Jun 9th, 10:40 AM - 11:00 AM

Prediction of Total Dissolved Gas below Overthrough Spillways

J. Gulliver
University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Gulliver, J., "Prediction of Total Dissolved Gas below Overthrough Spillways" (2014). International Conference on Engineering and Ecohydrology for Fish Passage. 16.
https://scholarworks.umass.edu/fishpassage_conference/2014/June9/16

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Prediction of Total Dissolved Gas at Overthrough Spillways

John S. Gulliver, Professor, Department of Civil Engineering, University of Minnesota
John Groeneveld, Senior Engineer, Hatch Energy, Calgary, Alberta
Guy E. Paul, Senior Engineer, Avista Corporation, Spokane, WA
Kimberly Pate, Power Production Dam Safety Supervisor, Seattle City and Light, Seattle, WA
Outline

1. Background on overthrough spillways
2. TDG challenge
3. Projects for TDG prediction
4. Numerical method
5. Results and discussion
6. Conclusions
Background on Overthrow Spillways

- Spillways that dissipate energy by “throwing” spilled water over the plunge pool.
There are three conditions necessary to result in high TDG concentrations in a spillway tailwater:

1. An energetic flow with a substantial amount of turbulent energy,
2. Air entrainment that occurs, and
3. Air bubbles that are carried to depth within the tailwater.

Reduction of any of the three will likely result in lower TDG concentrations.
Projects for TDG Prediction

Cabinet Gorge Project

- Montana-Idaho Border
- 270 MW capacity
- 1080 cms powerhouse discharge
- 2270 cms 7Q10 spill discharge
- Spillway fall height = 18 m
- Combined TDG = 132%
- TDG regulations = 110%
- Proposed tunnel for spill rejected
- Alterations to gate structures believed to be best solution
Projects for TDG Prediction

Boundary Project

- Pend Oreille River in northeastern Washington – boundary with Canada
- 1040 MW capacity
- 1500 cms powerhouse discharge
- 750 cms 7Q10 spill discharge
- 60 m fall from spillway
- TDG regulations = 110%
- Alterations to spillways and gate structures believed to be best solution
Numerical Method

- FLOW3D
- Model Velocities
- Particle tracking for bubbles
- Mass transfer calcs. on bubbles
Spillway Discharge

Note: Velocities are in ft/s

Cabinet Gorge Bypass Tunnels
Reference Case R3 – Velocity Contours at Spillway

Figure 5.4
Assumptions for Gas Transfer

• There is sufficient air entrainment so that the rate of air entrainment is not a limiting factor.
• TDG concentration in the tailwater pool has reached steady state.
• The bubbles are exposed to a similar water concentration throughout the pool.
• The mass transfer across the water surface is negligible (probably the least reliable assumption).
• TDG from the powerhouse can be used in a flow-weighted mean with the spillway TDG
Gas transfer computations

- Particle tracking of bubbles with rise velocity of 0.2 m/s
- Bubbles change size and concentration with hydrostatic pressure
- Applied mass transfer relations to each bubble
- Optimized to steady state water concentration of TDG
- NO fitted coefficients
Mass transfer relationships

- Mass transfer
 \[
 \frac{1}{AC_s} \frac{dM}{dt} = K_L \left(\frac{C}{C_s} - \frac{C_E}{C_s} \right)
 \]

- Bubble concentration, \(C_E \)
 \[
 \frac{C_E}{C_s} \approx 1 + \frac{\text{depth}(m)}{10.3}
 \]

- Liquid film coefficient
 \[
 K_L = (2\pi D)^{1/2} \frac{U^\eta}{L^{1-\eta} \nu^{\eta-1/2}}
 \]
 - \(L = 0.7\text{*dia.} \) (Nezu and Nakagawa, 1994)
 - \(\eta = 0.75 \) (Azbel, 1980)
Verification Spillway Results

<table>
<thead>
<tr>
<th>Spillway Discharge (CMS)</th>
<th>Powerhouse Discharge (CMS)</th>
<th>Predicted Spillway TDG (%)</th>
<th>Powerhouse TDG (%)</th>
<th>Predicted Combined TDG (%)</th>
<th>Measured TDG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet Gorge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>1060</td>
<td>149</td>
<td>115</td>
<td>133</td>
<td>132</td>
</tr>
<tr>
<td>Boundary Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>420</td>
<td>480</td>
<td>150</td>
<td>101</td>
<td>124</td>
<td>127</td>
</tr>
<tr>
<td>340</td>
<td>1500</td>
<td>147</td>
<td>122</td>
<td>126</td>
<td>127</td>
</tr>
<tr>
<td>750</td>
<td>1480</td>
<td>158</td>
<td>128</td>
<td>138</td>
<td>134</td>
</tr>
</tbody>
</table>
Boundary Spillway Alterations
Visualization of bubble paths

Before Spillway Alteration

After Spillway Alteration
Bubble Depths

Before Spillway Alteration
= 135.3%

After Spillway Alteration
= 126.6%
Conclusions

• Assumptions are designed for overthrow spillways with plunge pools
• CFD particle tracking
• Mass transfer model
• No fitted coefficients with these assumptions
• TDG predicted to within +/- 4%.
• Alterations to spillway and gate design can be tested.
Thank you!

Questions?