Levels, Differences and ECMs – Principles for Improved Econometric Forecasting

P. Geoffrey Allen¹ and Robert Fildes²

Abstract:

An avalanche of articles has described the testing of a time series for the presence of unit roots. However, economic model builders have disagreed on the value of testing and how best to operationalise the tests. Sometimes the characterization of the series is an end in itself. More often, unit root testing is a preliminary step, followed by cointegration testing, intended to guide final model specification. A third possibility is to specify a general vector autoregression model, then work to a more specific model by sequential testing and the imposition of parameter restrictions to obtain the simplest data-congruent model ‘fit for purpose’. Restrictions could be in the form of cointegrating vectors, though a simple variable deletion strategy could be followed instead. Even where cointegration restrictions are sought, some commentators have questioned the value of unit root and cointegration tests, arguing that restrictions based on theory are at least as effective as those derived from tests with low power. Such a situation is, we argue, unsatisfactory from the point of view of the practitioner. What is needed is a set of principles that limit and define the role of the tacit knowledge of the model builders. In searching for such principles, we enumerate the various possible strategies and argue for the middle ground of using these tests to improve the specification of an initial general vector-autoregression model for the purposes of forecasting. The evidence from published studies supports our argument, though not as strongly as practitioners would wish.

Keywords: unit root test, cointegration test, econometric methods, model specification, tacit knowledge

JEL Classification: C32, C52, C53

¹ P. Geoffrey Allen, Department of Resource Economics
201A Stockbridge Hall, 80 Campus Center Way
University of Massachusetts, Amherst, MA 01002 USA
E: allen@resecon.umass.edu P: 413-545-5715 F: 413-545-5853

² Robert Fildes, Department of Management Science
Lancaster University Management School, Lancaster LA1 4YX UK
E: R.Fildes@lancaster.ac.uk P: +44 (0) 1524-593879 F: +44 (0) 1524-844885
An avalanche of articles has described the testing of a time series for the presence of unit roots. However, economic model builders have disagreed on the value of testing and how best to operationalise the tests. Sometimes the characterization of the series is an end in itself. More often, unit root testing is a preliminary step, followed by cointegration testing, intended to guide final model specification. A third possibility is to specify a general vector autoregression model, then work to a more specific model by sequential testing and the imposition of parameter restrictions to obtain the simplest data-congruent model ‘fit for purpose’. Restrictions could be in the form of cointegrating vectors, though a simple variable deletion strategy could be followed instead. Even where cointegration restrictions are sought, some commentators have questioned the value of unit root and cointegration tests, arguing that restrictions based on theory are at least as effective as those derived from tests with low power. Such a situation is, we argue, unsatisfactory from the point of view of the practitioner. What is needed is a set of principles that limit and define the role of the tacit knowledge of the model builders. In searching for such principles, we enumerate the various possible strategies and argue for the middle ground of using these tests to improve the specification of an initial general vector-autoregression model for the purposes of forecasting. The evidence from published studies supports our argument, though not as strongly as practitioners would wish.

Keywords: unit root test, cointegration test, econometric methods, model specification, tacit knowledge

JEL Classification: C32, C52, C53
Introduction

What role, if any, should unit root and cointegration testing have in a model development strategy designed for forecasting? Ideally, for a practitioner, principles would be available, amounting to cook-book instructions, on how such tests can best be used in model building. Pagan (1987), for example, argues that a methodology “should provide a set of principles to guide work in all its facets” where he interprets ‘methodology’ to mean a coherent collection of inter-related methods together with a philosophical basis for their justification and validation.1 But econometric model building is heavily reliant, not just on the methodology adopted by the modelers, but on the tacit understanding of its implications as well as personal knowledge and skills (Pagan, 1999, p.374). If, within a particular methodological approach, principles were available, then such instructions would limit the requirement for the expert’s tacit (and personal) knowledge. It proves to be quite challenging to state and defend a set of clear and operational principles for econometric modeling (Magnus and Morgan, 1999a, Allen and Fildes, 2001, Kennedy, 2002), a reflection of the considerable ambiguity in the established literature, and there is certainly nothing that attains the completeness of a cook book, even within a particular model building methodology. We examine here only a limited sub-set of issues, those concerned with the utility of the fast-expanding literature on unit-root testing and cointegration analysis. Not all econometric methodologies (Pagan, 1987 describes three which Darnell and Evans, 1990 accept but add in cointegration analysis as a fourth2) embrace unit root and cointegration analysis with equal facility or enthusiasm. However, the general-to-specific modeling approach that Pagan refers to as the LSE Methodology or LSEM (after the London School of Economics where much of the early thinking took place) naturally includes these concepts as potentially contributing to a final model specification.

The aim of this paper is to establish a set of operational principles within the LSEM framework by examining both the recommendations from the literature and the comparative empirical

1 Dharmapala and McAleer (1996) are less concerned with methods and define methodology as the “philosophical basis for the validation and justification of econometric procedures”.

2 It has been argued that cointegration concepts themselves constitute a methodology but as Dharmapala and McAleer (1996) point out, such methods are compatible with various distinct philosophical positions including the three mentioned above.
evidence on forecasting accuracy when alternative models are specified in levels, as error correction models (ECMs) or in differences, and how this is linked to alternative model simplification strategies based on unit-root and cointegration tests. The general-to-specific approach is accepted by many if not most time series econometricians and is in complete contrast to the Box-Jenkins multivariate ARIMA modeling methodology or Zellner’s (2004) SEMTSA approach.

This research complements the limited existing literature, which is primarily univariate (e.g. Stock, 1996; Diebold and Kilian, 2000). In the univariate research, they evaluated a ‘pre-test strategy’ where a series is tested for a unit root before specifying the forecasting model to be estimated. Their conclusions were broadly favourable to a pre-test strategy although they warned that “performance of pretests forecasts would deteriorate substantially in multivariate models” (Stock, 1996) and with more complex lag structures. The question is whether their warnings have substance. The empirical results in the studies we evaluate, as one would expect in multivariate problems using real data, contribute to a more complicated picture than earlier researchers had observed. However, we conclude that introducing the constraints suggested by the pre-testing strategy is helpful to improved forecasting accuracy.

