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ABSTRACT 

EVALUATING IRT- AND CTT- BASED METHODS OF  

ESTIMATING CLASSIFICATION CONSISTENCY AND ACCURACY INDICES 

FROM SINGLE ADMINISTRATIONS 

 

SEPTEMBER 2011 

 

NINA DENG, B.A., SHANGHAI INTERNATIONAL STUDIES UNIVERSITY 

 

M.A., SHANGHAI INTERNATIONAL STUDIES UNIVERSITY 

 

Ed.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Ronald K. Hambleton 

 

Three decision consistency and accuracy (DC/DA) methods, the Livingston and 

Lewis (LL) method, LEE method, and the Hambleton and Han (HH) method, were 

evaluated. The purposes of the study were: (1) to evaluate the accuracy and robustness 

of these methods, especially when their assumptions were not well satisfied, (2) to 

investigate the “true” DC/DA indices in various conditions, and (3) to assess the impact 

of choice of reliability estimate on the LL method. 

Four simulation studies were conducted: Study 1 looked at various test lengths. 

Study 2 focused on local item dependency (LID). Study 3 checked the consequences of 

IRT model-data misfit and Study 4 checked the impact of using different scoring 

metrics. Finally, a real data study was conducted where no advantages were given to 

any models or assumptions. 

The results showed that the factors of LID and model misfit had a negative impact 

on “true” DA index, and made all selected methods over-estimate DA index. On the 
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contrary, the DC estimates had minimal impacts from the above factors, although the 

LL method had poorer estimates in short tests and the LEE and HH methods were less 

robust to tests with a high level of LID. 

Comparing the selected methods, the LEE and HH methods had nearly identical 

results across all conditions, while the HH method had more flexibility in complex 

scoring metrics. The LL method was found sensitive to the choice of test reliability 

estimate. The LL method with Cronbach’s alpha consistently underestimated DC 

estimates while LL with stratified alpha functioned noticeably better with smaller bias 

and more robustness in various conditions. 

Lastly it is hoped to make the software be available soon to permit the wider use of 

the HH method. The other methods in the study are already well supported by easy to 

use software. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

In many testing contexts, it is necessary to classify examinees into mutually 

exclusive performance categories based on a set of predetermined standards (e.g., state 

testing programs such as the MCAS). The standards are defined as a series of cut scores 

obtained from a standard setting process. The classification of performance provides an 

easy and convenient way to describe and to interpret examinees’ performance in terms 

of proficiency levels, and is used a lot in both educational and licensure exams. The 

simplest example is the binary classification of mastery/non-mastery or pass/fail 

decision by applying one cut score. Multiple classifications classify examinees into 

more than two categories, for example, needs improvement, basic, proficient, and 

advanced. 

These assessments with proficiency classifications often have high-stakes 

consequences, such as, graduation/license requirements and school accountability. The 

No Child Left Behind (NCLB) Act (2002) has required statewide standardized 

achievement tests to report examinees’ performance in terms of ordered proficiency 

levels and so does the National Assessment of Educational Progress (NAEP) program, 

which resulted in a high demand of assessments reporting proficiency categories and, in 

turn had a great impact on students, teachers and schools (Li, 2006). 

Along with the increased demands of assessments classifying examinees into 
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ordered proficiency categories, the classical approaches to reliability estimates may no 

longer serve the purpose quite well. People realize that the consistency of classifications 

rather than the consistency of test scores is of more concern. The Standards for 

Educational and Psychological Testing (AERA, APA, & NCME, 1999, p.35) calls that 

“when a test or combination of measures is used to make categorical decisions, 

estimates should be provided of the percentage of examinees who would be classified in 

the same way on two applications of the procedure …” Two commonly used decision 

consistency and accuracy (DC/DA) indices, agreement index P (Hambleton & Novick, 

1973) and coefficient kappa (Swaminathan, Hambleton, & Algina, 1974), were 

proposed. A number of procedures have been developed to estimate the indices based 

on a single administration since double test administrations are almost never practical to 

carry out.  

Popular single administration methods include the procedures proposed by Huynh 

(1976), Subkoviak (1976), Hanson and Brennan (1990), and Livingston and Lewis 

(1995). However, the above methods were all developed in the framework of classical 

test theory (CTT) and most were based on the assumption that the items are 

dichotomously scored and equally weighted (except for, Livingston & Lewis, 1995).  

Lord and Novick (1968) were among the first to introduce the model-based 

measurement and started a quiet but profound revolution in test theory and practices. 

Item response theory (IRT) has become the mainstream in the current educational 

measurement field and is widely used in standardized tests in many aspects such as test 
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development, item calibration, test scoring, equating, standard setting, etc.  

1.2. Statement of the Problem 

IRT is a powerful technique that an increasing number of test developers are 

employing in various aspects of test development and analyses (for applications of IRT, 

see Hambleton, Swaminathan, & Rogers, 1991). Nevertheless, many current popular 

decision consistency and accuracy methods (e.g., the work by Huynh, Subkoviak, 

Livingston and Lewis) were developed in the framework of CTT. These methods, 

particularly the most popular method developed by Livingston and Lewis (1995), are 

widely used. It is not uncommon in many testing programs to observe that all test 

analyses are carried out in an IRT framework but the classification consistency/accuracy 

indices are calculated in the framework of CTT. This inconsistency justifies a further 

investigation of the performance of CTT-based methods for the data fitting IRT models. 

Besides, some IRT-based methods were developed more recently (see the work by Lee, 

Rudner, and Hambleton and Han). These methods are new and deserve further study. 

Lastly, all the methods were built upon certain assumptions and therefore it is of great 

interest to check their robustness to the conditions where their assumptions are not well 

met. 

1.3. Purpose of the Study 

The purpose of the study was to investigate the performance of one CTT-based 

method, the LL method, and two IRT-based methods, the LEE, and HH methods, in 

estimating classification consistency and accuracy indices in various test conditions 
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through a series of simulation studies and a real data study. The simulation studies were 

used as the main study because various test conditions could be conveniently created 

and the “true” values of DC/DA indices were known. The real data study was carried 

out as a supplemental approach in which the methods were evaluated using the two 

forms of a real test, where no advantages were given to any models or assumptions. 

Specifically, the following research questions were addressed in this study:  

(1) How accurate are the Livingston and Lewis (LL) method, Lee (LEE) and 

Hambleton and Han (HH) methods with simulated data in the IRT framework? And, 

how do they function with real data? 

(2) How robust are the selected methods to non-standard conditions, including 

short test lengths, local item dependence, IRT model misfit, and composite scoring? 

What are the “true” DC/DA indices in those non-standard conditions? 

(3) Since the LL method is sensitive to reliability estimates, what is the impact if 

alternative choices of reliability estimates are used in the LL method? 

1.4. Organization of the Thesis 

This thesis begins with the problem and purposes of the study, followed by Chapter 

2, which provides an introduction of the DC/DA concepts, and a comprehensive review 

of CTT- and IRT-based methods of estimating DC/DA in the literature, including the 

models, assumptions, and a detailed review for each of the major methods. Then a series 

of simulation studies are presented in Chapter 3, which consist of four independent 

studies, investigating the robustness of the selected methods in conditions of (1) various 
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test lengths, (2) local item dependency, (3) IRT model misfit, and (4) different scoring 

metrics, separately. Lastly, the selected methods are evaluated using real data in Chapter 

4. This thesis concludes with a summary of the results, and a discussion of their 

implications for researchers and practitioners. 

  



 

6 

CHAPTER 2 

LITERATURE REVIEW 

This chapter begins with a description of classical reliability coefficient estimates 

and limitations, followed by an introduction of the concept and indices for decision 

consistency and decision accuracy, denoted as DC and DA, respectively. Next, a review 

of current CTT- and IRT-based methods of calculating DC and DA indices is provided, 

including models, assumptions, procedures, and relevant research. The chapter 

concludes with a discussion about the DC/DA statistics. 

2.1. Classical Reliability Estimates 

2.1.1. Definition of Classical Test Theory and Reliability Coefficient 

When a test is administrated, it is for certain that test users want the test results to 

be replicated if the test were given to the same group of individuals repeatedly (with 

little change in true scores between). The desired property of consistent test scores is 

referred as reliability. The concept of reliability begins with the concern of precision of 

a measurement, which is not a sufficient but a necessary condition for a test to be valid. 

Strictly speaking, no test is completely free of errors. The observed scores from the 

repeated administrations of the same test won’t be identical. However, the less the 

variance of these scores are, the more confidence we have with the scores. On the other 

side, if the observed scores fluctuate greatly from one administration to another, the 

validity of the test scores problematic. The consistency of results is desired for physical 

measurement too. If a box is weighted repeatedly and the scale reads quite different 
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numbers each time, obviously the scale is not accurate and you won’t want to rely on it. 

Likewise, it is desirable to know whether a test could produce comparable scores in its 

repeated administrations, so that the precision of the scores as well as their usage can be 

fairly justified. 

Unlike the measures in the physical world, the tests measuring people’s mental 

abilities cannot be administrated to the same individuals again and again. The test 

scores won’t keep the same due to some reasons such as memorization, practice effect, 

shift of ability, etc., even though the test itself is constructed satisfactorily reliable. Thus 

the reliability of a mental test needs to be estimated indirectly.  

The classical test theory initiated by Charles Spearman is one of the most 

significant inventions and provides theory and statistical model for estimating test 

reliability. It begins with the assumption that an observed score on a test (X) may be 

modeled as the sum of the examinee’s “true score” (T) and an error component (E), 

expressed as X T E= + . The examinee’s true score can be interpreted as the average of 

observed scores if the test could be administrated to the examinee for an infinite number 

of times. The error component is specific to the particular observed score in the realized 

administration, which makes it different from the examinee’s true score. Given the 

definitions of true and error scores, the reliability coefficient '
XX

ρ , which is defined as 

the correlation between scores on repeated administrations of a test or parallel tests, can 

be mathematically expressed as the ratio of true score variance to the observed score 

variance 
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'

2 2

2 2
1T E

XX

X X

σ σ
ρ

σ σ
= = −  

Therefore 'XX
ρ can be interpreted as the proportion of observed score variance that can 

be attributed to the true score variance.  

Besides for the correlation between observed scores on repeated administration 

tests, another important question is, what is the relationship between the examinee’s 

observed score and true score? The reliability index XTρ  is defined as the correlation 

coefficient between the observed and true scores of a test. 

Mathematically, '

T
XT XX

X

σ
ρ ρ

σ
= = , and 

XTρ  sets the upper limit for test validity, 

'XY
ρ . Therefore the test validity would be questionable if the reliability coefficient 

'XX
ρ is low, since then the reliability index XTρ  cannot be high.  

2.1.2 Methods of Calculating the Reliability Coefficient 

Given the definition that the reliability coefficient is the correlation between scores 

of repeated administrations of a test or two parallel tests, a straightforward way to 

calculate the reliability is to have a single group of examinees taking the same form 

twice, or taking two parallel forms of a test, and to calculate the Pearson product 

moment correlation coefficient. However, this approach is not usually realistic and 

could hardly give an accurate estimate either. First, strictly parallel forms are rare in 

reality. Secondly, the time period between test-retest plays a crucial role and affects the 

reliability estimates.  

To overcome the drawbacks of the two-administration procedure, a  
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single-administration reliability estimate was proposed and has been widely applied. By 

using a single-administration approach, only one test administration to a single group of 

examinees is required. Different from the earlier definition, the reliability coefficient 

here is essentially the internal consistency coefficient, because we would calculate the 

correlation between separately scored parts of the single test. It is claimed that the 

specific items in the test is only part of a larger content domain, and it is reasonable to 

assume that the generalization of examinee’s performance on the specific items to the 

larger content domain can be estimated by evaluating how consistently the examinee 

perform across different items in the single form. The single-administration reliability 

estimates have been used widely and many are reported as routinely today. Below are 

the descriptions of several popular methods. 

Split-half methods require that the single test needs to be divided into halves before 

reliability is estimated. Two estimates are available based on the split-half procedure. 

The first one is called corrected split-half reliability estimate, which applies the 

Spearman-Brown formula to obtain the corrected estimate of the reliability coefficient 

for the original full-length test based on correlation coefficient between the two 

half-tests. The second one called split-half reliability estimate, also called 

Guttman’s/Rulon’s formula, uses the scores of the two half-tests to calculate the 

reliability estimate for the original full-length test, without applying the 

Spearman-Brown formula. The latter one is easy to calculate, and provides a lower 

bound estimate for reliability (equal to reliability when the two half-tests are parallel). 
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The shortcoming of the split-half procedure is that there are numerous ways to split the 

test, therefore, it cannot provide a unique estimate for the reliability coefficient. 

In the 1930s and 1940s, a second class of methods analyzing the 

variance-covariance structure of the item responses emerged and was rapidly developed. 

The coefficient alpha, also known as Cronbach’s alpha, for polytomous items and 

Kuder Richardson 20 for binary items are most well-known and widely used today. The 

coefficient alpha can be used in any situation where the reliability of a composite is 

estimated. Most commonly it treats each item as a component of the test. If it treats the 

test consist of two half-tests, it is identical to the Guttman’s/Rulon’s formula. Cronbach 

(1951) illustrated the relationship between the coefficient alpha and split-half estimates: 

coefficient alpha is the average of all possible split-half estimates using 

Guttman’s/Rulon’s formula. It is worthy to point out that the coefficient alpha is based 

on the assumption of all the components in the test being perfectly parallel, which is 

unlikely to happen. Therefore coefficient alpha provides a lower bound of the reliability 

coefficient rather than a direct estimate. For example, if an alpha value of 0.8 is 

obtained, it is safe to say that at least 80% of the observed score variance is due to true 

score variance.  

Kuder Richardson 20 (KR-20) is a special case of coefficient alpha when all the 

items are dichotomously scored. KR-21 was derived assuming that all the binary items 

are equally difficult. Therefore KR-21 is in turn a special case of KR-20. KR-21 is 

systematically lower than KR-20 and gives a lower bound and a quick estimate of 
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KR-20, when the more complicated computation is unlikely to be available.  

As discussed above, coefficient alpha provides an accurate estimate for reliability 

when all the items in the test are perfectly parallel, which, however, is rare. In most 

cases, coefficient alpha provides a lower bound for reliability and underestimates the 

reliability coefficient. Stratified coefficient alpha was thus proposed as a more 

appropriate estimate by treating items in different content or cognitive categories as 

separate subtests (Rajaratnam, Cronbach, & Gleser, 1965) when calculating the 

reliability estimate. It is argued that when the test consists of items from distinct content 

categories, stratified alpha provides a substantially more accurate estimate of reliability 

(Cronbach et al. 1965) and nearly always higher in value. 

2.1.3. Limitations of Classical Reliability Estimates 

Glaser (1963) pointed out that the scores on an achievement test could provide two 

kinds of information. One kind is the relative position of the examinee’s score in terms 

of the score distribution. The second kind is the degree to which the examinee has 

mastered the goals of instruction. The tests can be categorized as norm-referenced tests 

(NRT) or criterion-referenced tests (CRT) based on how the scores are interpreted. The 

different purposes and usage of the tests also determine how the test scores are reported, 

including raw score, scaled score, percentile, proportion of correct answers, etc. One of 

the most popular ways in reporting is to classify the examinees into multiple mastery 

levels. The classification of proficiency levels is widely used in CRT in which the 

examinee’s proficiency level is determined by applying cut scores in relation to a 
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well-defined domain of knowledge and skills, which is usually derived from a standard 

setting procedure. The examinees are usually classified into two (passing and failing) or 

more proficiency levels (e.g., failing, basic, proficient, and advanced). Classification of 

proficiency is widely used in many testing programs such as state achievement tests and 

credentialing exams. The classification can also be used in NRT if the decision about 

examinees is made in terms of their position in the score distribution; however, the 

application is rare.  

