Concurrent Sessions A: Design of Nature-Like Fishways for Fish Passage; Bypass Channels and Rock Ramps

Jessica Pica
Milone & MacBroom, Inc.

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Pica, Jessica, "Concurrent Sessions A: Design of Nature-Like Fishways for Fish Passage; Bypass Channels and Rock Ramps" (2013). International Conference on Engineering and Ecohydrology for Fish Passage. 38.
http://scholarworks.umass.edu/fishpassage_conference/2013/June26/38

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Introduction to Nature-Like Fishways for Fish Passage
Bypass Channels and Rock Ramps
Jessica Pica, M.S., E.I.T.
University of Massachusetts Amherst

- Master of Science in Civil Engineering with Specialization in Fish Passage Engineering
Presentation Outline

- What is a Nature-Like Fishway?
- Identifying Critical Characteristics of Candidate Sites
- Review of Key Design Elements
- Explore Technical and Non-Technical Project Challenges
- Touch on Some Real-Life Examples
What is a Nature-Like Fishway?

- Mechanism for Fish Passage When a Dam/Barrier Must Remain
- Alternative to Conventional Fish Ladders
- Replicates a Natural Stream

- Two Primary Types
 - Bypass Channel
 - Rock Ramp
Design Variables

- Flow Velocity & Water Depth
 - Species Dependent – Swimming Speeds and Body Size Requirements
 - Design for and Consider Varying Flow Conditions
 - Use of Hydraulic Modeling as an Assessment Tool
 - Scour and Erosion
Fishway Entrance
- Located at Tailwater
- Amount and Range of Flow
- Location in Relation to Dam
- Can Fish Easily Find It?

Fishway Exit
- Located at Headwater
- Away from Dam/Spillway Overflow
Design Variables

- **Upstream Flow Control**
 - Consider Upstream Water Users
 - Upstream Flood Control Structures
 - Water Supply Reservoirs
 - Water Diversions to Other Watersheds

- **Variable River Stages**
 - Will There be Enough Water in the Fishway at Various Flows?
Design Variables

- **Vertical Rise**
 - Is the Dam Height too High for a Nature-Like Fishway?
 - Maximum Slope Considerations
 - Land Area?
 - River Length?
 - Consider Downstream Infrastructure (Bridges, Culverts, etc.)
Velocity – Depth – Slope Relationships

- Channel Gradient
- Profile Pattern
- Channel Width
- Manning Roughness
- Materials
- “In-Channel” Features
Project Challenges

- Type and Condition of Dam (Safety)
- Site Limitations
- Upstream and Downstream Issues
- Project Permitting
- Alternatives Analysis
- Social Issues
 - Historic
 - Archaeological
 - Land Use
 - Recreation
 - Aesthetics
 - Economics
Example: Peconic River – Riverhead, NY

Challenges
- Municipal Park
- Multiple Clients
- Financial Limitations
- Complicated Hydraulics

Solutions
- Rock Ramp
- Made Use of Secondary Spillway
- No Impacts to Park Layout
- Coastal America Partnership Award
- Very Successful!
Example: Tingue Dam – Seymour, CT

Challenges
- Historic Resources
- State Highway
- High Flow Rates
- Extensive Bedrock
- Significant Height

Solutions
- Dam Remains
- Bypass Channel
- Better Access to Bridge Abutments
- Incorporates Public Access/Park
- All Permits Issued – Construction Underway
Example: Swan Lake Dam—East Patchogue, NY

- **Challenges**
 - Recreational Park
 - Financial Limitations
 - Adjacent to Roadway
 - Awkward Entrance Hydraulics
 - Needs to Serve as Auxiliary Spillway

- **Solutions**
 - Bypass Channel
 - Aesthetic Feature in Park
 - Cost Within Financial Constraints
 - Armored to Protect Against Scour
Example: Cannondale – Wilton, CT

- **Challenges**
 - Private Land Owner
 - Residential/Suburban Setting
 - Second Dam Located Downstream

- **Solutions**
 - Bypass Channel
 - Maintains Aesthetic
 - Freshwater Fish Using Bypass
 - Low Cost Solution
Example: Heishman – Carlisle, PA

- **Challenges**
 - Flour Mill with High Cultural Resource Sensitivity
 - Aesthetic Sensitivity

- **Solutions**
 - Bypass Channel
 - Maintains Picturesque Setting
 - Innovative Step Pool Hydraulics
 - Low Head Allows Low Gradient Channel with High Success
 - Low Cost Alternative
Example: Bronx Zoo – Bronx, NY

- **Challenges**
 - Tourist Destination
 - High Visibility
 - Extensive Bedrock
 - Dam Safety Issues/Constraints

- **Solutions**
 - Integrated Bypass Channel
 - Hybrid Fishway
 - Downstream Boulder Diversion Weirs
 - Unique Aesthetic Treatment
 - Will Serve as an Educational Component
Thanks!

Contact me at:

jessicap@miloneandmacbroom.com