The structure of the paper is as follows. In the first section we argue for the need for explicit rules of modeling that would seldom eradicate the need for modeler expertise but instead establish a core of agreed, empirically effective principles beyond which expert modelers could contribute. The second section introduces the various types of vector autoregression models and how they relate to each other, posing the question as to which of the alternative model structures tend to produce the most accurate forecasts. Potential strategies for building autoregressive models are then described. Appeals to the literature on econometric forecasting reveal no clear advice on modeling strategies as the evidence presented in section four shows. Empirical comparative forecasting accuracy studies that report the performance of two or more specifications are then shown to give qualified support to those strategies that test for unit roots and cointegration. Structural breaks complicate the picture and represent an active area of

3 See for example Leamer’s (1999, p. 150) dismissive remarks.
research. The paper concludes by stating clear operational principles that have both theoretical and empirical support in leading to improved forecasting accuracy. But Pagan’s complaint still holds – the evidence we found is overly limited and sometimes contradictory, which emphasises the need for research centered around establishing operational principles of econometric model building and delineating the more limited role of tacit knowledge.

The need for principles in econometric forecasting

It has long been apparent that “Hardly anyone takes anyone else’s data analyses seriously” (Leamer, 1983). That this remains the case has been fully documented in two experiments in econometric methodology (Magnus and Morgan, 1999a), one element of which was directly concerned with forecasting. Essentially the problem is that different groups of econometricians, given a defined data set, are unlikely to come up with the same model. There are various reasons for this including the methodology adopted, pre-methodological considerations of the theoretical framework adopted and data pre-processing, variability derived from the software and the competence (or otherwise) with which it is employed. But a critical component, even when research groups work within the same broad methodological framework, is the extent to which tacit and personal knowledge affects the operational deployment of the methods subsumed in the methodology (Magnus and Morgan, 1999c, p. 302). While operational differences do not preclude similar forecasts, such was not the result when Magnus and Morgan (1999a) organized 8 forecasting groups to forecast the demand for food. In a second experiment a novice researcher attempted to develop three different models using the principles embodied in Pagan’s three methodologies. This again demonstrated a heavy reliance on tacit knowledge (as well as personal knowledge and skills) and a limited ability to follow the guidance given by the writings of the ‘masters’ in the particular methodologies.

We are unaware of any evidence from other sources that contradicts the Magnus and Morgan conclusion – econometric forecasts and by implication, their comparative accuracy, are heavily influenced by the choice of methodology made by the research group, the explicit principles that define the methodology’s canon, the group’s expertise (by which we mean the transmittable and
explicit knowledge base used) and also personal knowledge (which cannot be communicated). Principles are hard to establish where a complex “combination of circumstances are involved so that no simple, single-circumstance, textbook rule” can be invoked (Magnus and Morgan, 1999b, p. 376). Of course, conditional rules that attempt to identify the circumstances where they apply are not beyond the reach of textbooks (and in fact are at the heart of the Forecasting Principles Project, Armstrong, 2001, p. 3). Nevertheless, the complex interaction among statistical results, economic theory and the particular features of the software used, when applied in new circumstances, for example, would test the most extensive expert system, as Collins (1990) has shown when examining research scientists. More problematically, in econometrics even basic replication using the same detailed procedures has often proved impossible (Dewald et al., 1986).

Whilst the reliance of scientists on personal or tacit knowledge is commonplace, in many if not most fields success is easily measured. Bad or ineffective practices can be expected to be driven out, and poor researchers will find themselves without employment. Econometrics as it applies to forecasting has not often used the existence of outcome feedback to effect an appraisal of the merits of alternative model-building processes (and the modelers behind them). Instead researchers have used theoretical and self-referential statistical arguments as the sole justification for the procedures adopted. In contrast, time-series statisticians have employed so-called forecasting competitions to evaluate both the methods and the tacit knowledge of the statistician forecaster. Forecasting competitions have provided a suitable arena for such appraisals and have mostly focused on the methods themselves (Fildes and Ord, 2002) but in the M-2 Competition, and in the comparisons of personalized ARIMA identification procedures versus automatic procedures, the value added by the forecaster’s personal knowledge has been appraised. Some limited multivariate comparisons have been attempted but are more challenging. (See Fildes and Ord, 2002 and the references therein for a discussion.) When producing an econometric forecast we find we could adopt any of several extensive procedures –ill-defined personalized paths through a forest of data and theory –leading to a multitude of forecast outcomes. Are these alternatives indistinguishable in terms of accuracy (on average) or are there conditions where one outperforms its competitors (as we find in the univariate case)?
The question of the comparative merits of the different procedures has to be defined more rigorously before an answer can be attempted. When model selection (within a given methodology) is heavily dependent on the tacit knowledge of the particular research group employed no comparison is possible. Essentially, the personal knowledge of the research group has to be extracted from the process. What remains is the methodology and the group’s explicable expertise in employing it. It is this latter aspect that we regard as defining the operating principles of the particular methodology.

Testing for unit roots and cointegration is primarily seen as of potential value in model specification. Unfortunately, as Pagan (1999) makes clear, in the context of the LSEM, the “art-to-science ratio is at an uncomfortable level” and this makes it hard to learn from the writings of master practitioners who may of course disagree on the principles defining the methodology amongst themselves. This is further confused as the methodology develops over time. Thus, the practice of model building for the purposes of forecasting requires an explicit set of principles that embody the accepted core of any econometric methodology. In addition, more tentative principles may be found where masters disagree as to their value in the ‘general-to-specific’ approach to model specification. In ideal form, these principles can be embedded in a model-selection computer algorithm in much the same way as personalized identification of ARIMA models has been replaced by programmed identification routines (Hoover and Perez, 1999, and Hendry and Krolzig, 2003a). The development of such programmes allows us to benchmark master practice, identifying just where differences of operational practices appear and therefore the effects (positive or negative) of personal knowledge. The question is how far “tacit knowledge can be turned into [principles] and how such rules can be integrated into practice” (Magnus and Morgan, 1999b, p. 375). Our hope (shared with Pagan, 1999, p. 374) is that the contribution of communicable explicit knowledge to the results of applied work is high.