With the increasing use of proficiency classification, test users may be concerned 

with some questions such as, what is the expected proportion of examinees who would 

be classified consistently upon retesting? What is the probability that an examinee with 

true score above a cut score would be classified as a non-master? The accuracy and 

consistency of classifications, rather than the scores, become the central concern in such 

circumstances. This concern becomes even more compelling with more consequences 

associated with the decision made in terms of examinees’ proficiency levels. For 

example, the decision may be used (1) to evaluate teachers and schools’ performance, (2) 

to determine students’ ability to graduate, or (3) to decide whether a certificate is issued 

or not. The classical reliability estimate, which was developed based on continuous test 

scores, is no longer appropriate to assess the classification consistency. New techniques 

for assessing reliability are needed. 

2.2. Concepts and Indices of DC/DA 

As has been discussed, the accuracy and consistency of classifications are of the 



 

13 

most interest when the tests are used to make classifications about examinee 

performance. The concepts of DC and DA were proposed as the indices to describe the 

reliability and validity of classifications (see Hambleton & Novick, 1973). Decision 

consistency refers to, when the test is used to make categorical decisions, the extent to 

which the classifications agree based on two independent administrations of the test (or 

two parallel forms of the test). Decision accuracy refers to the extent to which the actual 

classifications based on observed scores agree with the “true” classification based on 

true scores. Analogously, decision consistency concerns the reliability of the 

classifications, while decision accuracy concerns the validity of the classifications. It is 

worthy to point out that the value of DA is higher than that of DC. This is the case 

because the calculation of DC involves two sets of observed scores, while in calculating 

DA, only one set of observed scores is involved, the other set is true scores, which, are 

free of measurement error.  

2.2.1. Agreement Indices P and Kappa 

Hambleton and Novick (1973) proposed the agreement index P as a measure of 

decision consistency. This notion not only underlies the concept of DC, but also 

introduced a large body of literature since then devoted to formulation and estimation of 

reliability coefficient for proficiency classifications. Agreement index P is defined as 

the proportion of examinees consistently classified on alternative administrations of a 

test. It can be expressed as 
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=
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where jjp  is the proportion of examinees consistently classified into the j
th

 category 

across the two administrations of the test, and J is the number of performance categories. 

For example, suppose a single cut score divides the examinees into passing and failing 

groups (J=2), and the rows and columns in Figure 2.1 represent the two administrations 

of the same test. Let 00p  represent the proportion of examinees classified as failing in 

both measures, and 11p  the proportion of examinees classified as passing in both 

measures. The index of decision consistency is P = 00p + 11p . If Administration 1 in 

Figure 1 is replaced with one set of observed scores, and Administration 2 is replaced 

with the true scores (or another criterion measure), P then becomes the decision 

accuracy index. In addition, 10p  represents the proportion of examinees who are true 

masters but classified as failing, and 01p represents the proportion of examinees who 

are true non-masters but classified as passing. It is common for 
10p  to be termed as the 

false negative error rate, and 
01p  termed as the false positive error rate. Both indices 

reflect the classification inconsistency and are commonly reported in the evaluation of 

decision accuracy. Based on the purposes and uses of specific tests, one index is often 

of more concern than the other. 

Some suggestions have been made to transform P to a more interpretable measure 

of decision consistency, or at least a measure that is less influenced by chance 

agreement. One of the most popular ones was made by Swaminathan, Hambleton, and 



 

15 

Algina (1974), who suggested the use of Cohen’s kappa (Cohen, 1960) to correct for 

chance consistency, 

1

c
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P p
k
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−
=

−
, where  

. .
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c j j

j

p p p
=

=∑  

where k is the kappa coefficient, cp is chance agreement, J is the number of categories, 

and 
.jp  and 

. j
p  are the marginal proportions of examinees falling in the jth

 category 

in the two administrations, respectively. 
cp stands for the decision consistency 

expected by chance, that is, when the two administrations are statistically independent. 

And kappa measures the test’s contribution to the overall decision consistency beyond 

which is expected by chance. k has a value between 0 and 1. A value of 0 means that the 

decisions are as consistent as the decisions based on two tests which are statistically 

independent; a value of 1 means that the decisions are as consistent as the decisions 

based on two tests which have perfect agreement. Later Agresti (2002) describes a 

refinement of P in which larger discrepancies between the two administrations indicate 

more lack of agreement. 

Someone argued that cp  was actually the proportion of consistency expected 

from the group consisting of particular marginal frequencies (Subkoviak, 1980). It is 

therefore suggested to report kappa together with the information of the particular 

testing situation, including the marginal proportions, test length, score variability, 

location of cut scores, etc.           
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2.2.2. Alternative Agreement Indices 

The above described agreement indices P and kappa that reflect the decision 

consistency while treating all the false classifications equally seriously. That is, the 

misclassifications which are far above or below the cut score are not treated more 

serious than the ones which are near the cut score. The type of indices was referred as 

threshold loss agreement indices in the literature. Alternatively, some coefficients have 

been developed to reflect the various degrees of misclassifications. The second type was 

referred as squared-error loss agreement indices in the literature (Berk, 1980; Traub & 

Rowley, 1980).  Major coefficients of the second kind include Livingston’s k
2 

and 

Brennan and Kane’s ( )λΦ . Both indices formulate the decision consistency depending 

on two factors: the test score generalizability and the difference between the mean score 

and the cut score.  

Livingston (1972) defined k2 as: 

2 2
2

2 2 2

( )

( )

T X

T X E

C
k

C

σ µ

σ µ σ

+ −
=

+ − +
 

where C is the cut score, 
Xµ  is the mean test score, 2

Tσ  is the variance of true scores, 

and 2

Eσ  is the error variance. If C =
Xµ , 2k  is essentially the classical test theory 

reliability coefficient. Therefore k
2 

is a generalization of the classic reliability 

coefficient. 

Brennan and Kane (1977) derived the dependability index ( )λΦ  in the 

framework of generalizability theory to represent decision consistency. The index is 
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defined as follow: 

2 2

2 2 2 2

( )
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( ) ( )
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+ −
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where 2

Pσ  is variance of persons, µ  is the grand mean over persons and items, λ  is 

the cut score on the percent score scale, and 2

Eσ  is the error variance. In addition, it 

introduces a component of variance due to item difficulty 2

iσ . It has been shown that if 

all the items are dichotomously scored and λ  = µ , ( )λΦ  reduces to the KR-21 

coefficient. Since ( )λΦ  introduces the variance of item difficulties in the denominator, 

k
2
 is always larger than ( )λΦ . Both indices have the advantages of providing more 

information with regard to the magnitude of misclassification, which is helpful if the 

test users want to know more in addition to the decision consistency proportion. 

2.2.3. Factors Affecting P and Kappa 

The agreement indices of P and kappa are easy to understand and interpret and are 

widely reported as the decision consistency index. The factors affecting P and kappa 

were of wide interest and extensively studied in the literature. Previous studies showed 

that P and kappa might be affected by the factors including the location of cut scores, 

test length, score variability, test score distribution, and the classical test score reliability. 

However, the sensitivity of P and kappa to these factors may not display in the same 

way. 

Many studies showed that an increased test length, an increased classical test score 

reliability, or an increased score variability, keeping other conditions unchanged, 
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resulted in higher values of both P and kappa (Crocker & Algina, 1986; Huynh, 1976; 

Berk, 1980). The influence of the location of cut score, however, seemed more 

complicated. When the cut score moved away from the center of the score distribution, 

P increased while kappa decreased. Possible explanation was suggested by Huynh 

(1976) that since the chance agreement is near 1 when the cut score is at the tails of a 

score distribution, there seems to be not much room for improvement of the decision 

consistency beyond the chance consistency. As a result, the value of kappa dropped 

when the cut score became too small or too large. On the contrary, P became the largest 

when the cut score was away from the center. Since there were fewer examinees near 

the cut score, misclassification was less likely to happen then. However, a large 

proportion of the increased P associated with far-away-from-center cut score is due to 

the increased chance agreement. In addition, it was found that more cut score points 

would result in a lower value of P since this would result in more candidates being close 

to cut score points and with an increased chance of being misclassified.  

There have been some discussions in the literature about whether P or kappa is a 

more appropriate index. However, no explicit conclusion can to be drawn. It is not 

suggested favoring one index over the other. Rather, they are alternative ways in 

estimating decision consistency as long as their interpretations are correctly understood. 

Nonetheless, comparisons between the two indices have been made. Wan, Brennan, and 

Lee (2007) found that kappa was more sensitive to the magnitude of reliability 

estimates than P, and higher P not always associated with higher kappa. Besides, kappa 
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was criticized due to its assumption of exact marginal proportions (Berk, 1980). An 

example made by Livingston and Wingersky (1979) illustrated that if 87% of the 

examinees passed the exam, kappa will correct the chance agreement based on the 

assumption that “chance agreement” would result in exactly 87% of examinees passing 

the exam. It is argued by the above researchers that P is more useful for tests where an 

absolute cut score is chosen, while kappa makes more sense when the cut score is 

determined by the consequences of the passing/failing proportion.  

2.3. Methods of Estimating P and Kappa 

The notions of agreement index P and its corrected form kappa proposed by 

Hambleton and Novick (1973) and Swaminathan, Hambleton, and Algina (1974) not 

only conceptualized decision consistency and accuracy but also realized the procedures 

for estimating the indices. More importantly, they initialized the practice of reporting P 

and kappa for tests used to make mastery classifications which is widely done today. 

The Standards (AERA, APA, & NCME, 1999, p.35) in its most recent version call for 

estimates of proportion of examinees who would be consistently classified using the 

same or alternative forms whenever a test is used to make categorical decisions. The 

procedure of calculating P described by Hambleton and Novick (1973) is quite 

straightforward and was deemed as the easiest method to understand, compute and 

interpret (Berk, 1980). Nevertheless, it is obvious that two administrations of a test are 

required if this procedure is adopted, which is often unrealistic and inconvenient in 

practice.  
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The single-administration approach for estimating P and kappa was introduced and 

developed to overcome the restriction of the two-administration procedure, led by 

Huynh (1976), Subkoviak (1976) and other researchers. Analogous to the split-half 

reliability coefficient estimate, researchers tried splitting a test into halves for estimating 

the DC index, however, no “step-up” formula for a corrected estimate generalizing from 

a half-test estimate to full-length test was available, not to mention the problem that 

there is non-uniqueness in splitting the test into halves. Alternatively, new models were 

introduced which helped the advancement of estimating P and kappa using a single 

administration. The single-administration methods are discussed in details in this 

chapter. 

2.3.1. Models for Estimating P and Kappa 

The role of the models in estimating classification indices is to estimate the true 

score distribution and to predict the observed score distribution of an alternative 

administrations of the test conditional on true score level. By assuming certain 

measurement models for the test data, the single-administration methods estimated the 

true score and conditional observed score distributions, then the J x J classification 

contingency tables can be constructed, and the agreement index P and kappa can be 

computed based on the tables. The parameters of the models, distributions of true and 

observed scores, and in turn the classification indices are all estimated based on the 

actual data from a single test administration (Lee, Hanson, & Brennan, 2002). Below 

are the descriptions of popular measurement models assumed in single-administration 
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methods. 

Binominal model, one of several strong true-score models, was typically used to 

predict the probability of getting test score x given true abilityπ . The probability can be 

expressed as 

( )( | ) (1 )x n x
n

P x
x

π π π − 
= − 
 

, x = 0, 1, …, n. 

where                    
!

!( )!

n n

x x n x

 
= 

− 
 

where n is the number of items, x is test score (number of correct answers) ranging from 

0 to n; π  is defined as the proportion of items out of all the items in the domain that 

the examinee can answer correctly, it is therefore on the percent-correct scale and called 

domain score or relative true score; n is the total number of items.  

Under the 2-parameter beta binomial model (2PB), the conditional distribution of x 

given π is assumed to be binomially distributed, in addition, the density of π is 

assumed to be a beta distribution with two shape parameters, α and β  (Keats & Lord, 

1962). Thus the density of test score x for n items becomes (Huynh, 1976) 

( ) ( , ) / ( , )
n

f x B x n x B
x

α β α β
 

= + + − 
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where B is the beta function with parameter α and β ,  x is test score, and n is the 

total number of items. The parameters α and β  can be estimated using KR-21 and the 

first two moments (mean and standard deviation) of the observed score distribution.  

The 4-paramter beta binomial model (4PB) assumes the true proportion-correct 
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score π  with a beta distribution with four parameters: α , β , and additionally, the 

lower and upper limits, a and b (Lord, 1965). Different from 0 ≤ π ≤ 1 in the 2PB model, 

π  is set as a ≤ π ≤  b under the 4PB model. The 4PB model was proven to have better 

performance than the 2PB model in fitting the observed score distributions (Hanson & 

Brennan, 1990). 

The binomial model is built assuming that all the items are independent and 

equally difficult. However, studies showed that the violation of the assumption of equal 

difficulty did not very much affect the results (Subkoviak, 1978; Spray & Welch, 1990). 

 Multinomial model was introduced to estimate the probability of getting a summed 

score given the true ability for tests consisting of polytomously scored items which have 

the same number of categories (Lee, 2007; Lee, Brennan, & Wan, 2009). For example, 

a test consists of n polytomous items which have the same number of score categories, 

say, k categories. It assumes that the true abilities required for getting k possible item 

values, denoted as 1 2, ,..., kπ π π , are the same across the items. Following a multinomial 

model, the probability for an examinee with true abilities 1 2, ,..., kπ π π  getting 1x  

items scored 1c , 2x  items scored 2c ,…, and kx  items scored kc , can be expressed 

as  

1 2

1 2 1 2 1 2

1 2

!
( , ,..., | , ,..., ) ...

! !... !
kxx x

k k k

k

n
P x x x

x x x
π π π π π π=  

where 1 2, ,..., kπ π π denote the true abilities required to get the k possible item 

values, 1 2, ,..., kc c c are the k possible item values, and
1 2, ,..., kx x x  are the observed 
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numbers of items getting each of the k possible values. Note that 
1

k

j

j

x n
=

=∑ , and 
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1
k

j

j

π
=

=∑ . Thus the probability for an examinee with true abilities 1 2, ,..., kπ π π  getting 

a summed score X is  

1 1 2 2
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Note that the multinomial model reduces to the binomial model when all the items are 

dichotomously scored. 

Compound multinomial (CM) model is used when the test is a mixture of 

dichotomous and polytomous items, or consists of polytomous items that differ in terms 

of the number of score categories, or both. Under the CM model, the items with the 

same number of categories are viewed as an item set. The probability of a summed 

score y for item set i is denoted as ( | )i iP y π
�

, where iπ
�

 is the true ability and expressed 

as {
1 2, ,...,i i kiπ π π }. The probability of a vector of summed scores for L item sets is 

1 2 1 2

1
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L

L L i i
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=
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And the probability of the total summed score z  for the test is 

1

1 2 1 2 1 2

,..., :
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where iw  is the weight of the summed score of item set i. Note that when L =1, the 

CM model reduces to the multinomial model. 

