Concurrent Sessions D: Designing Roughened Channels for Fish Passage - Selection, Design and Construction of Roughened Channels for Fish Passage

Patrick D. Powers
P.E., Waterfall Engineering, LLC

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
DESIGN AND CONSTRUCTION OF ROUGHENED CHANNELS FOR FISH PASSAGE

Fish Passage 2013

Pat Powers
Waterfall Engineering, LLC
www.waterfallengineering.com
Roughened channels are man-made fish passage channels which are used to retrofit passage through culverts, over dams and other structures. They differ from natural channel designs in that they are usually steeper and/or narrower than adjoining channels. But, should include natural channel features.
Other Names?

Rock Ramps – No Change in Bed Form

Chutes and Pools – Step/Pool

Rock Weirs – Drop Structures

Nature Like Fishways – Mimicking Natural Systems
Nature Like Fishways

Bypass Channels

Rock Ramps

Riffle Pool
Step Pool
Weir and Pool
Riprap

Laura Wildman
Natural Channel Features

- Plan View
 Straight Channels due to gradient
- Cross Section
 V or U shaped to create variable depth and reduced velocity boundary layer
- Profile
 Step/Pool
- Fish or Habitat Boulders or LWD?
 Resting/Cover
Problem?

Streambed

Dam or Culvert

Roughened Channel
Roughened Channel/Stream Simulation

Stream simulation is more of a reference reach/geomorphic design process, where fish passage is assumed based on the presence and long term stability of maintaining a natural features within a defined range of slope.

As Slope Increases SS and RC are similar.
Data Collection For Roughened Channel Design

- Fish Species and Life Stage
- Hydrology – Fish Passage and Flood Flows
- Survey Profile and Channel Geometry
- Pebble Counts – Background Sediment
- Steep Reference Reaches
Important Design Aspects

- Velocity
- Bed Stability
- Turbulence
- Bed Porosity
- Foundation
- Fish Rocks
WDFW Juvenile Fish Passage Study

60 mm Coho
Carey Creek

Channel Construction: 2000

8.0% Slope @ 45'-long
Armor Layer = 12”-24” boulders
Energy Dissipation Factor @ High Fish Passage Flow = 30.0 ft-lb/ft³/sec.

Paul Tappel
Fisheries Engineering, Inc.
Slide Creek

Channel Construction: 2004

10.0% Slope @ 110'-long Armor Layer = 12”-36” boulders
Energy Dissipation Factor @ High Fish Passage Flow = 41.6 ft-lb/ft3/sec.
Green Creek - Before
Green Creek Profile

Cross Section
Excavation

Riprap
Foundation

Roughened
Channel Mix
and Boulders
Green Creek - After
High Design Flow 320 cfs
Mill Creek – Plan View Layout
Mill Creek – Profile and Cross Section

Final Grade to be 6” thickness (3” Minus Pit Run Gravel with fines) washed into bed to seal at flows of 3 cfs.

Roughened Channel Mix, 18” Thickness

Habitat Boulders

Heavy Loose Riprap 2.5” Thickness

STA 117+80 Showing Rock Detail

SCALE 1”=10’

3.5%
Roughened Channel Design Equations

<table>
<thead>
<tr>
<th>Design</th>
<th>Q Design</th>
<th>Channel Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>26</td>
<td>0.028</td>
</tr>
</tbody>
</table>

Channel Stability Analyses

<table>
<thead>
<tr>
<th>Channel</th>
<th>Q</th>
<th>D50</th>
<th>D50</th>
<th>D50</th>
<th>D50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathurst</td>
<td>2.03</td>
<td>2.16</td>
<td>2.39</td>
<td>2.21</td>
<td>2.68</td>
</tr>
<tr>
<td>SCS</td>
<td>2.43</td>
<td>2.50</td>
<td>2.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FHWA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Q 135 cfs/ft

Fish Passage Analysis

<table>
<thead>
<tr>
<th>Channel Width: 25 ft</th>
<th>Channel Slope: 0.028</th>
<th>Design Slope: 4 fps</th>
<th>Design Velocity: 29.0 f/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel Width: 25 ft</td>
<td>Channel Slope: 0.028</td>
<td>Design Slope: 4 fps</td>
<td>Design Velocity: 29.0 f/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>A</th>
<th>Wp</th>
<th>R'“n”</th>
<th>R““n”</th>
<th>F</th>
<th>n (D50)</th>
<th>V (D50)</th>
<th>n (D84)</th>
<th>V (D84)</th>
<th>V (D100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>94.80</td>
<td>33.24</td>
<td>0.82</td>
<td>0.36</td>
<td>0.14</td>
<td>0.151</td>
<td>0.33</td>
<td>0.158</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>2.3</td>
<td>60.33</td>
<td>30.62</td>
<td>0.60</td>
<td>1.97</td>
<td>0.22</td>
<td>0.126</td>
<td>3.1</td>
<td>0.132</td>
<td>3.0</td>
<td>188</td>
</tr>
<tr>
<td>1.2</td>
<td>31.34</td>
<td>26.41</td>
<td>0.34</td>
<td>1.10</td>
<td>0.41</td>
<td>0.089</td>
<td>3.0</td>
<td>0.083</td>
<td>2.9</td>
<td>94</td>
</tr>
<tr>
<td>0.8</td>
<td>15.84</td>
<td>27.21</td>
<td>0.18</td>
<td>0.57</td>
<td>0.63</td>
<td>0.058</td>
<td>3.5</td>
<td>0.052</td>
<td>3.3</td>
<td>54</td>
</tr>
</tbody>
</table>
Roughened Channel Design Process

![Graph showing the relationship between Max Velocity (fps) and Mannings n. The graph includes a blue line for HEC RAS Design 0.085 and a red dashed line for Design for Trout. A black arrow points to the intersection of the two lines, labeled Ugarte and Madrid, 1994.]