In the search for principles, which ideally are recipes not reliant on tacit knowledge, we give greater credibility to some types of evidence over others. Since our concern is forecasting accuracy (measured out-of-sample) empirical evidence that examines the comparative performance of alternative approaches to achieving a final model specification are accorded greatest weight. Simulation evidence is also valued but of course usually begs the core question
of the relationship of the simulated world to the experienced world. Theoretical and asymptotic arguments are discounted; while they are invaluable as signposts towards establishing a tentative principle, they do not provide any evidence as to operational effectiveness.

The setting

Consider a particular autoregressive distributed lag equation, an AD(2,2;2), that is with two regressors and two lags on both the dependent and explanatory variables. The equation is from a vector autoregression system in standard form and so does not contain an \(x_t \) term.

\[
y_t = \alpha + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \gamma_1 x_{t-1} + \gamma_2 x_{t-2} + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t
\]

Equation (1) may not have been the original starting point for the analysis. A refinement of the general-to-specific approach is to specify an equation with a large number of lags on each variable, then reduce the lag order on all variables one lag at a time until the set of parameter restrictions becomes binding as evidenced by a significant F-statistic on a likelihood ratio test. Empirical evidence supports this practice. This is a sequence of pretests each usually conducted at the standard 5% significance level. The overall size of the test is not 5% though what it actually is, and equally important, what it should be, remain topics for future research.

Subtract \(y_{t-1} \) from each side of equation (1), then add and subtract on the right hand side \(\beta_2 y_{t-1}, \gamma_2 x_{t-1} \) and \(\delta_2 z_{t-1} \). Also, \(\Delta y_t = y_t - y_{t-1} \), etc. After collecting terms, this gives

\[
\Delta y_t = \alpha + (\beta_1 + \beta_2 - 1) y_{t-1} - \beta_2 \Delta y_{t-1} + (\gamma_1 + \gamma_2) x_{t-1} - \gamma_2 \Delta x_{t-1} + (\delta_1 + \delta_2) z_{t-1} - \delta_2 \Delta z_{t-1} + u_t
\]

The equation has seven parameters to be estimated and the system of three equations has 21. Many different representations are possible. One is achieved by multiplying and dividing \(x_{t-1} \) and \(z_{t-1} \) by \(\beta_1 + \beta_2 - 1 \), then collecting terms

\[
\Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma_2 \Delta x_{t-1} - \delta_2 \Delta z_{t-1} + (\beta_1 + \beta_2 - 1) \left[y_{t-1} - \frac{\gamma_1 + \gamma_2}{1 - \beta_1 - \beta_2} x_{t-1} - \frac{\delta_1 + \delta_2}{1 - \beta_1 - \beta_2} z_{t-1} \right] + u_t
\]
This is the error-correction representation shown in Hendry and Anderson (1977). It is not quite the generalized error-correction form of Banerjee et al. (1990) who showed that, without imposing any restrictions, there are several equivalent representations. They also note that the term in front of the square brackets measures the way the system responds to disequilibrium, which is how the term “error correction” is best interpreted.

A useful reparameterization of equation (3) is

\[
(4) \Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma \Delta x_{t-1} - \delta \Delta z_{t-1} + \phi_{11} \left[y_{t-1} - \frac{\phi_{11} + \phi_{12}}{\phi_{11}} x_{t-1} - \frac{\phi_{11} + \phi_{12} - \phi_{13}}{\phi_{11}} z_{t-1} \right] + u_t
\]

which can be rearranged as

\[
(4a) \Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma \Delta x_{t-1} - \delta \Delta z_{t-1} + \phi_{11} \left[y_{t-1} - x_{t-1} - z_{t-1} \right] + \phi_{12} \left[x_{t-1} - z_{t-1} \right] + \phi_{13} z_{t-1} + u_t
\]

For the system of equations, the \(\{ \phi_{ij} \} \) represent a 3 x 3 matrix of parameters that premultiply the last three groups of variables.

Cointegration implies parameter restrictions and these are usually cross-equation restrictions. For example, the Engel-Granger approach estimates a single cointegrating vector from the regression of \(y_t \) on \(x_t \) and \(z_t \). The method of Johansen links the rank of the \(\Phi \) matrix to the number of identifiable cointegrating vectors. When the matrix is of full rank, there are no restrictions and estimation in levels is appropriate. If the restriction \(k_1 \phi_{11} + k_2 \phi_{12} = \phi_{13} \), \(i = 1,2,3 \), is imposed, the \(\Phi \) matrix has rank two, and there are two identifiable cointegrating vectors. Two additional parameters are needed (the \(k_i \)) but three are eliminated, leaving a total of 20 in the system.

Equation (4a) simplifies to

\[
(5a) \Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma \Delta x_{t-1} - \delta \Delta z_{t-1} + \phi_{11} \left[y_{t-1} - x_{t-1} - (1 - k_1) z_{t-1} \right] + \phi_{12} \left[x_{t-1} - (1 - k_2) z_{t-1} \right] + u_t
\]

Since a linear combination of cointegrating vectors is itself a cointegrating vector, equation (4) can now be written as
\[(5) \Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma_2 \Delta x_{t-1} - \delta_2 \Delta z_{t-1} + \phi_{11} \left[y_{t-1} - \frac{\phi_{12}}{\phi_{11}} x_{t-1} - \frac{(1-k_1)\phi_{11} + (1-k_2)\phi_{12}}{\phi_{11}} z_{t-1} \right] + u_t. \]

The single restriction also imposes one unit root, in this example (by the elimination of \(\phi_{33} \)) on the \(z \) variable. If we had chosen to eliminate \(\phi_{11} \) this is equivalent to \(\beta_1 + \beta_2 - 1 = 0 \) or \(\beta_1 = 1 - \beta_2 \), which by substitution in equation (1) will be seen to factor into a unit root.