 Item response theory (IRT) was introduced most prominently in Lord and Novick 



 

24 

(1968) and has been increasingly used in many aspects of test development and analyses. 

The IRT models assume that there is a latent trait θ  underlying all the item responses 

and the item responses are independent after θ  is controlled for. Using IRT, the 

relationship between examinee’s latent ability θ  and the responses to item i iU  can 

be modeled using a family of logistic models. The popular IRT models in the family 

include the 1-parameter, 2-parameter, and 3-parameter logistic models for dichotomous 

items, and the graded response model, and the generalized partial credit model for 

polytomous items. The mathematical expression of the three-parameter logistic (3PL) 

IRT model is shown below as an example.    

1
( 1| )

1 exp[ 1.7 ( )]

i
i i

i i

c
P U c

a b
θ

θ

−
= = +

+ − −
 

where ( 1| )
i

P U θ= is the probability of having response of 1 (correct answer) to item i 

given latent ability θ . 
i

a , 
i

b and 
i

c are item discriminating parameter, item difficulty 

parameter, and item guessing parameter, respectively. 1.7 is the scaling factor 

introduced to approximate a two-parameter normal ogive function with the same values 

for the a and b item parameters in the logistic model. 

2.3.2. Assumptions of Methods 

The current methods for single administration estimates of decision consistency 

and decision accuracy can fall into two general categories in terms of the psychometric 

foundations upon which the methods were built: the CTT-based approach and the 

IRT-based approach. 
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Early methods were developed under the CTT framework. The binomial model, 

also classified as a strong true-score model because of the assumptions made that go 

beyond those of the CTT model, was assumed for the observed score distributions of 

tests which consist of dichotomous items only. Popular methods were developed by 

Huynh (1976), Subkoviak (1976), and Hanson and Brennan (1990). Later, Livingston 

and Lewis (1995) extended the binomial model to handle polytomous items. 

Alternatively, Lee and his colleagues (Lee, 2007; Lee, Brennan & Wan, 2009) 

introduced multinomial and compound multinomial models for polytomously-scored 

items. In addition to the analytical approach, Brennan and Wan (2004) developed a 

bootstrap procedure for complex assessment based on the binomial and multinomial 

models. 

The above methods can further be divided to two types concerning the assumption 

made for true score distributions: the distributional approach and the individual 

approach (Brennan & Wan, 2004; Lee, 2005). The distributional approach makes a 

distributional assumption for true abilities, e.g., Huynh (1976), Hanson and Brennan 

(1990). Livingston and Lewis (1995) assumed a family of beta distributions for the true 

score distributions. On the contrary, the individual approach calculates the decision 

consistency index for each examinee at one time and averages across all examinees, 

without making any assumption about true ability. Examples of the second type include 

Subkoviak (1976), Lee (2007), Lee, Brennan & Wan (2009), and Brennan and Wan 

(2004).  
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Due to the complexity in calculating the beta-binomial distribution, some 

researchers have proposed a normal approximation by assuming a bivariate normal 

distribution for the observed score distributions across two test administrations, with a 

correlation equal to test score reliability. Several methods exist, however, they differ in 

the way of calculating the reliability. Peng and Subkoviak (1980) used the KR-21 

coefficient as test reliability. Woodruff and Sawyer (1989) split the original test into 

halves and applied the Spearman-Brown formula to get an estimate of the test reliability. 

Breyer and Lewis (1994) also adopted the split-half approach but employed a separate 

cut score for each of the two half-tests, and used a tetrachoric correlation in calculating 

the reliability. 

The IRT-based approach has been developed along with an increasing popularity 

of IRT applications in various aspects of testing practice. Essentially, all the IRT- based 

methods were developed based on the same assumptions as are made with other IRT 

applications, including unidimensionality, local item independency and model fit. In 

addition, large sample sizes are needed for accurate estimation of item parameters. At 

the same time, it is not known how consequential random errors in the item parameter 

estimates due to small sample size might be on the stability and accuracy of single 

administration estimates of DC and DA.   

Under the IRT framework, several methods were developed for tests scored on the 

raw test score scale. Earlier studies included Huynh (1990) using the Rasch model, and 

Wang, Kolen, and Harris (2000) using polytomous IRT models. More recently, Lee 
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(2010) developed a procedure which can be used for a mixture of IRT models. Briefly, 

these methods used IRT models to calculate the probability of a vector of responses 

conditional on latent abilityθ , and then employed the compound binomial/multinomial 

model to calculate the observed raw score distribution conditional on θ . The raw score 

distribution integrated over θ  can be achieved finally either by assuming a distribution 

for θ  or by using individual θ  estimates. 

From a different perspective, Rudner (2001, 2005) developed a procedure for tests 

scored on the θ  scale. It assumed that the conditional distribution of estimated ability 

θ̂  followed a normal distribution with a mean of θ  and standard deviation of SE( θ̂ ). 

Li (2006) extended Rudner’s method from decision accuracy to decision consistency.  

Alternatively, a simulation-based approach under the IRT framework was 

proposed by Hambleton and Han (in Bourque, et. al., 2004). Compared to the above 

analytic approaches, the simulation approach has the merits of being simple to compute, 

implement and interpret, especially nowadays that there are various IRT generation 

software packages available and easy to access (e.g, Han & Hambleton, 2007). In 

addition, the simulation approach is flexible for tests involving complex scoring, scaling, 

weighting, and equating procedures (e.g., composite scale score). Because there are too 

many different combinations of subtest scores, it is likely that one raw score will 

convert to many different composite scale scores. As a result, the analytic expression of 

the observed score distribution is difficult to identify and compute. Kolen and Harris 

(2000) pointed out that when the scale transformation is a function of multiple variables, 
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a simulation approach is preferred (for more discussions on complex assessment, see 

Brennan & Wan, 2004).  

2.3.3. Review of Methods in the Literature 

Below is a description for each of six major DC/DA methods: the Huynh extended 

procedure, the Subkoviak extended procedure, the Livingston and Lewis procedure, the 

Rudner procedure, the Lee procedure, and the Hambleton and Han procedure. The first 

three are CTT-based methods, while the last three are IRT-based methods. 

2.3.3.1. Huynh and Extended Procedures 

Huynh’s method assumes a beta distribution with parametersα and β  for the true 

scores, and a bivariate beta-binomial distribution for the observed scores (Keats & Lord, 

1962). Let x and y be the test scores obtained from two parallel forms X and Y. Under 

the assumption of local independence, x and y follow a bivariate beta-binomial 

distribution with joint probability density (Huynh, 1976) 
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f x y B x y n x y
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α β

α β
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where B is the beta function with parameterα and β , and n is the total number of items. 

Suppose C is the cut score dividing examinees into binary categories, the classification 

consistency index P can be calculated as follows 
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Hanson and Brennan (1990) expanded the model by applying a four-parameter beta 
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distribution (Lord, 1965) for true score distributions. The four-parameter beta 

distribution is a generalization of the two-parameter beta distribution that, in addition to 

the parameters α and β , has two more parameters for the lower (a) and upper (b) limits 

of the distribution. The true score T follows the distribution with density 

1

1 ( ) ( )
( / , , , )
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The authors found that the generalized beta-binomial model provided a better fit to the 

observed score distributions. This is expected of course because additional parameters 

are available to find the best fitting distribution. 

The approach based on the beta-binomial model was mathematically elegant. It 

was found that the method had comparatively small standard errors (Subkoviak, 1978) 

and most accurate estimates of P for unimodel distributions (Berk, 1980). Besides, the 

violation of the equal item difficulty assumption seemed to have negligible effect on the 

estimates (Subkoviak, 1978). Nevertheless, the method remained one of the most 

conceptually and computationally complex approaches (Berk, 1980). 

To overcome the computational complexity, a simple normal approximation was 

suggested by Peng and Subkoviak (1980). They found the approximation provided 

relatively accurate P and kappa estimates, and justified the approach with literature 

which showed that the beta-binomial family could be approximated by the normal 

family. For low stakes assessment, it has been felt that the Peng and Subkoviak 

procedure is more than sufficient, and provides a solution that essentially everyone in 
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psychometrics can apply since it is a simple table look-up. 

2.3.3.2. Subkoviak and Extended Procedures  

Subkoviak’s (1976) method similarly imposed a binomial model on the observed 

score distributions. However, instead of making distributional assumptions for the true 

scores, Subkoviak estimated the consistency index for each examinee at a time and then 

averaged over the examinees. Specifically, Subkoviak estimated each examinee’s 

proportion-correct true score by applying a linear regression approximation using 

his/her observed proportion-correct scores and the KR-20 coefficient. The conditional 

observed score distribution was constructed afterwards based on the estimated true 

score and the binomial model. The consistency index was calculated for each examinee, 

and then averaged over the sample of examinees. Mathematically, the consistency index 

for person i, defined as ( )i

c
P , is expressed as 

( ) 2 2( ) [1 ( )]i

c i i
P P x C P x C= ≥ + − ≥  

where 

 ˆ ˆ( ) (1 )i i

i

n
n xx

i i i

x C i

n
P x C

x
π π −

=

 
≥ = − 

 
∑  

where ˆ
i

π  is the estimated proportion-correct true score for examinee i, 
i

x is the 

examinee’s observed score, C is the cut score, and n is the number of items. 

( )
i

P x C≥ is the probability for the examinee in getting a score equal to or higher than 

the cut score C. The ultimate classification consistency index P was the averaged ( )i

c
P  

across the examinees.  This method however is highly problematic with short tests 
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because it leads to poor estimates of domain scores, and when these estimates are zero 

or 1, the estimates of DC can be far too high. 

 Lee and his colleagues (Lee, 2007; Lee, Brennan, & Wan, 2009) proposed a 

compound multinomial (CM) model for a test containing mixture of dichotomous and 

polytomous items. The compound multinomial procedure can be viewed as a 

generalized version of Subkoviak’s procedure in the sense that it reduces to 

Subkoviak’s procedure when all items are dichotomously scored. A bias-correction 

procedure (Brennan & Lee, 2006) was applied to make the distribution of observed 

scores approachable to, having the same amount of variance as, the distribution of true 

scores. 

Brennan and Wan (2004) extended Subkoviak’s procedure by developing a 

bootstrap procedure. Their method is conceptually related to Subkoviak’s procedure in 

terms that it doesn’t make distributional assumptions about the true abilities either. By 

contrast, it generated a large number of replications (called bootstrap samples), and 

calculated the proportion of consistent decisions for each examinee, and then averaged 

over examinees. The bootstrap procedure is claimed to be simpler and more flexible for 

complex assessments when the distribution of observed scores is not easy to estimate. 

Wan, Brennan and Lee (2007) found that the compound multinomial procedure and 

bootstrap procedure provided very similar estimates and deemed both as the extension 

of Subkoviak’s procedure. 

2.3.3.3.  Livingston and Lewis Procedure 
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Livingston and Lewis (1995) introduced a concept called “effective test length”, so 

that the methods based on the binomial model could be applied to tests which have 

items polytomously scored or not equally weighted, e.g., the tests containing a mixture 

of polytomous and dichotomous items, or tests using composite scores. The term 

“effective test length”, denoted as n, refers to the number of discrete, 

dichotomously-scored, locally independent items necessary to produce total scores 

having the same precision (i.e., reliability) as the scores being actually used to classify 

examinees. The formula to solve n suggested by the authors is 

2

min max

2

( )( )

(1 )

x x x

x

X X r
n

r

µ µ σ

σ

− − −
=

−
 

where minX is the lowest possible score, maxX is the largest possible score, 
x

µ  is the 

mean score, 2

x
σ  is the test score variance, and r is the classical reliability estimate of 

the test. It can be displayed from the formula that four kinds of information are required 

as input: (1) the observed test score distribution, (2) the reliability coefficient of the test, 

(3) the possible maximum and minimum test scores, and (4) the cut scores.  

Using the effective test length, the observed test score X ranging from
minX to 

maxX can be transformed to a new scale '
X ranging from 0 to n based 

on ' min

max min

X X
X n

X X

−
=

−
. As Hanson and Brennan (1990) suggested, Livingston and Lewis 

(1995) estimate the true score distributions by fitting a 4-parameter beta model, and 

estimate the conditional observed score distributions by fitting a beta-binomial model, 

based on the estimated effective test length n. The Hanson and Brennan procedure, and 
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the Livingston and Lewis procedure, both based on the beta-binomial model, can be 

implemented in the software program called BB_CLASS (Brennan, 2004). 

2.3.3.4. Rudner Procedure 

Rudner (2001, 2005) proposed a procedure for computing classification accuracy 

indices for both dichotomous and polytomous items in the framework of IRT. In 

Rudner’s approach, the tests are scored on a latent ability scale. θ  and θ̂  are denoted 

as true score and observed score, and 
c

θ  is the cut score. It is assumed that for any true 

scoreθ , its corresponding observed score θ̂  follows a normal distribution with mean 

of θ  and standard deviation of SE( θ̂ ). SE( θ̂ ) is the standard error of estimation on θ  

level. Under the IRT framework,  

SE( θ̂ ) = 
1

( )I θ
 

and  
1

( ) ( )
n

i

i

I Iθ θ
=

=∑  

and  
' 2[ ( )]

( )
( )[1 ( )]

i
i

i i

P
I

P P

θ
θ

θ θ
=

−
 

where ( )I θ is the test information function, and ( )
i

I θ  is the item information function. 

( )
i

P θ is the item response function, and ' ( )
i

P θ is the derivative of ( )
i

P θ  with respect 

to θ  (Hambleton, Swaminathan, & Rogers, 1991). 

Assuming that θ̂  follows the normal distribution ~N(θ , SE( θ̂ )), the probability 

of having θ̂  above 
c

θ  given true score θ , ˆ( | )cP θ θ θ> , is essentially the area under 
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the normal curve and to the right of 
ˆ( )

cz
SE

θ θ

θ

−
= . Taking the binary classifications for 

example, the classification accuracy index 
AP  can be expressed as 

ˆ ˆ( | ) ( ) ( | ) ( )
c

c

A c c
P P P d P P d

θ

θ θ θ

θ θ θ θ θ θ θ θ θ θ
∞

= =−∞

= > + <∫ ∫  

If one assumes a normal distribution for the true score distribution, ( )P θ is the height 

of the normal curve at θ . The index AP  can be easily extended to the false positive 

and false negative error rates. 

Rudner focused the attention on DA indices, but DC is a topic of importance too. Li 

(2006) adapted this approach and extended it to decision consistency. Given the 

definition that decision consistency is the agreement of classifications across repeated 

independent administrations, the probability of having θ̂  above 
cθ  given θ  in both 

administrations is simply the product of probabilities in each administration, that is 

ˆ( | )cP θ θ θ> * ˆ( | )cP θ θ θ> . Similarly, the probability of having  θ̂  consistently below 

cθ  given θ in both administrations is the product of ˆ( | )cP θ θ θ<  and ˆ( | )cP θ θ θ< . 

Still taking binary classifications as an example, the overall decision consistency index 

cP  is 

2 2ˆ ˆ( | ) ( ) ( | ) ( )
c c c

P P P d P P d
θ θ

θ θ θ θ θ θ θ θ θ θ
∞ ∞

=−∞ =−∞

= > + <∫ ∫  

The logic of DC/DA indices for binary classifications can be easily extended to multiple 

classifications.  The overall procedure follows the logic of Subkoviak’s work. 

