Jun 26th, 1:30 PM - 1:50 PM

Concurrent Sessions A: Emerging Engineering Solutions for Downstream Fish Passage at Big Dams - A Portable Floating Fish Collector - New Approach to Flexible, Small-Scale Downstream Fish Passage

Michael C. Garello
HDR Engineering, Inc.

Michael J. McGowan
HDR Engineering, Inc.

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

https://scholarworks.umass.edu/fishpassage_conference/2013/June26/9
A Portable Floating Fish Collector – New Approach to Flexible, Small-Scale Downstream Passage

Michael Garello, P.E. and Michael McGowan, P.E.
International Conference on Engineering and Ecohydrology for Fish Passage
Session A5 - June 26, 2013
USACE Team Members

- Project Manager- Chris Budai
- Project Biologist- Dave Griffiths
- Technical Lead- Kristy Fortuny, PE
- Hydraulics Lead- Liza Roy, PE
Design Development Team

- HDR Engineering Inc.
- Art Anderson and Associates
- iTen
- Allegiance Associates
- US Cost
Introduction and Background

- Focus on downstream passage effectiveness in the Pacific Northwest
 - Passing fish through hydropower turbines
 - Conveying fish through surface flow bypass outlets
 - Collecting fish in surface oriented collectors
- Existing projects (USACE, 2007)
 - Surface Spill (11)
 - High/Low Flow Sluiceways (6)
 - Forebay collectors (5)
- Effectiveness still inconclusive or inadequate on some facilities
- Data collection and facility evaluation ongoing
- There is a need for new, innovative, and economical means of improving downstream passage effectiveness
Overall Project Purpose

• Gather information on behavior and collection efficiency of tagged and run of river fish
• Proof of concept prior to installation of full-scale system
• Use at multiple reservoirs within the Willamette River basin
Target Performance and Design Criteria

- Intended design life 10 to 15 years
- Use of “off-the-shelf” components
- Accommodate large pool fluctuations and various reservoir depths
- Shore power with provisions for future stand-alone power source
- Deployable and portable
- Transportable to other reservoirs
- Economical
Max Pool 1,690 ft
Min Pool 1,516 ft
Fluctuation 160 ft
INLET SCREENS

FLUME

FISH GRADER AND HOLDING POOL

HOPPER

LEVELING PUMP

ATTRACTION

FLOW PUMPS
Collector Operation
Additional Challenges
Shore Power
Additional Challenges
Anchorage and Drift
Hydraulic Design Tool Development

- Spread sheet w/ visual basic
- Gradually varied-flow equations
- Simultaneously solves for two water surface profiles
- Provides depth, velocity, dewatering, over length of collector
- Flexibility for a number of collector dimensions and operating scenarios
Anticipated Performance

Run – D3

Water Surfaces

<table>
<thead>
<tr>
<th>Opening Size (in)</th>
<th>Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Div 1: Station 31-36)</td>
<td>0.955</td>
</tr>
<tr>
<td>(Div 2: Station 36-41)</td>
<td>0.853</td>
</tr>
<tr>
<td>(Div 3: Station 41-46)</td>
<td>0.680</td>
</tr>
<tr>
<td>(Div 4: Station 46-51)</td>
<td><0.56</td>
</tr>
</tbody>
</table>

GENERAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stern Pump Flow, Q_{STERN}</td>
<td>100.00</td>
<td>CFS</td>
</tr>
<tr>
<td>Leveling Pump Flow, Q_{LEV}</td>
<td>14.00</td>
<td>CFS</td>
</tr>
<tr>
<td>Constrictor Plate Opening Setting, H_{C}</td>
<td>1.67</td>
<td>ft</td>
</tr>
</tbody>
</table>

ANALYSIS CONTROL BOX

| Initial WS EL. Guess | 8.25 | ft |

POROSITY ADJUSTMENTS

K1 (Div 1: Station 31-36)	110	non-dim
K2 (Div 2: Station 36-41)	150	non-dim
K3 (Div 3: Station 41.000000)	215	non-dim
K4 (Div 4: Station 46.000000)	313	non-dim

Flow Convergence: -0.0188
WS Convergence: -0.008

Control Point (CP) Location where Flows through Critical

<table>
<thead>
<tr>
<th>Selection</th>
<th>Analysis Types</th>
<th>CP Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constriction</td>
<td>Constriction</td>
<td></td>
</tr>
<tr>
<td>Throat Inlet</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical Depth

- At end of the Constrictor Plates: 1.297
- Non-Constricted Throat Sections: 1.150
- Assigned depth upstream of CP: 1.307
- Assigned depth downstream of CP: 1.100

Notional Water Line (NWL)

| Elev. (ft) | 9.44 |

Diagram

- NWL Elevation Datum
- WS HC Section 4
- WS HC Section 3
- WS HC Section 2
- WS Throat
- WS HC Section 1
- WSCOL Datum

- Deck
- Collector
- Throat
- Exit
- Stern Pumps
Anticipated Performance

Run – D3

GENERAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stern Pump Flow, Q_{STERN}</td>
<td>100.00</td>
<td>CFS</td>
</tr>
<tr>
<td>Leveling Pump Flow, Q_{LEV}</td>
<td>24.00</td>
<td>CFS</td>
</tr>
<tr>
<td>Constrictor Plate Opening Setting</td>
<td>1.67</td>
<td>ft</td>
</tr>
</tbody>
</table>

ANALYSIS CONTROL BOX

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial WS El. Guess</td>
<td>8.25</td>
<td>ft</td>
</tr>
</tbody>
</table>

POROSITY ADJUSTMENTS

<table>
<thead>
<tr>
<th>K</th>
<th>Div</th>
<th>station</th>
<th>Value</th>
<th>non-dim</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1</td>
<td>Div 1:</td>
<td>31-36</td>
<td>110</td>
<td>non-dim</td>
</tr>
<tr>
<td>K2</td>
<td>Div 2:</td>
<td>36-41.00</td>
<td>150</td>
<td>non-dim</td>
</tr>
<tr>
<td>K3</td>
<td>Div 3:</td>
<td>41.0000</td>
<td>215</td>
<td>non-dim</td>
</tr>
<tr>
<td>K4</td>
<td>Div 4:</td>
<td>46.0000</td>
<td>313</td>
<td>non-dim</td>
</tr>
</tbody>
</table>

Flow Convergence

- WS Convergence: -0.008
- WS Convergence: -0.0185

Critical Depth

- At end of Constrictor Plates: 1.297
- Assigned depth upstream of CP: 1.307
- Assigned depth downstream of CP: 1.090

Notional Water Line (NWL)

<table>
<thead>
<tr>
<th>Elev. (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.44</td>
</tr>
</tbody>
</table>

![Graph](image-url)

- Average Collector Velocity
- Average HC Velocity
- Screen Approach Vel
- Average Throat Velocity
- Acceleration of Flow
Project Timeline

- Design Completed October 2012
- Fabrication currently underway
- Commissioning last quarter in 2013
Conclusions

• Intended design life 10 to 15 years
• Use of “off-the-shelf” components
• Accommodate large pool fluctuations and various reservoir depths
• Shore power with provisions for future stand-alone power source
• Deployable and portable
• Transportable to other reservoirs
• Economical
A Portable Floating Fish Collector – New Approach to Flexible, Small-Scale Downstream Passage