If restrictions \(k_1 \phi_{11} = \phi_{12}, k_2 \phi_{11} = \phi_{13}, i = 1,2,3, \) are imposed, the \(\Phi \) matrix has rank one, and there is one identifiable cointegrating vector. Six parameters are eliminated and two added leaving 17 in the system. There are also two unit roots (on \(x \) and \(z \)). Equation (4) then simplifies to

\[(6) \Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma_2 \Delta x_{t-1} - \delta_2 \Delta z_{t-1} + \phi_{11} \left[y_{t-1} - (1-k_1) x_{t-1} - (1+k_1-k_2) z_{t-1} \right] + u_t. \]

Finally, there is the situation where \(\Phi \) is the null vector, with 9 parameter restrictions, leaving 12 in the system and imposing three unit roots. There are no cointegrating vectors and estimation with the variables in first differences is appropriate, as in equation (7)

\[(7) \Delta y_t = \alpha - \beta_2 \Delta y_{t-1} - \gamma_2 \Delta x_{t-1} - \delta_2 \Delta z_{t-1} + u_t. \]

In this setting, a general-to-specific approach starts with a single equation or a system of equations (1), then considers the restrictions imposed in equations (5), (6) and (7) usually as the result of a cointegration test, either the Engle-Granger two-step procedure or the Johansen method.

Model building strategies

Within a broadly defined LSEM, the specification search starts with a very general model compatible with any theoretical model (of the system of interest) deemed appropriate. This initial model is expanded considerably, in particular with reference to earlier research and the inclusion of extensive dynamics. Even then this ‘local data generating process’ can only approximate the complexities of the real economic system; theoretically important variables may be unobservable, unique events may temporarily dominate the stable economic processes being
examined, etc. However, a good local model should show congruence within the sample data. Congruence requires that the model match the data in all measurable respects (homoscedastic disturbances, weakly exogenous conditioning variables, constant parameters, etc., Hendry, 1995, Clements and Hendry, 1998, p. 162). Within the LSEM the art of model specification is “to seek out models that are valid parsimonious restrictions of the general model and that are not redundant in the sense of having an even more parsimonious models nested within them that are also valid restrictions of the completely general model” (Hoover and Perez, 1999).

Given the length of data series generally available for analysis, it will provide only limited guidance about the structure of the good forecasting model. Having started with a consciously over-general model, simplification will need to rely heavily on parameter restrictions, derived from both theory and the data. In addition the model builder must specify the functional form. Data transformations such as forming ratios, powers, logarithms, or differences can all be thought of as imposing parameter restrictions in models non-linear in parameters.

Adequacy of the initial formulation may be assessed by misspecification tests, but this does not guarantee that the good causal model is nested within it if the initial model is not sufficiently general. As Hendry (2002) has argued forcibly, theory alone is an incomplete basis for achieving an operational data-congruent model – such an approach starting with a simple theory based model usually has ad hoc statistical fixes forced upon it. For the general-to-specific modeling strategy to be successful in balancing over-parameterization with mis-specification what is required is a reduction strategy that will lead to a good causal model.

Within the LSEM methodology, there are several strategies for building multivariate equations or systems of equations. Some strategies use unit root and cointegration tests at various points, others do not. The following is one possible taxonomy of the strategies. They are summarized in Figure 1.

1. “Unrestricted” VAR in levels
 Estimate a VAR with all variables in levels and with suitably long lag order (equation 1). Reduce the lag order on all variables by one and test if the restriction is binding (by a likelihood
ratio test). Repeat until the restriction is binding. Test that the final VAR is well specified (based on tests on residuals).

1a. “Restricted” VAR in levels

Reduce the lag order on individual variables in an unrestricted VAR (e.g., by Hsiao’s method, brute force search using AIC selection criterion, GETS (Hendry and Krolzig, 2003b)). Test that the final restricted VAR is well specified (based on tests on residuals)

1b. “Post testing”

Impose parameter restrictions by performing unit root and cointegration tests to determine the number and specification of cointegrating vectors to add to each equation in the system.

2. Estimate a VAR in differences

Difference all variables, then repeat the procedure in strategies 1. and 1a.

3. “No test”

If theory suggests that variables should be cointegrated, impose that specification initially. Similarly, if there are theoretical or historical grounds for expecting a variable to be stationary, such as unemployment rate, there is no reason to difference it and no reason to test for stationarity.

4. Unit root pretest

Perform unit-root tests on the original variables. A testing strategy is required to determine whether drift (intercept) or deterministic trend or both or neither is present in the series, since the power of the test is reduced by including these terms when the process is not actually present and by omitting the terms when they are needed. The strategy is quite complex though a simpler procedure is available, utilizing prior knowledge about the series (Elder and Kennedy, 2001).

4a. Model with stationary variables

Difference the non-stationary variables and estimate a mixed VAR with all variables transformed to stationarity.
4b. Unit root and cointegration pretest

Use the information on non-stationary variables to conduct cointegration tests, impose the parameter restrictions (if any) that follow from the testing, and estimate the resulting error-correction model. This strategy is followed by ModelBuilder (Kurcewicz, 2002).

Conflicting advice from the experts – a controversial principle?

As we argued in the introduction, an important aim in developing a methodology should be that it has an explicit and agreed core on which experts and the supporting evidence agree. Unfortunately, where the use of unit roots and cointegration is concerned “Experts differ in the advice offered for applied work”, (Hamilton, 1994, p. 652). In fact, experts, at least those who write books on the subject, seem unwilling to offer much explicit advice at all. Hendry is an obvious exception (Hendry, 1995, Hendry, 2002). But where experts are willing to commit themselves, let us identify the breadth of their disagreement and see if there are any central principles where agreement is to be found.

Hamilton follows a typical economist’s style, suggesting on the one hand you could estimate in levels (strategy 1 or 1a), but on the other hand you could estimate in differences (since what is an ECM but a VAR in differences with some cointegrating vectors tacked on) (strategy 2), while on the third hand you could pursue a middle ground and do some unit root testing to see how to enter each variable into the model (strategy 4a).