2.3.3.5. Lee Procedure 
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Different from Rudner’s method which is used for tests scored on the θ  scale, 

Lee’s (2010) developed a procedure for tests scored by summing up item scores but 

using IRT as the psychometric foundation. Therefore, it assumes appropriate IRT 

models are chosen and item parameters are well calibrated. 

Lee developed a procedure to estimate the observed summed-score distribution 

conditional on true ability θ , denoted ( | )P X θ , and then calculated the consistency 

index based on the observed summed-score distribution integrated across all examinees.  

Provided with IRT models and calibrated item parameter estimates, the probability of a 

vector of item responses given θ  can be expressed as  

1 2

1

( , ,..., | ) ( | )
n

n i

i

P U U U P Uθ θ
=

= ∏  

and the probability of a summed score X given θ  can be calculated by 

1

1 2

,..., :

( | ) ( , ,..., | )

n i i

n

U U w U X

P X P U U Uθ θ
=

=
∑
∑  

where n is the number of items, iU  is the response to item i, and iw  is the weight of 

item i. IRT models are used to calculate ( | )iP U θ . And the compound multinomial 

(CM) model was adopted in calculating ( | )P X θ , where each item was viewed as an 

item set in this situation. A recursive algorithm was used to compute the compound 

multinomial model. Kolen and Brennan (2004, pp.219) illustrated the algorithm with 

examples. 

Taking multiple classifications for example, the decision consistency 
cP  can be 

formulated as 
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2

1

[ ( )] ( )
H

c

h

P p h f dθ θ θ
∞

=−∞

= ∑∫  

where H is the number of classification categories, ( )p hθ  is the probability of 

observed score falling into the thh category conditional on θ , and f(θ ) is the density of 

true score distribution. 

Concerning the integration over true scores, two approaches were used. The first 

one used the estimated quadrature points and weights provided in the IRT calibration 

output. It was called the D-method by the author since a distributional assumption for 

true abilities was made. The second approach calculated classification indices for each 

examinee at a time and averaged over the population. It was called the P-method. The 

author showed that both approaches produced very similar results.  

2.3.3.6. Hambleton and Han Procedure 

The above methods were developed based on analytical approaches. Some of the 

modelings are very complicated and the computation are not easy or straightforward. 

Along with wide spread applications of IRT and the availability of a number of IRT 

software programs for calibration and generation, Hambleton and Han (in Bourque et. 

al., 2004) proposed a convenient and straightforward method based on Monte-Carlo 

simulation techniques. This simulation-based method was initially suggested for 

dichotomous data, but can easily be extended to polytomous data. It makes no 

assumptions about the score distributions, except that the data fit the IRT models and 

satisfy IRT model assumptions, e.g., dimensionality and local independence. These 
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assumptions are fair to make and convenient to check because they are the prerequisites 

and always need to be checked prior to any IRT applications.  

According to the authors, the inputs are (1) item and ability parameter estimates, 

which can be calibrated given the response data and chosen IRT models, and (2) the cut 

scores. A classical test reliability coefficient estimate can be provided to correct the true 

score distribution using the Kelley regressed estimates (Kelley, 1947). The correction 

has been shown having minimal impacts on the DC/DA results by Li (2006) and was 

skipped in this study. The method can be described in a three-step procedure: 

(1) Generate test response data.  

Provided with item parameter and ability estimates, and an appropriately chosen  

IRT model, two sets of response data for parallel form X and Y are generated. Calculate 

the test scores for form X and Y.  

(2) Transforming cut scores and classifying examinees.  

Use the test characteristic curve (TCC) to transform the cut scores to the test score 

metric if they are provided on the theta metric. The TCC can be constructed using the 

available item parameter estimates. Classify examinees into performance categories 

based on their test scores on form X and Y and the cut scores on the test score metric. 

Classify examinees into “true” performance categories based on their ability estimates 

and the cut scores on the theta metric.  

(3) Calculate the classification indices.  

Calculate the DC indices based on the classifications of examinees using parallel 
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form scores on X and Y. Calculate the DA indices based on the classifications using 

ability estimates and the test scores of one of the parallel forms. Alternatively, the 

average of the two possible values of DA can be used as the single estimate of DA. 

The Hambleton and Han method is easy to understand, to calculate, and to interpret. 

It avoids complicated models and daunting computations by generating test scores for 

parallel forms from fitted IRT models. It simply calculates DC indices based on the 

degree of classification agreement using the scores of parallel forms, and using the 

ability scores for DA indices. One disadvantage is that the indices’ values may vary a 

bit from one calculation to another since it is based on simulation, and variation of DC 

and DA statistics would be expected. It is suggested that the simulation be performed 

multiple times and choose the mean of the values across the replications. Alternatively, 

it suggests simulating large samples so that precise estimates of DC and DA can be 

obtained from a single simulation. Large samples do not have implications for any 

aspects of the study except the stability of the DC and DA estimates. 

2.3.4. Summary and Conclusion 

Two tables were provided summarizing the major methods for estimating DC and 

DA indices using a single administration, Table 2.1 for CTT-based methods and Table 

2.2 for IRT-based methods. The methods were described in terms of their sources, 

features, assumptions, and whether they are applicable to polytomous data or not. 

Berk (1980) argued that whenever parallel forms were available, the 

two-administration approach was recommended over single-administration because it 
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was unbiased and more accurate. Nevertheless, the single-administration estimate is 

popular in practice due to its convenience and availability. However, few studies are 

available and these methods are not well studied. Among the few simulation studies in 

the literature, Wan, Brennan, and Lee (2007) conducted one study examining the 

performances of four CTT-based methods in various conditions using both simulated 

and real data. They found that generally Livingston & Lewis (1995), Peng & Subkoviak 

(1980) methods outperformed Brennan & Wan (2004) and Lee (2005) methods. 

However, LL and PS methods were suspected to be more sensitive to reliability 

estimates, and to score distributions. Besides, the LL method tended to substantially 

underestimate kappa for certain cut scores when the correlation between constructs was 

not 1.0. The reason was however not clear. 

Lee, Hanson, and Brennan (2002) conducted another comparative study comparing 

the performance of methods assuming three different models: the two-parameter beta 

binomial model (2PB), four-parameter beta binomial model (4PB) and the 

three-parameter logistic IRT model (3PL). The study used real data and the examinees 

were scored using the number-correct method. The authors found that the 3PL model 

fitted better to the data than 4PB model, and in turn better than the 2PB model. The P 

estimate did not differ greatly across the models while kappa varied more substantially, 

and the 3PL model yielded the highest values of the indices. In addition, the 4PB 

yielded severely skewed true score distributions. However, it was argued that since 

“true” values and true score distributions were unknown, no conclusion could be drawn 
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concerning which estimate was more accurate. The authors called for a comprehensive 

simulation study. It is noteworthy that none of the above studies in literature examined 

the P estimate for decision accuracy in a simulation study. 

Li (2006) evaluated three IRT-based methods (Rudner, adapted Rudner, and 

Hambleton and Han methods) and compared them with the Livingston and Lewis 

method. Their robustness to various test lengths and true score distributions was 

examined in a series of simulation studies. She found the three IRT-based methods 

performed satisfactorily most of the time, and slightly better than LL method. She also 

found that the HH and LL methods were more sensitive to short tests. The RD method 

was comparatively robust to skewed ability distributions. As for DC/DA estimates, the 

DA has more accurate estimates than DC, and in turn than kappa. Rudner had the 

highest values of the indices, L&L the lowest, and H&H was in between. Of course the 

issue here is not to generate high values of DC or DA but rather the goal is to produce 

accurate estimates of DC and DA. 

Decision consistency and accuracy indices have been routinely reported in many 

testing programs today. Some CTT-based methods, especially the Livingston and Lewis 

(LL) method, have been widely used in practice in reporting the DC and DA indices. 

However, the methods are not widely studied. One obvious problem is that the LL 

method is sensitive to the choice of test reliability estimate. Given that several reliability 

estimates are available in the literature, no study has been shown to discuss which 

reliability estimate is a better choice or what the practical differences are in the DC and 
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DA estimates as a function of the choice of reliability estimate. Would a difference 

between .85 and .90 in the reliability estimate make a difference in the DC and DA 

estimates, for example?  Recall that .85 might arise if the KR-20 value is used, and .90 

might arise if parallel-form reliability estimate is used.   

New IRT-based methods were developed recently and these methods deserve 

further study too. It would be of great interest for the researchers and practitioners to 

know how accurately these methods perform and how robust they are to non-standard 

test conditions. It is disappointing to find that few studies existing in the literature 

addressed these questions. Given the deficit that the “true” values of indices and the 

“true” score distribution are unknown in the real data, a comprehensive study with both 

simulated and real data is therefore greatly desired. It is hoped that a study like this one 

will help better understand these methods and their variations in special test conditions 

and how to choose an appropriate method in practice. 
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Table 2.1 CTT-based Methods of Estimating DC/DA Index 

Source Feature Assumption Poly 

Data 

Huynh (1976) 2-parameter beta-binomial model 

 

 

Hanson & Brennan 

(1990) 

 

4-parameter beta-binomial model 

 

 

Livingston & Lewis 

(1995) 

 

4-parameter beta-binomial model, 

effective test length. 

Beta-binomial 

model assumed for 

observed score 

distribution; beta 

distribution 

assumed for true 

score distribution 

√ 

Subkoviak (1976) Binomial model, consistency 

index estimated for each person 

and averaged across persons 

Binomial assumed 

for observed score 

distribution, no 

assumption for true 

score distribution 

 

Brennan & Wan 

(2004) 

 

Bootstrap procedure 

 

√ 

Lee (2007) 

Lee, Brennan & 

Wan (2009), 

Brennan & Lee 

(2006) 

 

Compound multinomial model, 

bias correction for true score 

distribution 

 

Compound 

binomial/multinom-

ial model assumed 

for observed score 

distribution, no 

assumption for true 

score distribution 

√ 

Peng & Subkoviak 

(1980) 

 

Normal approximation of beta 

binomial distribution 

√ 

Woodruff & Sawyer 

(1989) 

 

Split-half approach,  

Spearman-Brown formula applied 

√ 

Breyer & Lewis 

(1994) 

Split-half approach, tetrachoric 

correlation used, 

Spearman-Brown formula applied 

 

Bivariate normal 

model assumed for 

observed score 

distribution 

√ 
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Table 2.2 IRT-based Methods of Estimating DC/DA Index 

Source Feature Assumption Poly 

Data 

Huynh (1990) 

 

Rasch model  

Wang, Kolen, and 

Harris (2000) 

 

Polytomous IRT models √ 

Lee (2010) 

 

Mixture IRT models 

 

IRT models and 

compound 

binomial/multinom-

ial model 

√ 

Rudner (2001, 

2005), Li (2006) 

Test scored on theta scale IRT models √ 

Hambleton & Han 

(in Bourque, el. at., 

2004) 

 

Simulation-based approach IRT models 

√ 

 



 

44 

 

Administration 1  

Failing Passing 

Failing 00p  01p  Administration 2 

Passing 10p  11p  

Figure 2.1 Agreement Index for Decision Consistency 
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CHAPTER 3 

SIMULATION STUDIES 

3.1. Method 

3.1.1. Selected DC/DA Methods 

Four variations of three methods were selected for investigation. The three methods 

are the Livingston and Lewis method, Lee method, and the Hambleton and Han method, 

denoted as LL, LEE and HH, respectively. The LL method is CTT-based and is 

currently the most popular method. Despite its popularity, there are not many studies 

available on the LL method. Some literature (Wan, Brennan, & Lee, 2007) suspected its 

sensitivity to factors such as the reliability, skewed distribution, location of cut scores, 

etc. The LEE and HH methods are recently developed IRT-based methods, which 

deserve further investigation too since they are relatively new and unstudied. 

The software BB-CLASS (Brennan, 2004) and IRT-CLASS (Lee & Kolen, 2008) 

were used to implement the LL and LEE methods. The HH method was programmed by 

the author using R.  

In addition, a variation of the LL method, using a stratified version of coefficient 

alpha as the reliability estimate in the input rather than the standard coefficient alpha, 

denoted as StratLL , were investigated too. The reliability estimate is a major input in LL 

method, and the results of LL method are sensitive to the choice of reliability estimate 

(a higher reliability estimate results in a higher DC/DA estimate while other inputs 

being equal). It is of significance to explore which reliability estimate is a better choice 
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provided that several choices exist in the literature. The most popular standard 

Cronbach’s alpha assumes that all the items are parallel and independent. In real 

settings, it is, however, natural to expect that if the items were divided into categories 

(based on item type, item content, etc.), a unique variance is associated with the 

categories. The stratified coefficient alpha was proposed treating the items in one 

category as a separate subtest (Rajaratnam, Cronbach, & Gleser, 1965). It is given by 

2

1

2

(1 )

1

k

xj j

j

strat

x

σ α

α
σ

=

−

= −
∑

 

where 2

xjσ  is the variance of scores of the jth category, j
α  is the standard Cronbach’s 

alpha in the j
th

 category, and 2

x
σ  is the total test score variance. In this study, the 

stratified version of alpha was used as an alternative in the LL method where the 

reliability estimated is needed. For the sake of convenience in implementation, it was 

calculated by dividing the items based on their item types ( dichotomous vs. polytomous 

items).  

3.1.2. Data 

The three-parameter logistic (3PL) IRT model (Birnbaum, 1968) and the 

two-parameter graded response model (GRM) (Samejima, 1969) were used to generate 

the standard unidimensional data for the dichotomous and polytomous items, 

respectively. The 3PL model is the same as presented in the previous chapter. The 

two-parameter GRM is given by  
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* *

( 1)( ) ( ) ( )
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( )ixP θ  is the probability of examinee with ability θ  getting a score category x in the 

polytomous item i. *( )ixP θ  is the probability of examinee with ability θ  getting a 

score category x or above, which is essentially the two-parameter logistic (2PL) 

model. i
a  is the item discriminating parameter, ix

b is the threshold parameter, or 

category boundary, for the score category x. And D is the scaling consistent ( D = 1.7 ).  

The 3PL and GRM are two popular IRT models which are widely used and often 

have good fit with standardized tests (e.g., the MCAS tests). The two models were 

therefore chosen in generating the data to mimic the real situation. It was of interest to 

study how the selected methods would perform in various conditions when the data fit 

the 3PL/GRM models.  

To study the impacts of local item dependence on DC/DA estimates, the Testlet 

Response Theory (TRT) models were used to generate the data with local item 

dependency. The concept of testlet refers to a group of items which share common 

stimuli, are content- or format-dependent, and are interdependent with each other. The 

testlet effect is often viewed as a secondary dimension besides for the dominant 

dimension of true ability, and is a common threat to the fundamental assumptions of 

standard IRT models: unidimensionality and local item independence. 

