Jun 25th, 1:50 PM - 2:10 PM

Concurrent Sessions C: Fish Screening at Water Diversions II - Red Bluff Fish Passage Project - Design & Construction Challenges for 2,500 CFS Fish Screen

Jeffrey P. Sutton
Tehama Colusa Canal, Authority General Manager

Robert Gatton
CH2M HILL

Peter Rude
CH2M HILL

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Sutton, Jeffrey P.; Gatton, Robert; and Rude, Peter, "Concurrent Sessions C: Fish Screening at Water Diversions II - Red Bluff Fish Passage Project - Design & Construction Challenges for 2,500 CFS Fish Screen" (2013). _International Conference on Engineering and Ecohydrology for Fish Passage_. 43.

https://scholarworks.umass.edu/fishpassage_conference/2013/June25/43

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Project Location
TCCA

Background

- 17 member water districts
- 150,000 acres of high-value cropland
- Annual production $250M
 - almonds
 - pistachios
 - prunes
 - olives
 - grapes
 - rice & other annual crops
- 3 wildlife refuges
The Problem

- RBDD impedes fish passage for ESA species:
 - Spring-run
 - Winter-run
 - Steelhead trout
 - Green sturgeon

- ESA concerns have reduced “gates-in” operation
Gate Operations at Red Bluff Diversion Dam

<table>
<thead>
<tr>
<th>Year</th>
<th>JAN</th>
<th>FEB</th>
<th>MAR</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEP</th>
<th>OCT</th>
<th>NOV</th>
<th>DEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1966</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
</tbody>
</table>

Gates In | Gates Out
Gates Up for Flood Flow and Fish Passage
Project Challenges

- Second largest diversion on Sacramento River (2,500 cfs)
- Improved fish protection and fish passage past the RBDD
- Reduce fish exposure time to fish screen
- Flexible and reliable water supply and delivery infrastructure for TCCA
- Construction on former wood products industrial site
- Federal Judge ruling Gates up Sept 2011
Pre-Project Overview (Spring 2010)
Site Excavation Facts

- Non-Native Fill Material Excavation – 277,000 CY (includes Pactiv Landfill, Forebay, Pumping Plant, and Switchyard)
- Stockpiled into 1,000 CY, tested for over 250 analytes, most sent offsite for disposal
- Native Material Excavation – 300,000 CY (includes Pumping Plant and Switchyard)
Pactiv Landfill (Oct. 2010)
GEN III Stockpiling and Testing Non-Native Material (Jan. 2011)
Canal Facts

- Approximately 2,100 ft of open canal comprising sheet pile walls and reinforced concrete floor
- Design Flow Rate: 2,500 cfs = 74 mcs
- Dimensions: 36 ft (w) x 28.5 ft (h)
- Excavation: 38,000 CY of native material
Canal Lean Concrete Placement (Dec. 2010)
Red Bank Creek Siphon Facts

- 900 ft siphon comprised of three cast-in-place reinforced concrete discharge barrels to convey water beneath Red Bank Creek
- Design Flow Rate: 2,500 cfs
- Dimensions: (3) 10 ft (w) x 9 ft (h)
- Excavation: 49,000 CY of native material
Siphon Concrete Pour (Nov. 2010)
Siphon - 1 of 3 barrels (Dec. 2011)
Fish Screen Structure Facts

- 1,118 ft long, positive barrier flat-plate fish screen structure
- 60 fish screen bays
- 7 fish refuge bays
- 4 automated screen cleaning mechanisms
- Sediment removal water jetting system
- Volume of reinforced concrete – 9,300 CY
Fish Refuge Physical Model

- Reclamation’s Technical Service Center (TSC) constructed a 1:1 scale physical model of the fish refuges to optimize the design. Critical design aspects obtained from the model include:
 - Depth of refuge
 - Blocking panel configuration. Found to reduce velocities in refuge and create uniform flow conditions
 - Optimal width of refuge bay/area
- Fish species evaluated in model: Chinook, Sturgeon, and Trout.
Fish Refuge Physical Model
TCCA Fish Refuge

- Four full-height refuge bays equally spaced along the fish screen structure.
- Three additional refuge areas in blowout panels.
- Horizontal refuge bars: ¾-inch SST spaced 1¾ inches on center.
- UHMW blocking panels.
- Acrylic viewing window can be installed in full-height refuge bays to observe refuge area.
- Field research upcoming to document fish refuge use by juveniles.
TCCA Refuge Panel

8'-7"

10'-6"

3/4" REFUGE BAR @ 1 3/4"

BLOCKING PANEL

ELEVATION
Installing Fish Screen Cofferdam (Oct. 2010)
Fish Screen Structure (Jan. 2011)
Fish Screen Structure (March 2012)

Tuning Baffles

Sediment Jetting Nozzles
Fishery Agencies Inspect Fish Screen Structure (April 2012)
Fish Screen Coffer Dam Removal (May 2012)
Project Operational
June 1, 2012
Questions