Jun 26th, 11:00 AM - 11:20 AM

Concurrent Sessions B: Fish Physiology and Fishway Passage Success - Olfactory Gene Regulation in a Regulated River: Understanding the Effects of Altered Flow Patterns on Sockeye Salmon Homing

Bett N.
Department of Forest and Conservation Sciences, University of British Columbia

Hinch S.
Department of Forest and Conservation Sciences, University of British Columbia

Miller K.
Pacific Biological Station, Fisheries and Oceans Canada

Cooke S.
Institute of Environmental Science and Department of Biology, Carleton University

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

N., Bett; S., Hinch; K., Miller; and S., Cooke, "Concurrent Sessions B: Fish Physiology and Fishway Passage Success - Olfactory Gene Regulation in a Regulated River: Understanding the Effects of Altered Flow Patterns on Sockeye Salmon Homing" (2013).
International Conference on Engineering and Ecohydrology for Fish Passage. 31.
http://scholarworks.umass.edu/fishpassage_conference/2013/June26/31

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Sex-specific differences in adult salmon migration and passage success

Scott G. Hinch

Department of Forest and Conservation Sciences,
University of British Columbia, Vancouver, British Columbia
Outline of Presentation

1. Background
2. An emerging pattern – high female mortality during stressful migratory conditions
3. Potential physiological mechanisms
4. Implications for passage assessments
Graduate students / Postdocs

Collaborators / Colleagues

- Steve Cooke, David Patterson, Tony Farrell

Thanks to those who collected the data and generated ideas....
Fraser River and its tributaries

- Fraser River flows 1,375 km
- drains 1/3rd of British Columbia
- is 4th largest river solely within Canada
- largest producer of salmon in Canada
- no dams on mainstem, a few of the small tributaries have dams
- Fraser River is the largest producer of sockeye in Canada
- second most numerically abundant Pacific salmon species
- most commercially valuable salmon and fastest growing recreational fishery in Canada
- important component of First Nations culture, economy and environment
over past 15 years we have studied the behaviour, physiology and movement of homeward migrating adults from several populations.

- telemetry and laboratory investigations
Radio tagging and freshwater tracking studies

- Tagging sites
- Detection stations

Pacific Ocean

B.C.
Purse seining used for ocean tagging
Biosampling

- blood sample to examine range of plasma ions, and osmoregulatory, reproductive and stress hormones

Cooke et al. 2005 Journal of Fish Biology. 67: 1-17
Biosampling

- tissue removed from first gill arch to assess ionoregulatory function and for functional genomics assessments
- muscle plug taken for functional genomics
- adipose fin tissue taken for DNA stock assessment
Biosampling

- Gross somatic energy assessed by microwave energy meter
Transmitter insertion

- Transmitters normally inserted down throat into stomach on migrating adults
Survival rates (+/- CI) to natal rivers of fish with transmitters in relation to encountered Fraser River temperature 2002-2007, n=1500

Key findings
- for most stocks, 18°C is a tipping point
- thermal migration survival is stock-specific

Martins et al. 2011 Global Change Biology 17: 99-114
Where are the fish dying?

- Late Shuswap sockeye (n=437: 100 females, 84 males, 253 ?)
Fish die in upper river, when thermally stressed

Survival rate (83 km)

Overall survival: 0.92±0.05

Fish die in upper river, when thermally stressed

Female: 0.86±0.11 a
Male: 0.95±0.07 a

Female: 0.50±0.11 b
Male: 0.79±0.09 b

Do migrating females suffer high mortality when stressed and approaching spawning areas?

- most anadromous fish telemetry studies don’t assess sex as part of ocean or riverine migration tagging studies

- many do not focus on just final stages of migration

- migration conditions not extremely ‘stressful’ in some years

- is this phenomenon part of a larger pattern that is not well understood?
Energy Depletion Experiments – captivity can be stressful

- Early Stuart sockeye captured 1 week into their 4 week migration and held in tanks at cool temperatures for 25 days till maturation

Mortality
- female 50%, male 25%

Energy Depletion Experiments – captivity can be stressful

- Weaver sockeye captured en-route to spawning grounds and held in fast or slow raceways at cool temperatures for 21 days till maturation

Mortality
- female 50%, male 10%

Thermal Stress Experiments

- Harrison sockeye captured near spawning grounds, 4 weeks from full maturation, held in tanks at high (19 C) or low (13 C) temperatures for 10 days

Mortality
- 13 C female 80%, male 50%
- 19 C female 100%, male 53%

Thermal Stress Experiment and Field Study

- Weaver sockeye captured near spawning grounds 3 weeks from maturation, held in tanks at either warm (18 C) or cool (10 C) temperatures for 3 weeks

Mortality
- 10 C female 24%, male 14%
- 18 C female 44%, male 22%

Survivors tagged, released 80 km downriver of capture site, and tracked to spawning grounds
Thermal Stress Experiment and Field Study

- mortality low for both temperature treatments until they enter final 10 km

Mortality
- 10 C females and males 30%
- 18 C females 90%, males 45%
Fishway passage studies

- Seton Dam Fishway, southern BC
Fishway passage studies

- Gates Creek sockeye captured at fishway, tagged, released downstream, tracked to upstream spawning area (**1 week further migration**)

Mortality

- **2012** – females 62%, males 29% (Burnett et al. in prep – 4th presentation from now)
Hypotheses for high female mortality during challenging migrations

- energy depletion
- ion imbalance (acidosis)
- immuno-compromised (increasing cortisol, advanced maturation)
- metabolic / cardiac collapse
Swim tunnels used for metabolic and cardiac performance
Aerobic scope & changing temperature

Aerobic scope = O_2 available for activities other than routine and is temperature-dependant.
Females have a 20-25% lower metabolic scope

• Also, sexually mature female salmon have ~13% smaller hearts than males

Working Hypothesis
• poorer cardiac performance

The ability to move oxygenated blood around the body is reduced in migrating females, and is further reduced later in the migration.

This will cause reductions in:

• aerobic scope (swim performance)
• stress tolerance
• disease resistance
• thermal tolerance

• cardiac performance further reduced by diversions of blood to gonads to maintain and grow eggs as females mature

Why would females die at higher levels than males?
Conclusions

• high female mortality evident across several populations of sockeye

• lab and field studies

• common elements were that the studies examined fish during the final few weeks of their life

• migrants exposed to challenging conditions: captivity, high temperature, capture-release fishing (data not shown), fishway passage

Take Home Point
• highlights the importance of knowing fish sex for passage assessments and effectiveness monitoring (helps understand ‘motivation’ and life-stage risk)

Food for Thought
• how general is this phenomenon across other species and systems?
Thanks to our supporting organizations

Natural Sciences and Engineering Research Council of Canada
Genome British Columbia
Fisheries and Oceans Canada
Pacific Salmon Commission
Pacific Salmon Foundation
The University of British Columbia
Carleton University
LGL Limited
Kintama Limited
J.O. Thomas and Associates
Chehalis First Nations
Canadian Wildlife Federation
David Suzuki Foundation
Watershed Watch Salmon Society
Pacific Fisheries Resource Conservation Council