The TRT models (Wainer, Bradlow, & Du, 2000) are a modification of the standard 
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unidimensional IRT models. An example of the 3PL TRT model is given below: 

( )

( )

exp[ ( )]
( 1) (1 )

1 exp[ ( )]

i j i jd i

ji i i

i j i jd i

a b
p y c c

a b

θ γ

θ γ

− −
= = + −

+ − −
 

where ( 1)jip y =  is the probability of examinee j answering item i correctly. The 

parameters ai , bi, and ci are identical as in the standard 3PL model. ( )jd i
γ  is the 

additional interaction term introduced to the standard IRT models. It reflects an 

interaction between person j and the testlet d(i) which contains item i. ( )jd i
γ  can be 

interpreted as the examinee’s ability in the secondary dimension associated with the 

testlet d(i) which is unrelated with the dominant dimension of the underlying latent 

ability (e.g., the candidate’s background knowledge with the content of the reading 

passage in a reading comprehension test). (Note that the TRT model is essentially a 

special case of the full-information item bifactor model. The bifactor model is also 

called the general testlet model, where the testlet effect is treated as a group factor. The 

difference is that the TRT model imposes a constraint on the a-parameter by assuming 

the discriminating powers associated with latent trait ( jθ ) and with testlet effect ( )(ijdγ ) 

are equal, whereas the bifactor model does not impose such a restriction and the 

discriminating powers can be different.) 

 Although ( )jd i
γ is the testlet effect parameter, its variance 

2

( )d i
σ  rather than itself, 

indicates the degree of local item dependency within testlet d(i). 
2

( )d i
σ  can be varied 

across different testlets. A larger value of 
2

( )d i
σ  indicates a higher level of local 
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dependency, vice versa. A 
2

( )d i
σ  of zero indicates the items within the testlet are 

essentially locally independent. 

The 3PL and GRM TRT models were used to generate dichotomous and 

polytomous data, respectively. For the sake of easy implementation, the item type effect 

was treated as the testlet effect in simulation. There were two testlet effects in the test, 

mc
γ  associated with all multiple-choice items, and fr

γ  associated with all 

free-response items. Both mc
γ  and fr

γ  followed a normal distribution, with mean 

of zero for the purpose of identification. The latent ability θ , mc
γ  and fr

γ  were 

uncorrelated with each other. 

The “true” theta scores were generated from a normal distribution with a mean of 

zero and SD of one. The “true” item parameters were randomly drawn from the item 

pool of a real statewide standardized achievement test (MCAS ELA grade 10 in 2009), 

which had 84 multiple-choice items (scored 0/1) and 12 free-response items (scored 

0-4). The tests of various test lengths were created by randomly drawing specified 

numbers of items from the pool. The data were created in this way so that they 

mimicked the real situations and the generalizability of the findings would be enhanced. 

Adopted from the real test, three cut scores were used to classify examinees into 

four proficiency categories: the failing (F), needs improvement (NI), proficient (P), and 

advanced (A) levels. The three cut scores were provided on the theta scale so that the 

“true” classifications were able to be calculated, provided that the “true” theta scores 

were known in the simulation studies. The cut scores were set at -1.75, -0.81, and 0.58, 
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which classified the candidates with the percentages of 4% (F), 17% (NI), 51% (P), and 

28% (A) in each of the proficiency levels, about the same percentages observed in the 

real test. 

It is noteworthy that because the LL and LEE methods score and classify 

examinees based on their raw scores, the generated data were scored on the raw score 

scale in the first three simulation studies so that the performance of the selected 

methods were comparable. To classify examines on raw score scale, the cut scores 

provided on the theta metric were converted to the raw score metric using the test 

characteristic curve. One exception was Study 4, where the data were scored on the 

theta and composite score metrics for applicable methods so that the impacts of using 

different scoring methods were able to be assessed. 

3.1.3. “True” DC/DA Indices 

The “true” DC/DA indices were calculated so that the accuracy of DC/DA 

estimates from selected methods could be evaluated. The diagram in Figure 3.1 

displayed the procedures in calculating the “true” indices. Specifically, the following 

three steps were followed: 

(1) The data were scored and classified, and the classification observed from the 

data was called “actual” classification. For example, if the data were scored on raw 

score scale, the theta cut scores were converted from theta scale to raw score scale using 

test characteristic curve, and candidates were classified based on their raw scores. Based 

on the metric or method chosen for the data, an appropriate DC/DA method was applied 
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to the data, which gave the DC/DA estimates. The DC/DA estimates are estimating how 

accurate and consistency the “actual” classification is. 

 (2) The DA is defined as the degree of agreement between the classification based 

on the data and the classification based on the candidates’ true scores if the true score 

were known. The true scores are not possibly known in reality, but were known in 

simulation. In Step 2, the candidates were classified based on their true theta scores, and 

the classification was referred to as “true” classification. “True” PA was simply the 

degree of agreement between the “true” classification and the “actual” classification, the 

latter one was described in Step 1. 

 (3) The DC is defined as the degree of agreement between the classification based 

on the data and the classification based on its parallel form. In Step 3, provided that 

both “true” theta scores and “true” item parameters were known in simulation, a strictly 

parallel form was able to be generated, labeled as Data 2 in the diagram. This second 

parallel data were scored and classified following exactly the same procedure as for the 

original data as described in Step 1.The observed classification from the second data 

was called “actual” classification 2. “True” PC is the degree of agreement between the 

“actual” classifications observed from the two parallel data sets. The “true” Kappa was 

computed accordingly based on the contingency table. 

3.1.4. Evaluation Criterion 

BIAS was calculated as the criterion to examine how accurate each of the selected 

methods was in various conditions. BIAS reflects both the systematic error (by the sign 
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of statistic) and the random error (by the absolute value of the statistic) of the estimates. 

It is given by 

ˆ ˆ( )BIAS P P P= −  

where P  is the “true” DC/DA index, and P̂  is the DC/DA estimate. Usually P̂  

takes the mean of estimates across a number of replications. In this study, the sample 

size was eliminated as a factor. By using a large sample size of 50,000 the sampling 

errors could be minimized without replications, and the estimate was deemed as the 

mean across a couple of replications. Specifically, P̂  was replaced by ˆ
CP , ˆ

AP  and 

K̂  to represent the estimates of PC, PA and Kappa, respectively. 

3.2. Study 1: Robustness to Test Length 

3.2.1. Purpose of the Study 

The test length was considered as a factor which would impose an impact on the 

DC/DA estimates for two reasons. Firstly, the test length has a direct impact on test 

reliability. Given items of the same quality, the shorter the test is, the lower the test 

reliability will be. Remembering that the reliability estimate is a major input in the LL 

method, and the LL method was suspected to be sensitive to reliability estimates (Wan, 

Brennan, & Lee, 2007). Secondly, the test length would have an impact on the ability 

estimates in the IRT framework. The shorter the test is, the larger the errors are in the 

ability estimates. 

Study 1 addressed two questions: 

(1) What is the impact of short test length on “true” DC/DA indices? 
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(2) How robust are the selected methods to short tests? 

3.2.2. Conditions 

Four test length conditions were considered: 10/1, 20/2, 40/4, 80/8. The numbers 

before the slash denoted the total number of items, while the numbers after the slash 

denoted the number of polytomous items. The proportion of polytomous items was 

fixed in order to eliminate the possible effects of proportion of polytomous items on the 

DC/DA estimates. The reliability estimates of the various test lengths were around 0.75, 

0.85, 0.9 and 0.95, respectively, and these reliabilities are certainly in the range seen in 

practice though .95 would be judged as rather high in practice but perhaps seen with 

some Advanced Placement (AP) Tests. The “true” item difficulty parameters drawn 

from the real test for 4 various test lengths were summarized in Table 3.1. The table 

showed that they were a bit difficult tests, and this was especially true for short tests. It 

is worthwhile noting that since the condition of 10 items had only one item in the 

category of polytomous items, the stratified alpha cannot be computed. For the same 

reason the LL method using stratified alpha was not applicable to this condition. 

3.2.3. Results 

3.2.3.1. Reliability Estimates 

The two alternative choices of reliability estimate, the Cronbach’s coefficient 

alpha and stratified alpha, were calculated for the tests of four different lengths and 

were summarized in Table 3.2. The stratified alpha produced a slightly higher value of 

reliability estimate than the Cronbach’s alpha. The increase was around 0.02 for short 
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test of 20 items, and was negligible for long test of 80 items. 

3.2.3.2. “True” DC/DA 

Table 3.3 and Figure 3.2 displayed the “true” PA, PC and Kappa indices in various 

test lengths in Study 1. The tables and plots showed that when the test had normal 

ability distribution, a longer test had higher values of “true” PA, PC, and Kappa indices 

than a shorter test. 

3.2.3.3. Bias 

Table 3.4 and Figure 3.3 included the biases for selected methods in various test 

lengths. The results indicated that (1) all methods had reasonably good performance and 

small bias (absolute value smaller than 0.05) across different test lengths. Although it is 

obvious for all methods that the bias was decreased as the test got longer. (2) The 

LL_strat, LEE and HH methods had smaller bias than LL method in most conditions. 

The LL method seemed to have poorer estimates and was more vulnerable, especially, 

in short tests. Besides, the results indicated that the LL method consistently 

under-estimated DC/DA estimates. 

3.3. Study 2: Robustness to Local Item Dependency 

3.3.1. Purpose of the Study 

Both the IRT- and CTT-based methods assume that the items are independent when 

the true score is controlled for. However, sometimes some items in the test are 

interrelated with each other due to various reasons, e.g., sharing a common content or 

format, and the consequence is called local item dependency (LID). It is not unusual in 
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practice that a standard unidimensional IRT model is applied to the data with LID. In 

this study, it is of interest to investigate what are the impacts of LID when it comes to 

DC/DA indices. And does the classically-based procedure function better than the 

IRT-based procedure? Specifically, it was intended to answer the following questions: 

(1)  What are the “true” DC/DA indices when tests with LID are calibrated using 

unidimensional IRT models? 

(2)  How accurate are the selected methods with tests of various degrees of LID? 

3.3.2. Conditions 

The 3PL/GRM TRT models, as discussed in the previous chapter, were used to 

generate the data. Two testlet effects were generated to create the local item dependency, 

one associated with all multiple-choice items and denoted as mc
γ , and the other 

associated with all free-response items and denoted as fr
γ  . Two factors were 

considered in generating the data: 

(1) The degree of local item dependence within testlets. This factor was 

manipulated by setting 
2

( )d iσ , the variance of testlet effects across persons, to different 

values: 0, 0.2, 0.5, and 1, where 0 indicated no local dependency within the testlets, and 

1 indicated a high level of local dependency within the testlets.  

(2) The number of items associated with each testlet effect. Simulations showed 

that the more disparate the numbers of items in different testlets are, the more dominant 

the first factor is; on the contrary, the closer the numbers are, the stronger the second 

factor is, with other conditions being equal. Tests of two different lengths were 
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generated: 40 items, consisting of 36 multiple-choice (MC) items and 4 free-response 

(FR) items, and 36 items, consisting of 28 MC items and 8 FR items. All FR items were 

scored score 0 to 4. The two test lengths were compared because they had about the 

same test reliability estimates, 0.924 and 0.925, separately. With items being equal, the 

first condition had a stronger first factor than the second condition, because the number 

of items in one testlet (that was, the MC items) was more dominant. 

To summarize, 8 conditions, 2 test lengths crossed by 4 degrees of local 

dependency with testlets, were studied in Study 2. 

3.3.3. Results 

3.3.3.1. Dimensionality Analysis 

The dimensionality of the tests with various degrees of local dependency was 

analyzed using Principle Component Analysis (PCA). Table 3.5 provided the numbers 

of eigenvalues for the eight test conditions, while Figure 3.4 and Figure 3.5 displayed 

the eigenvalue plots. The tables and plots showed that the eight tests exhibited different 

degrees of dimensionality, from very unidimensional to moderately multidimensional. 

As 
2

( )d iσ  got larger, the first factor became weaker. In addition, the test with 28 MC 

and 8 FR had a stronger second factor than the test with 36 MC and 4FR. Both of them 

were as expected. The table also suggests that the ratio of the first to the second factors 

be a better criterion in judging unidimensionality than the proportion the first 

eigenvalue accounting for. 

3.3.3.2. “True” DC/DA 
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Table 3.6 to Table 3.8 provided the “true” values and the PA, PC, and Kappa 

estimate separately. The “true” indices were plotted in Figure 3.6. The plots showed that: 

(1) the degree of LID had a negative impact on “true” PA, which dropped by about 0.2 

as the variance of testlet effects increased from 0 to 1. (2) The degree of LID did not 

have an impact on “true” PC or Kappa. (3) The “true” PA was larger than “true” PC 

only when the data was unidimensional, but not in the presence of various degrees of 

LID. (4) The two different test lengths in this study did not show an obvious impact on 

“true” DC/DA indices. Although the test of 28MC + 8FR had slightly higher “true” PC 

/Kappa than test of 36 MC + 4FR, the differences were trivial. It might because the 

reliability with 28MC + 8FR was slightly higher but other explanations could be 

possible. 

3.3.3.3. Bias 

Table 3.9 to Table 3.11 give the bias of estimates and the plots are displayed in 

Figure 3.7 and Figure 3.8. The biases which had an absolute value larger than 0.05 were 

highlighted in bold and italics in the tables. Observation of the results suggests that (1) 

LID had a negative impact on PA estimates. Using a criterion of 0.05, none of the 

methods produced small bias when the tests had from minor to high levels of local 

dependency. All methods over-estimated PA when
2

( ) 0d iσ > , and the over-estimation 

was severer as 
2

( )d i
σ  got bigger. The largest bias reached around 0.24 for test of 28MC 

+ 8FR with 
2

( )d iσ  =1. (2) The methods produced satisfactory bias for PC/Kappa in most 
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conditions, except that the IRT-based methods with 
2

( ) 1d iσ =  had a bias larger than 

0.05. It seems that the IRT-based methods were more vulnerable to a higher level of 

LID while the LL_strat method performed the best among the four method options. (3) 

The biases for tests of 28MC+8FR were larger than that of 36MC+4FR, conditioning 

on
2

( )d i
σ . It should be easy to explain as 28MC+8FR had a stronger secondary factor. 

3.4. Study 3: Robustness to IRT Model Misfit 

3.4.1. Purpose of the Study 

Even though the data meet all the requirements underlying the models, the methods 

were put at a risk of malfunctioning if an incorrect model was chosen to fit the data. The 

misfit could happen due to the fact that the procedure of checking model fit has been 

skipped, or a simpler IRT model is chosen for the sake of convenience, cost, or 

availability of software, etc. The model-data misfit usually cast negative impacts on IRT 

applications, and there is no excuse to have an exception for the DC/DA estimates. In 

Study 3, the scenario of IRT model-data misfit was simulated, and the performance of 

the selected methods in the presence of model misfit was investigated.  

3.4.2. Conditions 

Two conditions were compared by fitting both the misfitting and correct models to 

the data. The consequences of misfitting model on DC/DA estimates were then checked. 

The two sets of IRT models fitted were (1) the 1-parameter logistic (1PL) model for 

dichotomous items and partial credit model (PCM) for the polytomous items, (2) 3PL 

model for the dichotomous items and the GRM for polytomous items.  
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The 3PL/GRM models were the correct models since they were used in data 

generation. Then the 1PL/PCM models were used to fit to the data, which mimicked the 

scenario commonly observed in some testing programs. Only the test condition of 40 

items with a normal ability distribution was looked at in this study for the purpose of 

convenience in interpreting the results. All the selected methods were evaluated in terms 

of the consequences of IRT model misfit on DC/DA estimates. It is noteworthy that 

although the LL-based methods, LL and LLstrat , were not developed in the IRT 

framework, the raw cut scores in their input were converted from theta cut scores using 

the test characteristic curve. Therefore it is still of interest to check whether there would 

be any possible impact on their DC/DA estimates.  

