Population Structure in the Model Grass Brachypodium distachyon Is Highly Correlated with Flowering Differences across Broad Geographic Areas

Ludmila Tyler
University of Massachusetts Amherst

Scott J. Lee
University of Massachusetts Amherst

Nelson D. Young
University of Massachusetts Amherst

Gregory A. Delulio
University of Massachusetts Amherst

Elena Benavente
Technical University of Madrid

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/biology_faculty_pubs

Part of the [Biology Commons](https://scholarworks.umass.edu/biology_faculty_pubs)

Recommended Citation

Tyler, Ludmila; Lee, Scott J.; Young, Nelson D.; Delulio, Gregory A.; Benavente, Elena; Reagon, Michael; Sysopha, Jessica; Baldini, Riccardo M.; Troia, Angelo; Hazen, Samuel P.; and Caicedo, Ana L., "Population Structure in the Model Grass Brachypodium distachyon Is Highly Correlated with Flowering Differences across Broad Geographic Areas" (2016). *The Plant Genome.* 622.
https://doi.org/10.3835/plantgenome2015.08.0074
Authors
Ludmila Tyler, Scott J. Lee, Nelson D. Young, Gregory A. Delulio, Elena Benavente, Michael Reagon, Jessica Sysopha, Riccardo M. Baldini, Angelo Troia, Samuel P. Hazen, and Ana L. Caicedo

This article is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/biology_faculty_pubs/622
Population Structure in the Model Grass *Brachypodium distachyon* Is Highly Correlated with Flowering Differences across Broad Geographic Areas

Ludmila Tyler, Scott J. Lee, Nelson D. Young, Gregory A. Delulio, Elena Benavente, Michael Reagon, Jessica Sysopha, Riccardo M. Baldini, Angelo Troia, Samuel P. Hazen, and Ana L. Caicedo*

Abstract

The small, annual grass *Brachypodium distachyon* (L.) Beauv., a close relative of wheat (*Triticum aestivum* L.) and barley (*Hordeum vulgare* L.), is a powerful model system for cereals and bioenergy grasses. Genome-wide association studies (GWAS) of natural variation can elucidate the genetic basis of complex traits but have been so far limited in *B. distachyon* by the lack of large numbers of well-characterized and sufficiently diverse accessions. Here, we report on genotyping-by-sequencing (GBS) of 84 *B. distachyon*, seven *B. hybridum*, and three *B. stacei* accessions with diverse geographic origins including Albania, Armenia, Georgia, Italy, Spain, and Turkey. Over 90,000 high-quality single-nucleotide polymorphisms (SNPs) distributed across the Bd21 reference genome were identified. Our results confirm the hybrid nature of the *B. hybridum* genome, which appears as a mosaic of *B. distachyon*-like and *B. stacei*-like sequences. Analysis of more than 50,000 SNPs for the *B. distachyon* accessions revealed three distinct, genetically defined populations. Surprisingly, these genomic profiles are associated with differences in flowering time rather than with broad geographic origin. High levels of differentiation in loci associated with floral development support the differences in flowering phenology between *B. distachyon* populations. Genome-wide association studies combining genotypic and phenotypic data also suggest the presence of one or more photoperiodism, circadian clock, and vernalization genes in loci associated with flowering time variation within *B. distachyon* populations. Our characterization elucidates genes underlying population differences, expands the germplasm resources available for *Brachypodium*, and illustrates the feasibility and limitations of GWAS in this model grass.

Core Ideas

- Genotyping diverse *Brachypodium* accessions expands research tools for grasses.
- The *B. hybridum* genome is a mosaic of *B. distachyon*- and *B. stacei*-like sequences.
- Three distinct, genetically defined populations of *B. distachyon* were identified.
- Flowering time, more than geography, distinguishes *B. distachyon* populations.
- Results support the feasibility of genome-wide association studies in a model grass.