Harvey is one of the strongest proponents of strategy 3 (no tests), an exemplar of forecasters who favor state-space and time-varying-parameter approaches who regularly practice the strategy. He observes (Harvey, 1997, p. 196): “[M]uch of the time, it [unit root testing] is either unnecessary or misleading, or both”. As well as doubting the value of unit root testing, Harvey has little enthusiasm for either vector autoregressions or their modification to embody cointegration restrictions, in part because the modeling strategies (1a, 1b) depend on tests with poor statistical properties. He continues (p. 199):

“However, casting these technical considerations aside, what have economists learnt from fitting such models? The answer is very little. I cannot think of one article which has come
up with a co-integrating relationship which we did not know already from economic theory. Furthermore, when there are two or more co-integrating relationships, they can only be identified by drawing on economic knowledge. All of this could be forgiven if the VECM provided a sensible vehicle for modeling the short run, but it doesn’t because vector autoregressions confound long run and short run effects.”

Harvey is being a little unreasonable here. Most VAR modelers try to pick a set of variables that are connected according to economic theory. It should then be unsurprising if they turn out to be cointegrated. What is sometimes surprising, given the power problems with cointegration tests based on the null of restricted models (i.e. with many unit roots imposed) is that they should sometimes detect the presence of more than one cointegrating vector. Even with economic knowledge, the argument as to why a set of variables should contain several cointegrating vectors can be difficult to make.

Harvey’s remarks quoted above stand in sharp contrast to his earlier views, which appear to recommend strategy 4a:

“Before starting to build a model with explanatory variables, it is advisable to fit a univariate model to the dependent variable. . . . it provides a description of the salient features of the series, the ‘stylized facts’ . . . An initial analysis of the potential explanatory variables may also prove helpful. . . . In particular the order of integration of the variables will be known. It is not difficult to see that, if the model is correctly specified, the order of integration of the dependent variable cannot be less than the order of integration of any explanatory variable. This implies that certain explanatory variables may need to be differenced prior to their inclusion in the model. A further point is that if the order of integration of the dependent variable is greater than that of each of the explanatory variables, a stochastic trend component must be present.” (Harvey, 1990, p.390)

Diebold (1998, p. 254) also seems to be arguing for strategy 4a: “In light of the special properties of series with unit roots, it is sometimes desirable to test for their presence, with an eye towards the desirability of imposing them, by differencing the data, if they seem to be present.” But then has second thoughts as to their worth, leaning towards strategy 3: “Thus,
although unit-root tests are sometimes useful, don’t be fooled into thinking they are the end of the story in regard to the decision of whether to specify models in levels or differences.” (Diebold, 1998, p. 260).

More arguments favoring strategy 4a come from Stock and Watson (2003, pp. 466-467):

“The most reliable way to handle a trend in a series is to transform the series so that it does not have a trend. . . . Even though failure to reject the null hypothesis of a unit root does not mean the series has a unit root, it still can be reasonable to approximate the true autoregressive root as equaling one and therefore to use differences of the series rather than its levels.”

Holden also probably favors strategy 4a, though he creates additional concern by mentioning cointegration:

“When the variables are not stationary . . . [and if] they are not cointegrated the correct approach is to transform the variables to become stationary . . . and then estimate the VAR in the usual way.” (Holden, 1995, p. 164)

Rather weakly, (Maddala and Kim, 1998, p. 146) apparently favor strategy 4b:

“[I]t is important to ask the question (rarely asked): why are we interested in testing for unit roots? Much of this chapter (as is customary) is devoted to the question ‘How do we use unit root tests?’ rather than ‘Why unit root tests?’ . . . One answer is that you need the unit root tests as a prelude to cointegration analysis . . .”

Only strategy 2, ‘Estimate in differences’ seems to have been neglected, though Siegert (1999) (in an attempt to apply the LSEM in modeling the demand for food) adopted this automatically, much to Hendry’s disgust (Hendry, 1999). But Hendry (1997) himself has noted that when there are structural breaks, a model that is robust to breaks will tend to produce better forecasts. Differencing variables imparts robustness, implying that there are conditions when strategy 2 will be the best.
Theoretical justification and simulation evidence

In theory, when a restriction is true, it should be imposed, since one source of estimation error is removed. Consequently, if all variables are I(1) and there are no groups of variables that cointegrate, estimation of a VAR in differences should give a better result and more accurate forecasts than any less restricted model. Where there are groups of variables that cointegrate, restrictions that specify one or more cointegrating vectors should give a better result than either a VAR in differences or a VAR in levels. Imposing restrictions that are not true, for example, estimating an ECM with one cointegrating vector when there should be two or three should give a worse result than estimating the more general model. (When the number of cointegrating vectors is one less than the number of nonstationary variables, this is an equivalent representation to a VAR in levels.)

Conclusions from Monte Carlo simulations

Results of Monte Carlo studies are fairly clear. With a data generating process (DGP) that contains roots close to unity, and “close to” probably means $\geq .97$, a unit root pretest will signal the presence of a unit root and imposing a unit root will improve forecast accuracy (Diebold and Kilian, 2000). The assumed DGP is a trending AR(1) process,

$$y_t - \alpha - \beta t = \rho(y_{t-1} - \alpha - \beta(t-1)) + \varepsilon_t,$$

which for $\rho=1$ (unit root) gives the random walk plus drift model, for $\rho=0$ gives the (deterministic) linear trend model, and for values between gives a mixture of the two models.

Other authors specified a VAR DGP and experimented with imposing several unit roots or near unit roots on the system. Engle and Yoo (1987) and Clements and Hendry (1995) used essentially the same model, a two-variable VAR with one lag and one cointegrating vector imposed. Imposing the cointegration restriction instead of estimation in levels gives better forecasts, at long horizons, though not at shorter (up to six steps ahead). If forecasts of changes are wanted, a VAR in differences will be more accurate than VAR in levels, even when the true model is an ECM (Clements and Hendry, 1995). Reinsel and Ahn (1992) and Lin and Tsay (1996) used a larger VAR, with four variables and two lags and so were able to generate more models. These included: clearly stationary, with two near unit roots, with two unit roots (and
therefore two cointegrating vectors), and with four unit roots. For the clearly stationary model, imposing any unit roots worsens the forecast at any horizon. When the largest characteristic roots are 0.99, imposing four unit roots does not matter much, not the case when the largest roots are 0.95. In the interesting middle case with two unit roots, most accurate forecasts result from imposing the correct number of unit roots. Specifying one extra is relatively harmless, while imposing one fewer is more damaging.