3.4.3. Results 

3.4.3.1. “True” DC/DA 

The “true” indices of using two sets of IRT models were displayed in Table 3.12 

and plotted in Figure 3.9. It showed that compared with 3PL/GRM, 1PC/PCM had a 

slightly lower “true” PA, about 0.02 lower, but a slightly higher “true” PC, around 0.06 

higher. It was as expected that “true” PA decreased when fitted with 1PL/PCM because 

the validity of method was challenged with a wrong model. However, it was not clear 

why fitting 1PC/PCM would result in a higher value of “true” PC, and it did show some 

practical difference. 

3.4.3.2. Bias 

Table 3.13 displayed the bias of PA/PC/Kappa, and Figure 3.10 showed the plots 
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accordingly. The results showed that (1) All methods overestimated PA in the condition 

of 1PL/PCM. The biases were, however, under 0.1. (2) All methods well estimated PC 

and Kappa indices. It seemed that the misfit between 1PL/PCM models and 3PL/GRM 

data had some impacts on the accuracy of PA estimates but minimal impacts on the 

accuracy of PC and Kappa estimates. 

3.5. Study 4: Robustness to Scoring Metric 

3.5.1. Purpose of the Study 

A test can be scored and reported in various ways. For example, the examinees can 

be scored using raw scores or scale scores. In addition, the abilities can be estimated 

using theta scores in the IRT framework. Raw scores usually refer to the number of 

items correct, or the numbers of points earned, without any transformation, e.g., if an 

examinee answers 50 out of 100 items correctly, with one score point for each item, 

his/her raw score is 50. Scale scores are transformed from raw scores based on some 

relationships for the purpose of reporting and interpretation convenience. The 

relationship can be linear or nonlinear, and both are common in practice. Theta scores 

refer to the latent trait scores estimated with IRT models which are usually placed on a 

scale with a mean of 0, and SD of 1. The typical values of thetas vary from -3 to 3. The 

transformation between theta scores and raw scores can be obtained by using the test 

characteristic curve function (TCC). More complex scoring includes the composite 

score, which is a weighted sum of score on two or more subtests. The weights may be 

equal or unequal. For example, a summed score giving equal weights to multiple-choice 



 

61 

items and constructed-response items was employed by the bar examinations (Wan, 

Brennan, and Lee, 2007). 

When examinees are scored on a particular scale, the cut scores should be 

transformed and the DC/DA indices should be estimated accordingly. Some DC/DA 

methods were developed for certain scales while others were developed for different 

scales. Among the selected methods, the LL method can be used for raw score scale but 

not for the theta scale. Although the authors of the LL method claimed that the method 

can be applied to scores on any scale as long as an appropriate reliability coefficient can 

be provided, the calculation of reliability estimate for theta scores require further efforts 

and was not studied much. The LEE method was developed for tests scored using raw 

or scale scores under the IRT framework. The HH method used a simulation approach 

without making distributional assumptions for the reported scores. Therefore it is 

flexible and should be applicable for scores reported on any metrics. 

A method performing well in one situation may not perform equally well in 

another in which the method was not originally developed. Study 4 was designed to 

check how the selected methods would perform for tests scored on different metrics. 

Specifically, the purposes of this study were to address two questions: 

(1) Does it matter that the examinees are scored on raw, theta, or composite score 

with respect to “true” DC/DA indices?  

(2) In addition to the previous studies in which the examinees were scored on raw 

scores, how accurate were the selected methods for the theta and composite scores? 
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3.5.2. Conditions 

The data generated in Study 1 were scored on two metrics: (1) theta score and (2) 

composite score. The “true” DC/DA indices and their estimates on the theta and 

composite scores were calculated and compared with that on the test (raw) score metric. 

Different methods were selected in investigation for different metrics. The HH 

method was the only method for the theta scores, since the other three methods were not 

applicable. The LL, LLstrat, and HH methods were used for the composite scores. The 

LEE method was not applicable of composite score. Since it uses a recursive algorithm 

(see Kolen & Brennan, 2004, pp. 219 for examples) to calculate the probability of each 

possible value of reported scores, there would be too many combinations of subtest 

scores for each composite score and the computations become very demanding. 

Therefore the LEE method can only be implemented with a simple scale transformation 

with the current software, e.g., the one-to-one raw-to-scale conversion. 

To score and classify examinees on the theta score, the procedure was 

straightforward. The data were calibrated using the 3PL/GRM models, and the cut 

scores provided on the theta scale were applied to the theta scores directly.  

To score and classify examinees on the composite score, the procedure was a bit 

more complex. The formula for composite scores was given by 

Composite score = 
MCW * 

MCX   + 
FRW * 

FRX  

where 
MCW  and 

FRW  are the weights applied for each score point for the MC and FR 
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items, respectively. MCX  and FRX  are summed raw scores for the MC and FR items, 

respectively. Adopting from the real data provided by the Advanced Placement tests, 

the MCW  and FRW  were defined so that the weighted sum scores for MC and CR items 

contribute 60% and 40%, respectively, to the weighted total sum score. The weights for 

different tests were summarized in Table 3.14. To calculate the cut scores on the 

composite score scale, the cut scores provided on the theta score were converted to the 

raw scores for MC items using the test characteristic curve consisting of all MC items, 

and for FR items using the test characteristic curve consisting of all FR items, separately. 

Then the weighted cut scores on raw score scale for the MC and FR items were summed 

up to obtain the final cut scores on composite score scale. 

3.5.3. Results 

3.5.3.1. “True” DC/DA 

The “true” DC/DA indices on three different scoring metrics were summarized in 

Table 3.15 to Table 3.17, and were plotted in Figure 3.11. The plots showed that (1) the 

classification based on raw score and on composite score had close “true” PA, PC, and 

Kappa indices in tests of different test lengths. (2) The classification based on theta 

score had higher PA, PC and Kappa estimates than that on raw score when the test was 

short, however, the difference disappeared when the test got longer. 

3.5.3.2. Bias 

The biases of estimates on three different scoring metrics were summarized in 

Table 3.18 to Table 3.20. Figure 3.12 displayed the bias on composite score for the LL, 
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LLstrat, and HH methods. The plots showed that when the composite score was used for 

classification, the three methods all had small bias for PA estimate, however, the LL 

method appeared to have large bias for PC and Kappa estimates in short tests. In 

addition, the HH method had the most accurate DC/DA estimates compared to the other 

two methods and in all test length conditions. 

Figure 3.13 plotted the bias on the theta score scale for the HH method. The plots 

showed that the HH method had small bias and the DC/DA indices were well estimated 

when the theta score was used for classification. In addition, the biases became smaller 

when the test got longer. 

3.6. Summary and Conclusion 

The LL, LLstrat, LEE and HH methods were investigated in a variety of conditions in 

Chapter 3 using a series of simulation studies. Four studies were designed to evaluate 

the performance of the selected methods in different conditions including various test 

lengths, local item dependency, model misfit, and different scoring metrics. In addition, 

the impacts of these conditions on “true” DC/DA indices were checked also. 

The findings showed that a longer test had higher values of “true” PA, PC, and 

Kappa indices. All methods had reasonably small biases across different test lengths, 

however, the LL method had larger biases when the test was short. 

Both LID and IRT model misfit had noticeably decreased the “true” PA index, and 

caused PA was over-estimated by all selected methods. The worst case for PA was 

being over-estimated by 0.25 when the test had a high level of LID. On the contrary, 
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either LID or model misfit exhibited an obvious impact on “true” PC or Kappa indices. 

In addition, the study found that the IRT-based methods were less robust in PC and 

Kappa estimates when the test had a high level of LID.’ 

The scoring metric did not have an apparent impact on DC/DA indices. Although 

the “true” indices appeared higher for theta score than for raw and composite scores, the 

differences diminished when the test got longer. Similar with raw score, the LL method 

had larger bias when the test was short for composite score. The HH method was found 

performing consistently well across different scoring metrics.  

In addition, it was found that the LL method had kept under-estimating PC/Kappa 

by various degrees in all conditions, and the LLstrat method noticeably improved the 

estimates especially when test was short or had LID. 
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Table 3.1 Descriptive Statistics of “True” Item Difficulty Parameters 

Test Length Mean SD Skewness 

10  0.269 0.643 1.074 

20  0.308 0.820 0.517 

40  0.113 0.808 0.046 

80  0.145 0.809 0.387 

 

 

Table 3.2 Reliability Estimates of Different Test Lengths in Study 1 

Test Length Cronbach’s Alpha Stratified Alpha 

10 0.73  

20 0.85 0.87 
40 0.92 0.93 
80 0.96 0.96 

 

 

Table 3.3 “True” and Estimated DC/DA Indices in Study 1 

Index Test 

Length 
"True” Index LL LL_Strat LEE HH 

PA 10 0.6805 0.6611  0.6599 0.6602 

 20 0.7543 0.7393 0.7646 0.7438 0.7430 

 40 0.8273 0.8151 0.8275 0.8246 0.8267 

 80 0.8778 0.8722 0.8825 0.8757 0.8764 

       

PC 10 0.6246 0.5852  0.6142 0.6148 

 20 0.6802 0.6565 0.6857  0.6695 0.6691 

 40 0.7638 0.7458 0.7614  0.7603 0.7619 

 80 0.8266 0.8197 0.8338  0.8265 0.8291 

       

Kappa 10 0.4147 0.3566  0.3969 0.3986 

 20 0.5118 0.4734 0.5184  0.4947 0.4941 

 40 0.6302 0.6062 0.6305  0.6290 0.6313 

 80 0.7266 0.7153 0.7377  0.7258 0.7298 
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Table 3.4 Bias of DC/DA Estimates in Study 1 

Index Test Length LL LL_Strat LEE HH 

PA 10 -0.0194  -0.0206 -0.0203 

 20 -0.0149 0.0103  -0.0105 -0.0113 

 40 -0.0122 0.0002  -0.0027 -0.0006 

 80 -0.0055 0.0047  -0.0021 -0.0014 

      

PC 10 -0.0395  -0.0104 -0.0098 

 20 -0.0238  0.0054  -0.0107 -0.0112 

 40 -0.0180 -0.0024  -0.0035 -0.0019 

 80 -0.0069  0.0073  0.0000 0.0025 

      

Kappa 10 -0.0581  -0.0178 -0.0161 

 20 -0.0384  0.0066  -0.0171 -0.0178 

 40 -0.0239  0.0003  -0.0011 0.0011 

 80 -0.0113  0.0110  -0.0009 0.0031 
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Table 3.5 Eigenvalues of Tests Conditions in Study 2 

Test Length Testlet 

Effect Variance 

% of 1
st
 Eigenvalue Ratio of 1

st
 to 

2nd Eigenvalues 

36MC + 4FR 0 38.1 17.2 

 0.2 39.3 14.7 

 0.5 41.3 9.5 

 1 44.3 7.4 

    

28MC + 8FR 0 41.8 17.1 

 0.2 41.6 9.4 

 0.5 41.7 5.3 

 1 42.7 3.7 

 

 

Table 3.6 “True” and Estimated PA in Study 2 

Test Length 
Testlet 

Effect Variance 
"True" PA LL LL_Strat LEE HH 

36MC + 4FR 0 0.8246 0.8163 0.8286  0.8241 0.8252 

 0.2 0.7520 0.8187 0.8341  0.8201 0.8195 

 0.5 0.6769 0.8072 0.8318  0.7949 0.7947 

 1 0.6141 0.8127 0.8415  0.7748 0.7753 

       

28MC + 8FR 0 0.8489 0.8404 0.8582  0.8484 0.8493 

 0.2 0.7699 0.8338 0.8581  0.8460 0.8469 

 0.5 0.6964 0.8261 0.8574  0.8297 0.8310 

 1 0.6128 0.8254 0.8650  0.8015 0.8028 
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Table 3.7 “True” and Estimated PC in Study 2 

Test Length 

Testlet 

Effect 

Variance 

"True" PC LL LL_Strat LEE HH 

36MC + 4FR 0 0.7632 0.7473 0.7628  0.7598 0.7581 

 0.2 0.7705 0.7522 0.7714  0.7573 0.7560 

 0.5 0.7662 0.7433 0.7722  0.7334 0.7361 

 1 0.7783 0.7512 0.7858  0.7175 0.7180 

       

28MC + 8FR 0 0.7925 0.7765 0.8005  0.7903 0.7892 

 0.2 0.7961 0.7685 0.8008  0.7871 0.7881 

 0.5 0.8000 0.7619 0.8020  0.7694 0.7705 

 1 0.8118 0.7643 0.8152  0.7427 0.7456 

 

 

Table 3.8 “True” and Estimated Kappa in Study 2 

Test Length 

Testlet 

Effect 

Variance 

"True" 

Kappa 
LL LL_Strat LEE HH 

36MC + 4FR 0 0.6340 0.6082 0.6323  0.6286 0.6260 

 0.2 0.6383 0.6090 0.6394  0.6190 0.6172 

 0.5 0.6320 0.5948 0.6406  0.5870 0.5911 

 1 0.6399 0.5968 0.6527  0.5551 0.5555 

       

28MC + 8FR 0 0.6701 0.6455 0.6834  0.6658 0.6640 

 0.2 0.6780 0.6343 0.6853  0.6623 0.6643 

 0.5 0.6872 0.6257 0.6892  0.6413 0.6431 

 1 0.7004 0.6243 0.7053  0.6016 0.6058 
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Table 3.9 Bias of PA Estimates in Study 2 

Test Length 
Testlet 

Effect Variance 
LL LL_Strat LEE HH 

36MC + 4FR 0 -0.0084 0.0039 -0.0005 0.0005 

 0.2 0.0667 0.0821    0.0680 0.0674 

 0.5 0.1303 0.1549    0.1180 0.1179 

 1 0.1986 0.2275    0.1607 0.1613 

      

28MC + 8FR 0 -0.0085 0.0092 -0.0005 0.0004 

 0.2 0.0639 0.0882    0.0761 0.0771 

 0.5 0.1297 0.1610    0.1333 0.1346 

 1 0.2126 0.2522    0.1887 0.1900 

 

 

Table 3.10 Bias of PC Estimates in Study 2 

Test Length 
Testlet 

Effect Variance 
LL LL_Strat LEE HH 

36MC + 4FR 0 -0.0159 -0.0003  -0.0034 -0.0051 

 0.2 -0.0183 0.0009  -0.0132 -0.0145 

 0.5 -0.0229 0.0060  -0.0328 -0.0301 

 1 -0.0271 0.0075  -0.0608 -0.0603 

      

28MC + 8FR 0 -0.0159 0.0080  -0.0022 -0.0032 

 0.2 -0.0276 0.0047  -0.0090 -0.0080 

 0.5 -0.0381 0.0020  -0.0306 -0.0295 

 1 -0.0475 0.0034  -0.0691 -0.0662 

 

 

Table 3.11 Bias of Kappa Estimates in Study 2 

Test Length 
Testlet 

Effect Variance 
LL LL_Strat LEE HH 

36MC + 4FR 0 -0.0258 -0.0017  -0.0054 -0.0080 

 0.2 -0.0293 0.0010  -0.0193 -0.0212 

 0.5 -0.0372 0.0086  -0.0450 -0.0408 

 1 -0.0431 0.0128  -0.0849 -0.0845 

      

28MC + 8FR 0 -0.0246 0.0133  -0.0043 -0.0061 

 0.2 -0.0437 0.0072  -0.0157 -0.0137 

 0.5 -0.0614 0.0020  -0.0458 -0.0441 

 1 -0.0762 0.0048  -0.0988 -0.0947 
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Table 3.12 “True” and Estimated DC/DA Indices in Study 3 