L. Tyler, Biochemistry and Molecular Biology Dep., Univ. of Massachusetts, Amherst, MA, 01003; S.J. Lee, Biology Dep., Univ. of Massachusetts, Amherst, MA, 01003 and Plant Biology Graduate Program, Univ. of Massachusetts, Amherst, MA, 01003; N.D. Young, S.P. Hazen, and A.L. Caicedo, Biology Dep., Univ. of Massachusetts, Amherst, MA, 01003; E. Benavente, Dep. of Biotechnology, ETSIA, Technical Univ. of Madrid, 28040 Madrid, Spain; M. Reagon, Dep. of Biology, The Ohio State Univ.–Lima, Lima, Ohio, 45804; J. Sysopha, Biology Dep., Univ. of Massachusetts, Amherst, MA, 01003; G.A. Delulio, Biochemistry and Molecular Biology Dep., Univ. of Massachusetts, Amherst, MA, 01003 and Plant Biology Graduate Program, Univ. of Massachusetts, Amherst, MA, 01003; R.M. Baldini, Dep. of Biology, Univ. of Florence, 50121 Florence, Italy; A. Troia, Dipartimento STEBICEF, Sezione di Botanica ed Ecologia vegetale, Università di Palermo, Palermo, 90133, Italy. Received 25 Aug. 2015. Accepted 29 Dec. 2015. *Corresponding author (caicedo@bio.umass.edu).

Abbreviations: F_{ST}, F_{ST}; GBS, genotyping-by-sequencing; GLM, general linear model; GO, gene ontology; GWAS, genome-wide association studies; LD, linkage disequilibrium; MLM, mixed linear model; MTA, marker–trait association; PCR, polymerase chain reaction; SNP, single nucleotide polymorphism; SSR, simple-sequence repeat.
Studying inherited natural variation can elucidate the genetic basis of complex, multigenic traits. In particular, next-generation genotyping has enabled GWAS, which examine large, diverse populations for correlations between alleles at individual markers and phenotypes of interest. The GWAS approach has been successful in a number of plant species, including rice (Oryza sativa L.), maize (Zea mays L.), barley, the bioenergy grass Miscanthus × giganteus J. M. Gref & Deuter ex Hordk. & Renvoie, and the dicotyledenous model Arabidopsis thaliana (L.) Heynh. (Atwell et al., 2010; Huang et al., 2010; Tian et al., 2011; Pasam et al., 2012; Slavov et al., 2014). With the increasing demand for plants as sources of food, feed, and fuel, there is a growing need for tools to improve our understanding of agronomically important traits. Whether the investigations are performed in crops or model species, the success of GWAS depends on the availability of extensive, diverse, and well-characterized germplasm collections.

Here, we expand the germplasm resources available for the model grass B. distachyon. Brachypodium distachyon was first proposed as a model research organism nearly 15 yr ago (Draper et al., 2001) and has rapidly developed into a powerful system with a wealth of research tools (Brkljacic et al., 2011; Mur et al., 2011; Girin et al., 2014). As a small, diploid annual with a compact, sequenced genome (International Brachypodium Initiative, 2010) and amenability to both crossing and genetic transformation (Vain et al., 2008; Vogel and Hill, 2008; Alves et al., 2009; Bragg et al., 2012), B. distachyon has many of the advantages of the preeminent plant model, Arabidopsis thaliana (Koornneef and Meinke, 2010). However, unlike A. thaliana, B. distachyon is in the Pooideae subfamily of the grasses, together with wheat, oat (Avena sativa L.), and barley—and is thus an especially valuable model for the temperate cereals (Mochida and Shinazaki, 2013). Because it has the type II cell walls typical of grasses, B. distachyon is also being used to investigate feedstock properties for bioenergy production (Gomez et al., 2008; Lee et al., 2012; Marriott et al., 2014; Tyler et al., 2014). Despite all these advantages, germplasm collections of B. distachyon remain limited. Although the native range of B. distachyon stretches across the Mediterranean region (Garvin et al., 2008; López-Alvarez et al., 2015), material from only two countries, Spain and Turkey, has been characterized in detail. This limitation has hindered assessment of structure and other population parameters in the species, as well as development of a diverse germplasm collection for GWAS.