Christoffersen and Diebold (1998) provided an explanation for these findings. The problem with the comparison of a VAR in levels and an ECM is that the ECM imposes both integration (unit roots) and cointegration, while the VAR in levels imposes neither. When the DGP contains unit roots (e.g., cointegrating vectors, differenced variables), and a VAR in levels is estimated, the estimation errors amplify over time. The VAR in levels is a poor forecaster because it fails to impose integration (unit roots).

Results hold generally when DGP is in logarithms and estimation is done (incorrectly) using variables in natural numbers and vice versa. But making the correct transformation (e.g., estimating with variables in logs when DGP is in logs) has a much bigger impact on forecast accuracy than imposing the correct number of unit roots. At least for the one-step ahead forecast they considered, Chao, Corradi and Swanson (2001) found that estimation in differences gives more accurate forecasts than estimation in levels (i.e., imposing too many unit roots) when the DGP is in logs and estimation is in natural numbers. To the extent that the DGP in logs mimics the non-linearities and breaks found in real-world data, this finding supports the idea that over-restricting the model gives it robustness.

There are some limitations to these Monte Carlo studies. The DGP is very simple. Both DGP and estimating equation have a fixed parameter structure (no time variation or structural breaks). And in many of the studies correct lag order is assumed, not tested. Also, unit root and cointegration tests are not performed. The studies answer the question: Given a system with cointegrated variables, are more accurate forecasts achieved by imposing more, the correct number, or fewer than the correct number of restrictions? Except for Diebold and Kilian (2000) they do not answer the question: Will unit root and cointegration tests reliably tell you the correct specification?
Empirical evidence

Despite the voluminous literature on cointegration and unit root testing (growing steadily from 1983 and both peaking, at least temporarily, in 1999 in the Econlit data base at 135 and 106 items respectively) and the accolade of the 2003 Nobel prize, the empirical evidence of its utility is certainly not voluminous. Table 1 includes only studies that compare the out-of-sample performance of models. It excludes comparisons with Bayesian VARs in levels or differences or Bayesian ECMs as falling outside the LSEM methodological framework. A distinction is made between unrestricted and restricted VARs since the difference does appear to matter.

‘Unrestricted’ means that all variables in all equations have the same lag length. The length is not necessarily chosen arbitrarily. In four of the seven studies (23 of 35 series) likelihood ratio tests were used to reduce the lag lengths from the initial choice. Even so, as shown in the first line of Table 1, further simplification leads to better forecasts, supporting strategy 1a.

A model with variables entered in first differences (strategy 2) tends to give more accurate forecasts that the same model with the variables in levels (strategy 1), 20 series versus seven, supporting strategy 2 (“always difference”). Estimation in differences is theoretically correct only when there are no cointegrating vectors.

Estimating a VAR in levels (strategy 1) versus performing a unit-root pretest and following its conclusion (usually to a cointegration test and an ECM) appears to have little impact; the strategies are essentially tied – a surprising result given the emphasis on simplification in the forecasting literature. Especially surprising, and in conflict with findings from simulations studies, is that imposing sufficient restrictions to leave one cointegrating vector gives worse results than leaving the estimation in levels.

On the other hand, the bottom panel of Table 1 is much clearer in supporting the view that specifying a VAR in differences (strategy 2) is a bad approach compared with arriving at a (less restrictive) ECM either from theory or through testing. The VAR in differences comes out best when it should: when there are no cointegrating vectors, and rather surprisingly, in the less restrictive case when there are three.
The effects of structural change

Structural change only has relevance in the context of a particular model. The true DGP does not manifest structural change; the DGP adopted by the modeler and intended to capture the main effects of the true DGP may well display parameter shifts. Standard unit-root tests (which are very simple models) do not deal with breaks in the series but have been adapted to do so. One approach would be to locate the break point and discard the earlier observations, which could make a test with already low power even less powerful. Better would be to use all the data. The (single) break may be treated as known (exogenous) or its location discovered by testing. Multiple breaks can also be specified or tested for. These assumptions place successively more demands on the data. Where a structural break does exist, use of a standard unit-root test (such as the augmented Dickey-Fuller test) increases the probability of detecting a unit root in a series that is actually stationary.

When a break point is specified (in effect, exogenously) a modified form of the ADF test is needed and the critical values of the limiting test statistic are further in the tails than in the standard tables (Perron, 1990). Alternatively, the break point(s) can be treated as endogenous to the data. For data observations $t = 1, \ldots, T$, with break point at $t = m$, one approach is to choose the value of m that gives the least favorable view of the unit root hypothesis. That is, repeat the test for a range of values of m and select the test statistic with smallest (absolute) value. Zivot and Andrews (1992) give critical values. Critical values of the limiting test statistic of this form of the ADF test are even further in the tails than the exogenous break ADF, so it is harder to reject the null of a unit root when the break is considered endogenous. Simulation studies have shown that introduction of trend break functions leads to further reductions in power and greater size distortions (Stock, 1994, p. 2820).

For cointegration testing, similar adaptations have been made. For example, Inoue (1999) extended the Johansen test to cover structural breaks.
Conclusions

Each of the strategies identified have advantages and disadvantages, either theoretical or empirical. The differences arise from the benefits of imposing restrictions when they hold true out-of-sample compared to the costs if they fail.

Compared to other specifications, Strategy 1, an ‘unrestricted VAR in levels’ avoids throwing away information (Sims, 1980). Even if the true model is a VAR in differences, hypothesis tests based on a VAR in levels will have the same asymptotic distribution as if the correct model had been used. However, it may be overparameterized and give a correspondingly bad forecasts.

But the initial unrestricted model, like all the alternative approaches to model specification, is no more immune from failing misspecification tests (wrong choice of variables, poor autoregressive approximation to the true DGP, etc., Harvey, 1997). It also responds slowly to structural breaks. Comparing the unrestricted VAR with its restricted cousin, the simpler model, following similar conclusions from univariate comparisons (Fildes and Ord, 2002), proves the more accurate as Table 1 shows.