Index Fitted Models Truth LL LL_Strat LEE HH 

PA 1PL/PCM 0.8054 0.8735 0.8822  0.8767 0.8762 

 3PL/GRM 0.8273 0.8151 0.8275  0.8246 0.8267 

       

PC 1PL/PCM 0.8284 0.8202 0.8327  0.8284 0.8262 

 3PL/GRM 0.7638 0.7458 0.7614  0.7603 0.7619 

       

Kappa 1PL/PCM 0.6812 0.6675 0.6904  0.6836 0.6799 

 3PL/GRM 0.6302 0.6062 0.6305  0.6290 0.6313 

 

 

Table 3.13 Bias of DC/DA Estimates in Study 3 

Index Fitted Models LL LL_Strat LEE HH 

PA 1PL/PCM 0.0681 0.0768     0.0713 0.0708 

 3PL/GRM -0.0122 0.0002  -0.0027 -0.0006 

      

PC 1PL/PCM -0.0082 0.0042  0.0000 -0.0022 

 3PL/GRM -0.0180 -0.0024  -0.0035 -0.0019 

      

Kappa 1PL/PCM -0.0137 0.0092  0.0024 -0.0013 

 3PL/GRM -0.0240 0.0003  -0.0012 0.0011 
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Table 3.14 Weights of MC and FR Item Score in Composite Score in Study 4 

Test Length MC FR 

10 6.6667 10 

20 3.3333 5 

40 1.6667 2.5 

80 0.8333 1.25 

 

 

Table 3.15 “True” and Estimated PA in Study 4 

Test Length Metric "True" PA LL LL_Strat LEE HH 

10 Theta 0.7401 NA  NA 0.7597 

 Raw 0.6805 0.6611  0.6599 0.6602 

 Composite 0.6896 0.6453  NA 0.6808 

       

20 Theta 0.8019 NA NA NA 0.8147 

 Raw 0.7543 0.7393 0.7646  0.7438 0.7430 

 Composite 0.7708 0.7415 0.7930  NA 0.7645 

       

40 Theta 0.8478 NA NA NA 0.8479 

 Raw 0.8273 0.8151 0.8275  0.8246 0.8267 

 Composite 0.8311 0.8186 0.8447  NA 0.8290 

       

80 Theta 0.8897 NA NA NA 0.8882 

 Raw 0.8778 0.8722 0.8825  0.8757 0.8764 

 Composite 0.8788 0.8722 0.8908  NA 0.8767 
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Table 3.16 “True” and Estimated PC in Study 4 

Test Length Metric "True"PC LL LL_Strat LEE HH 

10 Theta 0.6869 NA  NA 0.6678 

 Raw 0.6246 0.5852  0.6142 0.6148 

 Composite 0.5872 0.5243  NA 0.5878 

       

20 Theta 0.7564 NA NA NA 0.7507 

 Raw 0.6802 0.6565 0.6857  0.6695 0.6691 

 Composite 0.6971 0.6450 0.7110  NA 0.6875 

       

40 Theta 0.7930 NA NA NA 0.7922 

 Raw 0.7638 0.7458 0.7614  0.7603 0.7619 

 Composite 0.7664 0.7450 0.7811  NA 0.7647 

       

80 Theta 0.8470 NA NA NA 0.8425 

 Raw 0.8266 0.8197 0.8338  0.8265 0.8291 

 Composite 0.8312 0.8197 0.8458  NA 0.8263 

 

 

Table 3.17 “True” and Estimated Kappa in Study 4 

Test Length Metric 
"True" 

Kappa 
LL LL_Strat LEE HH 

10 Theta 0.4999 NA  NA 0.4703 

 Raw 0.4147 0.3566  0.3969 0.3986 

 Composite 0.3917 0.2874  NA 0.3806 

       

20 Theta 0.6084 NA NA NA 0.6012 

 Raw 0.5118 0.4734 0.5184  0.4947 0.4941 

 Composite 0.5250 0.4627 0.5629  NA 0.5081 

       

40 Theta 0.6713 NA NA NA 0.6715 

 Raw 0.6302 0.6062 0.6305  0.6290 0.6313 

 Composite 0.6345 0.6109 0.6660  NA 0.6316 

       

80 Theta 0.7577 NA NA NA 0.7515 

 Raw 0.7266 0.7153 0.7377  0.7258 0.7298 

 Composite 0.7357 0.7230 0.7631  NA 0.7279 
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Table 3.18 Bias of PA Estimates in Study 4 

Test Length Metric LL LL_Strat LEE HH 

10 Theta NA  NA 0.0196 

 Raw -0.0194  -0.0206 -0.0203 

 Composite -0.0444  NA -0.0089 

      

20 Theta NA NA NA 0.0128 

 Raw -0.0149 0.0103  -0.0105 -0.0113 

 Composite -0.0293 0.0222  NA -0.0063 

      

40 Theta NA NA NA 0.0001  

 Raw -0.0122  0.0002  -0.0027  -0.0006  

 Composite -0.0125  0.0136  NA -0.0021  

      

80 Theta NA NA NA -0.0015  

 Raw -0.0055  0.0047  -0.0021  -0.0014  

 Composite -0.0067  0.0119  NA -0.0021  

 

 

Table 3.19 Bias of PC Estimates in Study 4 

Test Length Metric LL LL_Strat LEE HH 

10 Theta NA  NA -0.0191 

 Raw -0.0395  -0.0104 -0.0098 

 Composite -0.0629  NA 0.0006 

      

20 Theta NA NA NA -0.0057 

 Raw -0.0238 0.0054  -0.0107 -0.0112 

 Composite -0.0521 0.0140  NA -0.0095 

      

40 Theta NA NA NA -0.0009 

 Raw -0.0180 -0.0024  -0.0035 -0.0019 

 Composite -0.0214 0.0146  NA -0.0017 

      

80 Theta NA NA NA -0.0046 

 Raw -0.0069 0.0073  0.0000 0.0025 

 Composite -0.0115 0.0146  NA -0.0048 
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Table 3.20 Bias of Kappa Estimates in Study 4 

Test Length Metric LL LL_Strat LEE HH 

10 Theta NA  NA -0.0296 

 Raw -0.0581  -0.0178 -0.0161 

 Composite -0.1044  NA -0.0112 

      

20 Theta NA NA NA -0.0072 

 Raw -0.0384 0.0066  -0.0171 -0.0178 

 Composite -0.0623 0.0379  NA -0.0169 

      

40 Theta NA NA NA 0.0003 

 Raw -0.0239 0.0003  -0.0011 0.0011 

 Composite -0.0236 0.0315  NA -0.0028 

      

80 Theta NA NA NA -0.0062 

 Raw -0.0113 0.0110  -0.0009 0.0031 

 Composite -0.0127 0.0275  NA -0.0078 
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Figure 3.1 Calculations of “True” DC/DA Indices 
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Figure 3.2 “True” DC/DA Indices in Study 1 
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Figure 3.3 Bias of DC/DA Estimates in Study 1 
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Figure 3.4 Eigenvalues of Tests with 36 MC and 4 FR (Variance of Gamma = 0, 0.2, 0.5, 

1, from top left to bottom right) 
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Figure 3.5 Eigenvalues of Tests with 28 MC and 8 FR (Variance of Gamma = 0, 0.2, 0.5, 

1, from top left to bottom right) 
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Figure 3.6 “True” DC/DA Indices of Different Conditions in Study 2 
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Figure 3.7 Bias of DC/DA Estimates for 36 MC + 4 FR in Study 2 
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Figure 3.8 Bias of DC/DA Estimates for 28 MC + 8 FR in Study 2 
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Figure 3.9 “True” DC/DA Index of Fitting Different IRT models in Study 3 
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Figure 3.10 Bias of DC/DA Indices in Study 3 
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Figure 3.11 “True” DC/DA Estimates in Study 4 
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Figure 3.12 Bias of DC/DA Estimates on Composite Score Metric in Study 4 
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Figure 3.13 Bias of DC/DA Indices of HH Method on Theta Score Metric in Study 4 
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CHAPTER 4 

REAL DATA STUDY 

4.1. Method 

4.1.1. Data 

The real data study has the merits of assessing the performance of selected 

methods in real test conditions and truly reflecting the measurement errors without 

giving any advantages to certain models or assumptions. Therefore, the real data was 

used to evaluate the selected methods as a supplementary approach in addition to the 

simulation studies. Of course, while the results can be compared, truth is not known 

with real data and so when results are substantially different, it may be difficult to know 

which results are the most accurate. If the results are close, at least it is known that 

choice of method would be inconsequential on the results. 

Ideally a pair of parallel forms are needed so that the actual DC estimate can be 

compared to any single administration estimates. Nevertheless, the use of parallel forms 

data is not always available. Alternatively, a long test can be split into halves and the 

two half-tests can be treated as parallel forms to calculate the decision consistency index.  

Then, of course the single administration estimates would work with only one of the 

two halves of the longer test. This is the design, for example, that Livingston and Lewis 

used in their research and was used a lot in literature (see Huynh, 1976; Livingston & 

Lewis, 1995, etc.). The DC index observed from the two half-tests is compared with the 

DC index estimated by the methods using one of the two half-tests. 
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A large-scale standardized achievement test was selected for the real data study. 

The original test (the Advanced Placement biology exam in 2006) was administrated to 

a large group of examinees in 3 hours. It consisted of 98 MC questions (scored 0-1) and 

4 FR questions (scored 0-10). It was selected for the purpose because it was long in test 

length and consisted of both dichotomous and polytomous items. The data had a large 

sample size (20,000 examinees drawn from the original 131,783 test takers) so that the 

item and person ability parameters were well estimated in the IRT framework. 

4.1.2. “True” DC Indices 

The original full-length test was divided into two half-tests which were treated as 

two parallel forms. The cut scores were computed and applied to the two half-tests 

independently. A contingency table was constructed. The percentage of examinees who 

were classified consistently into the same category over the two half-tests was 

calculated and treated as the “true” PC, and the “true” Kappa was computed 

accordingly. 

To split the original test into two half-tests, each having 49 MC items (scored 0-1) 

and 2 FR items (scored 0-10), a few steps were checked to make sure they were as 

parallel as possible, in terms of both item- and test-level statistics. The mean and 

standard deviation of the item parameters were compared in Table 4.1. Figure 4.1 

plotted the raw score distributions for the full-length test and two half-tests. The 

reliability estimates of half-tests were check as well. The plots and numbers indicated 

that the two half-tests were quite comparable to each other. 
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The original full-length test classified the examinees into five grades. The observed 

percentages of examinees fallen into each of the five categories were 15.6%, 23.3%, 

21.2%, 20.3%, and 19.6%, from grade 1 (the lowest) to grade 5 (the highest). The 

percentages were adopted to compute the cut scores for the two half-tests in the real 

data study. The cut scores were defined in the way that the same percentages of 

examinees were classified into each of the five categories based on their half-test scores.  

(This process is equivalent to what is called an “equipercentile equating” of the cut 

scores on the two halves of the test.) 

Table 4.2 displayed the cut scores applied to the half-tests on raw score and 

composite score scale dividing the examinees into about the same percentages as 

specified above. The weights used in calculating the composite score were described in 

details in the following section.  

Apply the cut scores to the half-tests independently and the contingency table was 

obtained. When applying the four cut scores simultaneously, the percentage of 

examinees who were classified consistently into the same category was calculated as the 

“true” PC. The “true” Kappa was calculated accordingly. In addition, the “true” PC and 

Kappa when each of the four cut scores was applied separately were calculated too. 

Table 4.4 summarized the “true” PC and Kappa for applying the cut scores both 

simultaneously (denoted as “All Cuts”) and independently (denoted as “Cut1”, “Cut2”, 

“Cut3”, and “Cut4”), and on the raw score and composite score metrics. 

4.1.3. Factors Investigated 
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4.1.3.1. Reliability Estimate 

To investigate the impacts of choice of reliability estimate on DC estimate of LL 

method using real data, three options of reliability estimates were considered (a) the 

standard Cronbach’s alpha coefficient, (b) the stratified alpha coefficient, and (c) the 

correlation between the scores of two half-tests. The reliability estimates for the tests of 

different choices were summarized in Table 4.3. The variations based on the LL method 

were denoted as
CronbachLL ,

stratLL and 
corrLL , separately.  

4.1.3.2. Competing IRT Models 

Different from the simulation studies where the true models were known, the true 

models were unknown in the real data study. IRT-based methods by fitting competing 

IRT models were used to the real data, and their DC/DA estimates were compared. The 

assumption of unidimensionality was checked using the principal component analysis 

(PCA) prior to the IRT calibration. The eigenvalue plot in Figure 4.2 suggested the 

original full test was unidimensional. 

Three sets of competing IRT models used for the LEE and HH methods were (1) 

1PL/PCM, (2) 2PL/GRM, and (3) 3PL/GRM, the model before the slash was for 

dichotomous items while the model after was for polytomous items.  

4.1.3.3. Scoring Metric 

Two scoring metrics were used for the real data: the raw score and the composite 

score. The original full-length test was scored by using a composite score given by 

Composite score = 1.2245(MC raw score) + 2 (FR raw score) 
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where 1.2245 and 2 were the weights applied to each score point for the MC and FR 

items separately. Remembering that there were 98 MC items (scored 0-1) and 4 FR 

items (scored 0-10), the contributions by weighted MC and FR score to the composite 

score were 60% and 40%, separately. The scoring formula was adopted for the half-tests. 

This condition was not studied for the LEE method due to the reason explained in the 

previous chapter. 

4.1.3.4. Summary of Conditions 

In summary, there were nine variations of methods studied on raw score scale: 

Three for the LL method, three for the LEE method, and three for the HH method. And 

there were six variations of methods studied on composite score: Three for the LL 

method and three for the HH method. In total, there were 15 conditions included in the 

real data study to check the performance of the LL_based and IRT_based methods using 

their different options. 

4.2. Results 

4.2.1. Raw Score 

Table 4.5 and Table 4.6 displayed the PC and Kappa estimates for the variations of 

the LL method. Each variation was used for both the first and the second half-test. The 

tables showed that the estimates derived from two of the half-tests were very close to 

each other. The estimates from only the first half-test were used to plot for illustration. 

Figure 4.3 plotted the PC and Kappa estimates against the truth. The plots showed that 

the LL method with correlation of half-tests as the reliability estimate produced the 
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PC/Kappa estimates the closest to the “true” PC/Kappa indices (Note that this was not 

the reliability estimate used by Livingston and Lewis and is not the reliability estimate 

typically used in practice). This makes sense since the “true” PC/Kappa indices were 

calculated based on observation from the two half-tests. Besides, the LL method using 

the stratified alpha had good and accurate estimates too. The LL method using 

Cronbach’s alpha under-estimated the indices by about 0.05. The under-estimation was 

persistent when the cut scores were applied in different ways (whether multiple cuts 

applied together or single cut applied separately). 

Table 4.7 to Table 4.10 provided the PC and Kappa estimates for the variations of 

IRT-based methods. Again the estimates from both of the half-tests were very similar 

(differences on the third decimal) and the estimates from half-test 1 were plotted in 

Figure 4.4 for illustration. The plots showed that the LEE and HH methods using the 

2PL/GRM and 3PL/GRM produced almost identical results with the “true” DC indices. 

The methods using the 1PL/PCM tended to over-estimate the DC indices by 0.03. 