Until recently, the diploid B. distachyon, with a haploid chromosome number of 5, was grouped in the same species with morphologically similar Brachypodium plants that have haploid chromosome numbers of 10 and 15. These latter two cytotypes are now considered separate species: B. stacei (n = 10) and B. hybridum (n = 15) (Catalán et al., 2012). Fluorescence and genomic in situ hybridization have elegantly demonstrated that B. hybridum is an allotetraploid arising from interbreeding between diploid, B. distachyon-like and B. stacei-like parents (Hasterok et al., 2004; Idziak et al., 2011; Catalán et al., 2012). Flow cytometry has shown that the genome of B. hybridum is approximately twice the size of the B. stacei or B. distachyon genome (Catalán et al., 2012). Furthermore, DNA barcoding and polymerase chain reaction (PCR)-based analysis of simple-sequence repeats (SSRs) have emerged as methods for Brachypodium species identification (Giraldo et al., 2012; López-Alvarez et al., 2012). While B. stacei and B. hybridum are useful for investigating speciation and ploidy, B. distachyon has remained the premier model system within this genus, and it is crucial to correctly distinguish the three species when developing germplasm resources for GWAS.

In this study, we undertook the collection and characterization of 54 new Brachypodium accessions, together with 40 previously described lines, originating from the northern arc of the Mediterranean region and the Middle East. Our collection includes novel material from Spain, Italy, Albania, Georgia, and Armenia. We performed reduced-representation sequencing to generate a large collection of polymorphic markers, which allowed us to both differentiate between species and elucidate the population structure within B. distachyon. Interestingly, we identified flowering time as a major factor correlated with population structure. Despite this correlation, and the occurrence of strong structure in the species, we were able to use flowering time as an example to illustrate the feasibility of GWAS and limits to its resolution in our extended germplasm panel.

Materials and Methods

Plant Materials and Growth Conditions

Between 2008 and 2012, we harvested seeds from individual plants in the field to develop five new lines from Albania, four from Armenia, 10 from Italy, and 16 from Spain. Seeds collected in the country of Georgia were used to generate 18 new lines; however, because seeds from more than one plant at each harvest site were pooled, lines from the same site in Georgia could be siblings. Also included in this study are two reference B. hybridum lines, ABR100 and ABR113; one reference B. stacei line, ABR114 (Draper et al., 2001; Hasterok et al., 2004); and five previously characterized inbred B. distachyon lines, Bd21, Bd21–3, Bd3–1, Bd30–1, and Bd1–1 (Vogel et al., 2006; Vogel and Hill, 2008; Schwartz et al., 2010; Ream et al., 2014). Eighteen previously characterized inbred B. distachyon lines from Turkey (Filiz et al., 2009; Vogel et al., 2009) and 14 additional accessions from Spain (Giraldo et al., 2012) were included as well. We derived a Ukrainian line by single-seed descent from material deposited at the USDA National Plant Germplasm System under stock number PI 639818. Although D. Garvin used the same stock to generate inbred line Bd29–1 (Ream et al., 2014), the Ukrainian line used in the current study (Ukr-Nvk1) and Bd29–1 are distinct. A 95th line, BsUPM_AL11 (Giraldo et al., 2012), which
had been identified as *B. stacei*, was also submitted for GBS. However, because the GBS results and chromosome counting indicated that the submitted sample was contaminated with DNA from a second accession, BsUPM_AL1.1 was removed from subsequent analyses. To maintain consistency with the previous nomenclature, while also promoting the clear identification of lines in this study, three-letter prefixes indicating geographic origin were combined with the accession name assigned by the original collector. A three-letter country code (e.g., Ita for Italy)—and in some cases, a three-letter locality code (e.g. Sic for Sicily)—was added to the beginning of each accession name. For consistency, prefixes were added even to the names of well-characterized reference lines; for example, Iirq-Bd21 indicates Bd21, the line that originated in Iraq and was the source of the *B. distachyon* reference genome sequence (International Brachypodium Initiative, 2010). Supplemental Table S1 contains detailed information about the final 94 lines used.