The ‘restricted VAR in levels’ specification, strategy 1a, also may ignore data-congruent restrictions. These derive from long-run equilibrium relationships (cointegration) that would lead to alternative, even simpler, model structures through ‘post-testing’ strategy 1b. We found no studies that compared strategies 1 and 1b directly, only comparisons of strategies 1 and ‘pretesting’, 4b. But the empirical evidence of Table 1 offers little support to the view that this leads to a significant improvement in forecasting. However, the ‘post-testing’ strategy rarely leads to a VAR in differences, so this remains the preferred strategy since ECMs prove considerably better than VARs automatically specified in differences (Strategy 2). Strategy 2 also suffers from the problem that if the variables are already stationary, differencing induces a moving average term into the equation (though how important such a mis-specification is when estimating the model is an empirical question). And although Monte Carlo studies have shown that an advantage of specifying a VAR in differences is that it is robust if there are structural breaks, we found no empirical evidence to support the simulation comparisons.
Strategy 3 relies on other means of model specification (such as cointegration relations imposed from theory). A general model that is theoretically consistent allows specification testing for nested special cases (e.g., a time-varying parameter model that allows for fixed parameters as special cases). To support his 1997 argument for this strategy (Harvey, 1997, p.197) Harvey focuses on the near impossibility of identifying the appropriate order of integration. Empirical evidence, summarized in Allen and Fildes (2001), suggests that time-varying parameter or state-space models developed with this strategy forecast better than models developed by other methods.

There is however a cost to adding in this additional level of generality. Allowing response parameters to vary over observations increases the chances for misspecification (Judge et al., 1985, p. 815) and an even larger set of parameters needs to be considered. Consequently, while the state-space models permit some non-linearities, which might be an important feature, they typically use a small set of variables and simple dynamics. Fixed-parameter models derived from them are too simple and easily beaten by the more general varying-parameter model. We found no comparisons of forecasts from a model developed by conventional general-to-specific methods (strategies 1b or 4b) with those from a state-space model.

The final arm of Figure 1 relies on pre-tests. The use of unit root pre-tests to ensure a model specified in stationary variables has the single advantage of achieving a constrained model. But the tests have low power and might lead to erroneous conclusions about the existence of unit roots and cointegrating vectors, resulting in a misspecified over-constrained model. Nor are the constraints necessarily appropriate (consider an ECM model with one cointegrating vector).

Assembling the evidence presented so far suggests that a strategy of never testing for unit roots and cointegration is inferior to testing, even though the tests have admittedly low power. It does not much matter whether unit-root and cointegration testing is conducted on the variables before a model is specified or as part of the reduction of an acceptable general model. What does matter is that the unit-root pretest not be used to establish a set of I(0) variables, by differencing if necessary, and these variables be entered into a VAR. This is a form of restricted VAR that
should have desirable properties, since all variables are in stationary form, but fails to make use of the valuable information contained in a cointegrating relationship.

Ideally, tests will give information on the correct number and form of restrictions, so that unit-root and cointegration restrictions imposed on the final model are those that best describe the DGP. According to simulation evidence, imposing one more restriction than the correct number is harmless. This finding is likely to hold with real data where structural breaks are commonplace and imposing additional unit root restrictions will therefore make the final model more robust to breaks.

To conclude, the primary aim of this paper has been to establish some clear principles of model specification for the purposes of forecasting within the LSE methodological framework. The empirical evidence we have collected has shown convincingly that strategies to sequentially reduce the general model in levels to a constrained model with either ECM or differenced variables is beneficial and leads to improved forecasting accuracy. The results are generally in accord to the predictions derived from cointegration theory. Within the LSE methodology we can therefore claim to have established a principle that forecasters should build into their modeling: start with a general model, restrict the lag lengths and use unit root and cointegration tests (strategies 1b and 4b).

The principle just established is unambiguous but conflicts with much of the advice given in the text books. Nor does it appear to be uniformly true. Further investigation should therefore lead towards a clearer specification of the conditions under which it holds. The empirical evidence is not overwhelming and, in some circumstances, is in conflict with the theoretical predictions, e.g. where an ECM is outperformed by a model specified in levels, even though a cointegrating vector has been detected. Of course the number of studies involved are small and the results stochastic. Structural breaks we know to be a factor that leads to the better performance of differenced model specifications and this may explain the observed results. As the evidence slowly accumulates on these strategies, with more careful testing of structural breaks, both in and out-of-sample, as an automatic aspect of specification testing, we can expect this anomaly to be clarified.
A subsidiary aspect of the paper has been to examine the role of algorithmic versus tacit knowledge when specifying forecasting models. Kennedy (2002) cites the complaints of several well-known econometricians: we teach what we know, not the applied econometrics needed for analysis of messy data; combining often controversial theories with evidence is difficult; the profession does not appear to value empirical work very highly, relative to theoretical econometrics work; writing down rules to guide data analysis (and when to ignore them) is hard, because so much of data analysis is subjective, subtle and a tacit skill. This unsatisfactory state of affairs is changing, if slowly. Computer algorithms, or expert systems, such as GETS and ModelBuilder require explicit rules. Tinkering with the computer code and measuring the effect on outcomes shows the impact of well-defined rules. Perhaps a parallel situation is in the estimation of ARIMA models. As proposed by Box and Jenkins, considerable experience, judgment and time were called for to identify, estimate and evaluate such models. Today, computer algorithms routinely produce models as good as or better than the experts, in a fraction of the time. Econometric analysis is considerably more involved, but the same progression should be possible.

The analysis of a wide range of empirical evidence carefully coded has shown its worth, when interpreted through econometric theory. Potential anomalies have been identified suggesting areas of future research. Such an approach has the potential for driving downward Pagan’s “uncomfortably high art-to-science ratio”.

References

Figure 1: Model-building strategies

1. Test for lag restrictions variable by variable
2. Specify VAR in levels, test over lag orders (“unrestricted”)
3. Specify VAR in differences
4. Use other means of specification (cointegration relations from theory), avoid specification tests
4a. Difference each variable for stationarity then specify model
4b. Perform cointegration test (requires set of variables only, not a model)

Yes

No

Unit root pretest?
Table 1: Number of series for which one strategy is better than another, by out-of-sample forecast accuracy of the resulting models, measured as RMSE, lead times not specified but mostly one step ahead.