4.2.2. Composite Score 

Table 4.11 to Table 4.14 provided the PC and Kappa estimates on the composite 

score scale for the LL and HH methods. Figure 4.5 plotted the estimates against the 

“true” indices on the composite score scale. The plots showed that the DC estimates on 

composite score scale had close pattern with the estimates on the raw score scale. The 

LL method using Cronbach’s alpha persistently underestimated the indices on the 

composite score scale, and the difference was beyond 0.1 and larger than on the raw 
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score scale. The HH method with 1PL/PCM again overestimated the indices by around 

0.05. All the other variations of methods resulted in accurate estimates.
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Table 4.1 Mean and SD of Item Parameters in the Test 

Test a b c 

Full-length Test (1.29, 0.40) (0.09, 1.29) (0.18, 0.10) 

Half-test 1 (1.31, 0.40) (0.08, 1.37) (0.19, 0.09) 

Half-test 2 (1.28, 0.40) (0.09, 1.21) (0.17, 0.10) 

 

 

Table 4.2 Cut Scores of Half-Tests 

Score Test Cut 1 Cut 2 Cut 3 Cut 4 

Half-Test 1 24 34 41 49 Raw Score 

Half-Test 2 24 34 41 48 

      

Half-Test 1 31.71 47.27 58.86 70.86 Composite 

Score Half-Test 2 32.49 46.41 57.18 68.53 

 

 

Table 4.3 Reliability Estimates of Different Choices 

Test Correlation Cronbach’s Alpha Stratified Alpha 

Full-Length Test / 0.922 0.944 

Half-Test 1 0.895 0.846 0.900 

Half-Test 2 0.895 0.860 0.888 

 

 

Table 4.4 “True” PC and Kappa Indices 

Metric Cut PC Kappa 

Raw Score All Cuts 0.574 0.466 

 Cut 1 0.919 0.681 

 Cut 2 0.868 0.721 

 Cut 3 0.856 0.705 

 Cut 4 0.888 0.666 

    

Composite Score All Cuts 0.558 0.445 

 Cut 1 0.917 0.680 

 Cut 2 0.858 0.702 

 Cut 3 0.849 0.685 

 Cut 4 0.884 0.634 
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Table 4.5 PC Estimates on Raw Score Metric: LL Method 

Cut 
Corr 

_Test1 

Corr 

_Test2 

Cronbach 

_Test1 

Cronbach 

_Test2 

Strat 

_Test1 

Strat 

_Test2 

All Cuts 0.575 0.578 0.515 0.533 0.584 0.569 
Cut1 0.917 0.918 0.900 0.905 0.919 0.916 
Cut2 0.867 0.866 0.840 0.846 0.871 0.862 
Cut3 0.859 0.862 0.830 0.840 0.864 0.858 
Cut4 0.889 0.889 0.866 0.871 0.892 0.886 

 

 

Table 4.6 Kappa Estimates on Raw Score Metric: LL Method 

Cut 
Corr 

_Test1 

Corr 

_Test2 

Cronbach 

_Test1 

Cronbach 

_Test2 

Strat 

Test1 

Strat 

_Test2 

All Cuts 0.467 0.469 0.392 0.412 0.478 0.458 
Cut1 0.681 0.671 0.614 0.622 0.689 0.662 
Cut2 0.719 0.717 0.660 0.676 0.727 0.710 
Cut3 0.711 0.715 0.652 0.669 0.720 0.706 
Cut4 0.662 0.673 0.590 0.619 0.671 0.664 

 

 

Table 4.7 PC Estimates on Raw Score Metric: LEE Method 

Cut 
1PL/PCM 

_Test1 

1PL/PCM 

_Test2 

2PL/GRM 

_Test1 

2PL/GRM 

_Test2 

3PL/GRM 

_Test1 

3PL/GRM 

_Test2 

All Cuts 0.611 0.611 0.575 0.573 0.577 0.576 

Cut1 0.924 0.926 0.922 0.921 0.919 0.918 

Cut2 0.881 0.880 0.866 0.866 0.864 0.865 

Cut3 0.874 0.876 0.857 0.857 0.858 0.860 

Cut4 0.902 0.899 0.891 0.887 0.896 0.891 

 

 

Table 4.8 Kappa Estimates on Raw Score Metric: LEE Method 

Cut 
1PL/PCM 

_Test1 

1PL/PCM 

_Test2 

2PL/GRM 

_Test1 

2PL/GRM 

_Test2 

3PL/GRM 

_Test1 

3PL/GRM 

_Test2 

All Cuts 0.512 0.511 0.466 0.462 0.468 0.465 

Cut1 0.718 0.710 0.683 0.666 0.674 0.658 

Cut2 0.749 0.747 0.713 0.716 0.712 0.715 

Cut3 0.743 0.744 0.706 0.705 0.707 0.710 

Cut4 0.711 0.712 0.658 0.657 0.670 0.669 
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Table 4.9 PC Estimates on Raw Score Metric: HH Method 

Cut 
1PL/PCM 

_Test1 

1PL/PCM 

_Test2 

2PL/GRM 

_Test1 

2PL/GRM 

_Test2 

3PL/GRM 

_Test1 

3PL/GRM 

_Test2 

All Cuts 0.610 0.614 0.577 0.576 0.577 0.575 

Cut1 0.925 0.925 0.920 0.924 0.919 0.917 

Cut2 0.881 0.881 0.867 0.865 0.861 0.865 

Cut3 0.876 0.878 0.857 0.857 0.860 0.862 

Cut4 0.899 0.898 0.894 0.889 0.898 0.891 

 

 

Table 4.10 Kappa Estimates on Raw Score Metric: HH Method 

Cut 
1PL/PCM 

_Test1 

1PL/PCM 

_Test2 

2PL/GRM 

_Test1 

2PL/GRM 

_Test2 

3PL/GRM 

_Test1 

3PL/GRM 

_Test2 

All Cuts 0.511 0.514 0.468 0.466 0.468 0.464 

Cut1 0.720 0.710 0.672 0.671 0.676 0.654 

Cut2 0.748 0.750 0.716 0.714 0.705 0.716 

Cut3 0.747 0.749 0.707 0.705 0.711 0.714 

Cut4 0.703 0.709 0.668 0.665 0.677 0.670 

 

 

Table 4.11 PC Estimates on Composite Score Metric: LL Method 

Cut 
Corr 

_Test1 

Corr 

_Test2 

Cronbach 

_Test1 

Cronbach 

_Test2 

Strat 

Test1 

Strat 

_Test2 

All Cuts 0.560 0.559 0.463 0.479 0.570 0.538 
Cut1 0.911 0.908 0.880 0.882 0.914 0.902 
Cut2 0.861 0.858 0.815 0.817 0.865 0.847 
Cut3 0.855 0.857 0.805 0.816 0.860 0.845 
Cut4 0.887 0.891 0.844 0.860 0.890 0.884 

 

 

Table 4.12 Kappa Estimates on Composite Score Metric: LL Method 

Cut 
Corr 

_Test1 

Corr 

_Test2 

Cronbach 

_Test1 

Cronbach 

_Test2 

Strat 

Test1 

Strat 

_Test2 

All Cuts 0.448 0.447 0.326 0.346 0.460 0.420 
Cut1 0.660 0.643 0.542 0.544 0.671 0.620 
Cut2 0.709 0.701 0.611 0.615 0.715 0.679 
Cut3 0.697 0.701 0.594 0.617 0.707 0.678 
Cut4 0.641 0.654 0.504 0.556 0.653 0.632 
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Table 4.13 PC Estimates on Composite Score Metric: HH Method 

Cut 
1PL/PCM 

_Test1 

1PL/PCM 

_Test2 

2PL/GRM 

_Test1 

2PL/GRM 

_Test2 

3PL/GRM 

_Test1 

3PL/GRM 

_Test2 

All Cuts 0.601 0.601 0.555 0.543 0.562 0.538 

Cut1 0.917 0.919 0.913 0.910 0.917 0.907 

Cut2 0.878 0.874 0.855 0.849 0.856 0.849 

Cut3 0.872 0.874 0.848 0.847 0.848 0.844 

Cut4 0.902 0.901 0.889 0.881 0.894 0.881 

 

 

Table 4.14 Kappa Estimates on Composite Score Metric: HH Method 

Cut 
1PL/PCM 

_Test1 

1PL/PCM 

_Test2 

2PL/GRM 

_Test1 

2PL/GRM 

_Test2 

3PL/GRM 

_Test1 

3PL/GRM 

_Test2 

All Cuts 0.500 0.500 0.440 0.426 0.449 0.419 

Cut1 0.702 0.703 0.655 0.644 0.674 0.636 

Cut2 0.745 0.738 0.694 0.680 0.697 0.681 

Cut3 0.733 0.739 0.681 0.681 0.679 0.674 

Cut4 0.696 0.700 0.632 0.622 0.648 0.621 
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Figure 4. 1 Observed Raw Score Distributions of Full-length test and Two Half-tests 
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Figure 4.2 Eigenvalue Plot of Full-length Test 
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PC of LL_based Methods ( Half-test 1 )
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Figure 4.3 PC and Kappa Estimates of LL Method using Different Reliability Estimates 
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PC of IRT_based Methods ( Half-test 1 )
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Figure 4.4 PC and Kappa Estimates of IRT-based Methods Fitting Different IRT Models 
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PC on Composite Score Metric ( Half-test 1 )
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Kappa on Composite Score Metric ( Half-test 1 )
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Figure 4.5 PC and Kappa Estimates of Different Methods on Composite Score Metric 
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

5.1. Review of the Study 

Four simulation studies and one empirical study were conducted in this dissertation 

to evaluate four variations of three major DC/DA methods: the LL, LLstrat, LEE and HH 

methods. The robustness of these selected methods was evaluated against the factors of 

test length, local item dependency, model misfit and scoring metric on which the 

analyses are carried out. 

The simulation studies were implemented in the IRT framework for two reasons: 

Firstly, IRT models provide good fit to educational test data and have been shown to be 

effective and useful in solving many problems in the educational measurement field,. 

Secondly, the IRT models are widely used so that the study would have more practical 

implications. The simulation studies were carried out as the primary approach because 

different conditions could be easily manipulated and the “true” DC/DA indices could be 

calculated. The absence of a meaningful criterion makes it nearly impossible to compare 

competing methods otherwise.   

Study 1 looked at the performance of selected DC/DA methods in four different test 

lengths. It was found that all methods had reasonably well estimated the indices, 

although the LL method had larger biases of PC and Kappa estimates in short tests, 

compared with the other three methods. 

Study 2 focused on the test dimensionality and local item dependency (LID). Data 
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of various degrees of LID were generated. All methods greatly overestimated PA when 

the data had various levels of LID. The impact of LID on PC and Kappa estimates was 

much smaller, although the IRT-based methods tended to be more vulnerable in DC 

estimate to a high level of LID. 

Study 3 checked the consequences of IRT model-data misfit on DC/DA estimates. 

Again PA was overestimated when the data were fitted with the incorrect model, while 

the PC and Kappa estimates received minimal impact from model misfit. 

Study 4 checked the impact of using different scoring metrics. The scoring metric 

did not exhibit an obvious impact on DC/DA estimates, and the applicable methods 

performed in a similar way in the composite and theta score scales as in the raw score 

scale. Comparatively speaking, the LL method had a larger bias of PC and Kappa 

estimate on the composite score scale than on raw score scale. The HH method had 

consistently good estimates across the three scoring metrics. 

5.2. Summary of the Findings 

To summarize the findings in the simulation studies, it was found that 

(1) The violation of model assumptions had a great negative impact on decision 

accuracy estimates, while had negligible impact on decision consistency estimates. 

Specifically speaking, when the data in the study had LID or model misfit, the “true” 

PA dropped noticeably but not “true” PC or Kappa. The “true” PA therefore became 

smaller than “true” PC, which was different from what was expected in the standard 

conditions. In addition, all selected methods had greatly over-estimated PA when data 
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had various degrees of LID, and slightly over-estimated PA when there was misfit 

between 3PL/GRM data and 1PL/PCM model. Since the conditions of local item 

independency and model fit are the fundamental assumptions of the models underlying 

the selected methods, violation of them would appear to be a threat to the validity of PA 

index. 

While it was found that there were a couple of researches in literature looking at the 

factors affecting decision consistency, none of them studying the factors affecting 

decision accuracy. There were few papers investigating the PA index in simulation 

studies either. Since PA is important index indicating how accurate and valid the 

classification is, it is desirable that more studies would be conducted in the future to 

investigate the decision accuracy index and its related factors.  

(2) Compared to the PA estimates, the PC and Kappa estimates had only minimal 

impacts from the above factors, probably because, whatever the problem with the data, 

it was consistent across the parallel forms of the test. Clearly test length was a bigger 

factor, but there was no differential impact across methods, although the LL method did 

not seem to perform as well at the other methods with short tests. Presumably the CTT 

assumptions were more consequential with short tests. Besides, it was found that 

IRT-based methods had poorer PC and Kappa estimates while LLstrat had the best 

performance when the data had a high level of LID. 

(3) The results showed that scale for reporting was not important when the test was 

long, unidimensional, and had normal ability distribution. 
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The real data study was implemented as a supplementary approach to further 

investigate the performance of selected single-administration estimates of decision 

consistency and accuracy under different conditions. Combining the results of both 

studies, several conclusions can be drawn that reflect all of the work that was carried 

out in this research:   

(1) The LEE and HH methods had almost identical results in both studies and 

across all conditions. This had been expected, as both approaches incorporate exactly 

the same assumptions. The LEE method provides an analytic solution, and the HH 

provides a simulation solution of the same approach. It was useful to see the closeness 

of the results. It is not so clear what might happen when sampling errors in the item 

parameter estimates are present.  

(2) The LL method using standard Cronbach’s alpha consistently under-estimated 

PC and Kappa indices in all conditions. The LL method using stratified alpha 

functioned noticeably better with higher reliability estimates and showed more 

robustness in short test length, LID and composite score. The studies indicated that the 

reliability estimate did have a great impact on the LL method, and a good estimate 

could be computed as long as an accurate reliability estimate was provided. The 

Cronbach’s coefficient alpha, which is used the most widely in practice for the LL 

method, however, did not seem to be the best choice. Increases in the reliability 

estimates of even .05 in the real data study (due to the use of stratified alpha or 

parallel-form reliability) resulted in the LL method being notably more accurate. 
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(3) The LEE and HH methods had satisfactory performance and showed robustness 

of decision consistency estimates in most conditions. Furthermore, the HH method had 

a great flexibility and performed consistently well across different scoring metrics. One 

disadvantage of the HH method is that since it is simulation-based, every run would 

result in a different value for the estimate. However, the difference is small and should 

be negligible if the simulations were run multiple times and the average of the estimates 

is used. Besides, a large sample size is a must prior to any IRT application, including 

the HH method. 

Lastly, it is worthy of pointing out that the IRT- and CTT-based methods make 

different assumptions about the parallel forms. IRT-based methods assume strictly 

parallel forms, where the items in parallel forms share exactly the same parameters, 

while CTT-based methods assume randomly parallel forms, where the items are 

randomly drawn from a parallel item bank. The “true” item parameters are fixed during 

the simulation studies, which may put an advantage for the IRT-based methods over the 

CTT-based methods. Therefore further simulation studies in which the “true” item 

parameters are varied by randomly drawing items from an item pool may be desired for 

future study. 
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