To synchronize germination and promote flowering, seeds were cold treated before planting. Seeds were first sterilized by removing the lemmas, washing the seeds for 4 min in a solution of 15% bleach plus 0.1% Triton-X 100 (Sigma-Aldrich), and rinsing the seeds twice with sterile water. Seeds were placed on damp paper towels for stratification at 4°C before sowing.

For DNA extraction and seed bulking, seeds were sown in a 3:1 mixture of potting mix (#2, Conrad Fafard Inc.) and Turface particles (Profile Products). Plants were grown in a greenhouse with a 20-h photoperiod including supplemental lighting. Temperature varied somewhat with the outside temperature at our location (Amherst, MA, 42.392°N, 72.525°W). For phenotypic characterizations, seeds were sown in potting mix (Pro-Mix BX, Hummert International), and plants were grown in an environmentally controlled greenhouse under 16-h light vs. 8-h dark conditions, with day vs. night temperatures of 24 and 20°C, respectively.

Seeds for all accessions that proved amenable to bulking are being deposited into the USDA National Plant Germplasm System/Germplasm Resources Information Network (NPGS/GRIN, http://www.ars-grin.gov/npgs/).

DNA Extraction and Genotyping-by-Sequencing

DNA was extracted from leaf tissue of individual plants or inbred lines using a DNeasy Plant Mini Kit (Qiagen) with the following modifications: Buffer AP1 was heated to 65°C before use; a TE solution of 10 mM Tris, 0.1 mM ethylenediaminetetraacetic acid (EDTA), pH 8 was used for elution and was also heated to 65°C.

DNA concentration was quantified using a Qubit 2.0 fluorometer and Quant-iT dsDNA HS Assay Kit (Invitrogen). The quality of the genomic DNA was confirmed by running samples on a 1% agarose gel for comparison to a λ-DNA HindIII size standard (New England Biolabs) and by digesting a subset of samples with HindIII (New England Biolabs).

The DNA samples were submitted to the Cornell University Institute for Genomic Diversity for GBS (Ithaca, NY), as described previously (Elshire et al., 2011). The GBS library with 96 unique barcodes represented one blank and 95 genomic DNA samples (Supplemental Table S1). Briefly, samples were digested with ApeKI, ligated to barcoding and common adaptors, and amplified via PCR. The resulting fragments were tested for size and sequenced in a single lane on an Illumina HiSeq 2000 using 100 nucleotide single-end reads. The mean number of reads obtained per individual was 2.1 million. Raw reads were submitted to the National Center for Biotechnology Information Short Read Archive under experiment SRX796779.

Filtering Sequencing Data for Single-Nucleotide Polymorphism Calling and Quality Control

Single-nucleotide polymorphism calling and initial filtering for the raw sequence reads were performed at Cornell University, as described by Elshire et al. (2011), using the GBS pipeline in TASSEL Version 3.0.138 (1 Nov. 2012). In summary, reads were checked for the presence of a barcode and at least 72 bases of good sequence, trimmed to 64 bases, and aligned to the Bd21 v1.0 reference genome sequence, designated Bd21-1 (http://www.brachypodium.org/gmod/genomic/accessions/1; file: Bdistachyon.MIPS_1_2.fa.gz, downloaded 8 Nov. 2012) (International Brachypodium Initiative, 2010). Sequence tags mapping to multiple genomic loci were discarded. The maximum number of good reads per lane was set to 4×10^6, the minimum sequence tag count to 5, and the minimum minor allele frequency to 0.001. Heterozygotes were called when each allele was supported by the minimum sequence tag count; loci with more than three alleles were discarded. Minimum site coverage was set to 0.8, that is, SNP data had to be present for at least 80% of the accesses for the SNP to be retained. This analysis yielded a filtered set of 192,974 SNPs in HapMap format.

