Concurrent Sessions B: Integrating Fish Physiology or Behavior With Passage - A Predictive Model of Swimming Performance for Small-Bodied Fishes

Ashley D. Ficke
Colorado State University

Christopher A. Myrick
Colorado State University

Matthew C. Kondratieff
Colorado Parks and Wildlife

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
Can We Predict Swimming Performance of Small-Bodied Fishes?

Ashley D. Ficke - PhD Candidate
Dr. Chris A. Myrick, PhD
Matt Kondratieff
Tyler Swarr

1Dept. of Fish, Wildlife, and Conservation Biology, Colorado State University
2Colorado Parks and Wildlife
Overview

- Quick introduction to western Great Plains streams
- Stream alterations in these systems
 - Fragmentation
- Improving fish passage for small, nonsalmonid fishes
 - Predictive swimming model
 - Review of swimming abilities
 - Field study of existing rock ramps
 - Lab study using experimental rock ramps

Photo: Matt Kondratieff
Western Great Plains Streams

- Many semi-arid systems
 - Some have mountain headwaters
 - Large inter- and intra-annual flow variability
 - Large range of physicochemical conditions
- Many of these streams are highly fragmented
Western Great Plains Fishes

- Many small-bodied fishes
 - Adult TL ~ 100 – 150 mm
- Movement essential part of life history for most species

Photo: Jon Wardell
Photo: Shai Kamin
Photo: Matt Kondratieff

http://outdoornebraska.ne.gov
Facilitating Fish Passage

- Typically accomplished with fishways
- Multiple fishway types
- Incorporating swimming data into design is ideal
- Many questions remain
 - Swimming ability quantified for few species
 - Collection of swimming ability data requires expensive, long-term studies
Facilitating Fish Passage: Goal

- Develop a predictive model of swimming performance for small-bodied North American fishes.
 - Predictor variables = simple to collect
 - Combination of shape and physiological measurements
Methods: A Predictive Swimming Model

- Aerobic and sprint swimming as a function of...
- Morphology
 - Landmark Analyses
- Physiology
 - Hematocrit, Hb⁺
 - Percent red muscle
 - Percent white muscle
Dependent Variables: Swimming Abilities

- Loligo Model 32 & Model 90 swim tunnels
 - Constant acceleration tests (CATs)
 - Start velocity = 11 cm/s
 - Increments = 5 cm/s every 5 s
- Measurements
 - Aerobic ability = gait transition speed
 - Sprint ability = speed at “exhaustion”
Independent Variables: Morphology

- **Total length**
- **Landmark analysis**
 - 15 landmarks per fish
 - Procrustes analysis provides “typical shape” for species
 - PCA converts \((x, y)\) coordinates to scores
 - Scores can be used in statistical analyses
Independent Variables: Morphology
Independent Variables: Physiology

- Hematocrit
 - Hematocrit tubes centrifuged
 - Packed cell volume read
- Hemoglobin concentration
 - Quantichrom Hemoglobin Assay
- Red and white muscle
 - Percent @ 50% of TL
 - Preserved & stained cross sections analyzed with ArcGIS
Integrated Analysis

- Boosted regression trees
 - Strong predictive power

- Two analyses
 - Aerobic swimming ability
 - Sprint swimming ability

- Independent variables for both analyses:
 - Total length
 - Average body shape scores (PCA scores) for each species
 - Hematocrit
 - Hemoglobin concentration
 - Red and white muscle percentages
Results: Swimming Performance

[Graph showing swimming performance data for different species]
Results: Morphology
Effects on Swimming Performance

- **Aerobic**
 - Total length
 - Red Muscle
 - PC1 and PC2

- **Sprint**
 - PC1
 - Total length
 - HCT and Hb+ (Hemoglobin)
 - PC3
Partition for Aerobic

Length
- RedMuscle50<0.7265093266
- RedMuscle50>0.7265093266
- TL<75
- TL>75

Musculature
- RedMuscle50<0.062859362
- RedMuscle50>0.062859362

Shape
- PC1<0.000921832
- PC1>0.000921832

LogWorth Difference
- Mean
- Std Dev

RSquare
- 0.321

RMSE
- 11.246575

N
- 269

Number of Splits
- 5

Imputes
- 13

AICc
- 2070.81
Effects on Swimming Performance

- **Aerobic**
 - Total length
 - Red Muscle
 - PC1 and PC2

- **Sprint**
 - PC1
 - Total length
 - HCT and Hb$^+$
 - PC3
Effects on Sprint Performance

- Anaerobic
 - PC1
 - Total length
 - HCT and Hb
 - PC3

Effects on Sprint Performance

- Aerobic
 - Total length
 - Red muscle
 - PC1 and PC2

Hematology

- HCT<0.5416666667
 - Count 45
 - LogWorth Difference 1.1368124
 - Mean 62.977778
 - Std Dev 14.019431
- PC1>0.062859362
 - Count 215
 - LogWorth Difference 6.2468667
 - Mean 90.030233
 - Std Dev 22.088401

Length

- TL<95
 - Count 188
 - LogWorth Difference 1.9872
 - Mean 87.199468
 - Std Dev 20.748658
- PC3>0.022796916
 - Count 171
 - LogWorth Difference 20.731988
 - Mean 85.72807
 - Std Dev 14.452508

Shape

- PC3<0.022796916
 - Count 17
 - LogWorth Difference 14.452508
 - Mean 102
 - Std Dev 14.452508

Candidates
Results: Morphology
Conclusions

- Different factors may affect aerobic and anaerobic ability
 - We remain confident that we can produce a predictive model
- Integrating physiology and morphology important
- Important but unmeasured...
 - Behaviors (station-holding, searching)
 - Fin area and morphology (to be continued...)
- Estimating ability of untested fish will improve fishway efficacy
Acknowledgements

- Funding: M. Kondratieff (Colorado Parks and Wildlife); Dr. K. Wilson (Fish, Wildlife, and Conservation Biology); S. Krantz, U.S. Fish and Wildlife (Great Plains Prairie Fish Habitat Partnership); Colorado Trout Unlimited; and J. and M. Peters

- Graduate Committee: Dr. C. Myrick, Dr. K. Bestgen, Dr. K. Fausch, and Dr. C. Thornton

- GEI Consultants, Inc.