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Number of cointegrating vectors found or assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Firstbest</td>
</tr>
<tr>
<td>Unrestricted vs Restricted lag order (1 vs 1a)</td>
<td></td>
</tr>
<tr>
<td>Levels vs Differences (1 vs 2)</td>
<td>0</td>
</tr>
<tr>
<td>VAR in levels vs ECM from theory (1 vs 3)</td>
<td>1</td>
</tr>
<tr>
<td>Unrestricted VAR in levels vs Pretest (1 vs 4b)</td>
<td>2</td>
</tr>
<tr>
<td>Restricted VAR in levels vs Pretest (1a vs 4b)</td>
<td>3</td>
</tr>
<tr>
<td>Total 1 vs other strategies</td>
<td>2</td>
</tr>
<tr>
<td>VAR in differences vs ECM from theory (2 vs 3)</td>
<td>2</td>
</tr>
<tr>
<td>VAR in differences vs Pretest (2 vs 4b)</td>
<td>8</td>
</tr>
<tr>
<td>Total 2 vs other</td>
<td>8</td>
</tr>
</tbody>
</table>

Note: Where the number in the “total” column exceeds the sum of the preceding pair of columns, the difference is the number of series where the strategies two strategies are equally accurate.

Simulation evidence excluded. The studies that comprise these results and their individual codings are listed in Appendix A available at http://www.umass.edu/resec/
Appendix A

Table A1 Sources for pairwise comparison of estimating different vector autoregression models

<table>
<thead>
<tr>
<th>Strategies (number of cointegrating vectors found or assumed)</th>
<th>Authors, year and number of series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestricted vs restricted lag order (1 vs 1a)</td>
<td>Bessler & Babula 1987 (1,3), Fanchon & Wendell 1992 (0,3,*), Funke 1990 (0,5), Kaylen 1988 (2,1), Kling & Bessler 1985 (1,3;0,5;2,1), Liu et al. 1994 (0,3), Park 1990 (1,3)</td>
</tr>
<tr>
<td>Variables in levels vs differenced (1 vs 2)</td>
<td>Lin & Tsay 1996 (0,4), Robertson & Tallman 2001 (0,3), Zapata & Garcia, 1990 (0,1)</td>
</tr>
<tr>
<td>(No CV)</td>
<td>Clements & Hendry 1995 (1,1), Joutz et al. 1995 (3,1), Lin & Tsay 1996 (0,1), Metin & Muradoglu 2000 (1,0), Sarantis & Stewart 1995 (0,3)</td>
</tr>
<tr>
<td>(1 CV)</td>
<td>Lin & Tsay 1996 (0,1)</td>
</tr>
<tr>
<td>(2 CV)</td>
<td>Hoffman & Rasche 1996 (1,5) [same for variables expressed in levels or in differences], Lin & Tsay 1996 (1,0)</td>
</tr>
<tr>
<td>(3 CV)</td>
<td></td>
</tr>
<tr>
<td>VAR in levels vs ECM from theory (1 vs 3)</td>
<td>Metin & Muradoglu 2000 (0,1), Romilly et al. 2001 (1,1), Sarantis & Stewart 1995 (0,3)</td>
</tr>
<tr>
<td>(1 CV)</td>
<td></td>
</tr>
<tr>
<td>Unrestricted VAR in levels vs No model (1 vs 4b)</td>
<td>Lin & Tsay 1996 (1,1,2*), Zapata & Garcia 1990 (1,0)</td>
</tr>
<tr>
<td>(No CV)</td>
<td>Bessler & Fuller 1993 (12,0), Bradley & Lumpkin 1992 (0,1), Brown et al. 1997 (0,1), Clements & Hendry 1995 (0,2), Fanchon & Wendell 1990 (2,1,*), Joutz et al. 1995 (3,1), Lin & Tsay 1996 (0,1)</td>
</tr>
<tr>
<td>(1 CV)</td>
<td>Lin & Tsay 1996 (0,1), Shoesmith 1995 (1,5)</td>
</tr>
<tr>
<td>(2 CV)</td>
<td>Hall et al. 1992 (0,4), Hoffman & Rasche 1996 (2,4), Lin & Tsay 1996 (1,0)</td>
</tr>
<tr>
<td>(3 CV)</td>
<td></td>
</tr>
<tr>
<td>Restricted VAR in levels vs No model (1a vs 4b)</td>
<td>Fanchon & Wendell 1990 (3,0,*),</td>
</tr>
<tr>
<td>(1 CV)</td>
<td></td>
</tr>
<tr>
<td>VAR in differences vs ECM from theory (2 vs 3)</td>
<td>Copeland & Wang 2000 (1,0), Metin & Muradoglu 2000 (0,1), Sarantis & Stewart 1995 (1,2), Tse 1995 (0,1)</td>
</tr>
<tr>
<td>(1 CV)</td>
<td>Eitrheim et al. 1999 (12,31),</td>
</tr>
</tbody>
</table>
VAR in differences vs No model (2 vs 4b)

<table>
<thead>
<tr>
<th>CV</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>LeSage 1990a (0,1), LeSage 1990b (4,0), Lin & Tsay 1996 (3,1), Zapata & Garcia, 1990 (1,0)</td>
</tr>
<tr>
<td>1</td>
<td>Bessler & Covey 1991 (1,0), Clements & Hendry 1995 (0,1,*), Joutz et al. 1995 (1,3), LeSage 1990a (1,1), LeSage 1990b (1,3), Lin & Tsay 1996 (0,1), Löf & Franses 2001 (2,1), Shoesmith 1992 (2,0;0,2;1,1;0,2), Tegene & Kuchler 1994 (0,3),</td>
</tr>
<tr>
<td>2</td>
<td>Lin & Tsay 1996 (0,1)</td>
</tr>
<tr>
<td>3</td>
<td>Hoffman & Rasche 1996 (5,1), Lin & Tsay 1996 (1,0)</td>
</tr>
</tbody>
</table>

Sources for cell entries shown below using the following layout: Author year (number of series where first method was better, number of series where second method was better). Semicolon separates different VAR models in the same study. Out-of-sample forecast RMSE, lead times not specified, mostly one step ahead. * indicates that the methods were equally accurate for one series, 2* indicates for two series, etc.

Appendix References

