegetated seepage berm
Applications of regenerative design to sustain baseflow in urban channels

Take home message

- Regenerative design solutions may require a shift in our baseline of stream restoration projects, but employ familiar techniques
- This regenerative approach restores natural functions of a stream system
- Working from the top down in an watershed, we expect marked improvements in our receiving waters
Applications of regenerative design to sustain baseflow in urban channels

Thank you…

questions?

Collaborators & sponsors:
- Anne Arundel County DPW, Maryland
- Maryland State Highway Administration
- Underwood & Associates
- University of Maryland