Next, we discarded SNPs that mapped to the multiple, small, extrachromosomal contigs included in the Bd21 reference genome (International Brachypodium Initiative, 2010). We further filtered SNPs to remove those in or adjacent to mononucleotide repeats longer than 5 bases and SNPs with missing data (N) for >10% of the accesses. This additional filtering resulted in 99,872 high-quality SNPs for the full set of 94 *Brachypodium* lines characterized by GBS (Supplemental Data S1). However, our later analyses indicated that 10 of 94 (11%) of the accesses were *B. stacei* or *B. hybridum* (Supplemental Table S1). Repeating the filtering for the 84 putative *B. distachyon* accesses yielded 54,392 high-quality SNPs in a *B. distachyon*-only set (Supplemental Data S14).

Species Assignment via Sequencing of the *trnL-trnF* Locus

Polymerase chain reaction primers flanking a *trnL-trnF* intergenic region diagnostic for *Brachypodium* species identification (López-Alvarez et al., 2012) were used to
amplify part of the plastid trnLF locus from the same DNA samples that were sent for GBS. As previously described (Taberlet et al., 1991; López-Alvarez et al., 2012), 'c' (5' CGAATCGGTAGACGCTACG 3') and 't' (5' ATTTGAACGTGACACGAG 3') universal primers were used for PCR. Amplification was performed with ExTaq DNA polymerase (Clontech) under the following conditions: 98°C for 30 s; 35 cycles of 98°C for 10 s, 53°C for 30 s, 72°C for 1 min; and 72°C for 10 min. The forward 'c' primer was used for Sanger sequencing of the trnLF sequence (GenBank: JN187658.1) determined by Catalán Bd3-1 and Por-ABR113. For comparison, an ABR113 (Alb-AL1A, Alb-AL1D, and Geo-30i2) or because of a lack of clear PCR or sequencing results sequence at the trnLF and Kumar, 2000; Tamura et al., 2011). In a few cases, sequence at the trnLF locus was not determined, either because of a lack of clear PCR or sequencing results (Alb-AL1A, Alb-AL1D, and Geo-30i2) or because the species assignment had been previously established (Irr-Bd3-1 and Por-ABR113). For comparison, an ABR113 sequence (GenBank: JN187658.1) determined by Catalán et al. (2012) was included. New trnLF sequences were submitted to Genbank (accessions KU163145-KU163233; Supplemental Table S1).

Population Structure and Relatedness
The high-quality SNP sets were subjected to principal component analysis (PCA) using SmartPCA in the EIGENSOFT package (Patterson et al., 2006; Price et al., 2006). The PCA used the full set of 99,872 or 54,392 SNPs for all-Brachypodium or B. distachyon-only analyses, respectively. The number of output principal components was set to 10 without removing outliers.

Subsets of the high-quality SNPs were analyzed using version 2.3.3 of the STRUCTURE software (Pritchard et al., 2000; Falush et al., 2003, 2007; Hubisz et al., 2009) as installed on the Bioportal web service at the University of Oslo, Norway, in July of 2013. Sites with ambiguity codes were excluded from the analysis. To limit problems associated with closely linked loci and ease computational burden, SNPs 15 to 16 kb apart were randomly selected, resulting in 10,169 or 9907 loci for the all-Brachypodium or B. distachyon-only analyses, respectively. Burn in was set to 100,000 and the number of runs to 500,000. Because these Brachypodium species are primarily selfing and cannot achieve Hardy–Weinberg equilibrium, ploidy was set to 1. An admixture model was used to test the possibilities that K = 1 to K = 15 populations with three replicates. The ΔK method (Evanno et al., 2005) was used to determine the number of populations consistent with the SNP data.

Relationships among GBS haplotypes of B. distachyon and B. stacei were assessed using neighbor-joining and maximum likelihood analyses. Heterozygous calls were converted to missing data to decrease the impact of possible misalignment of paralogous regions. Both neighbor-joining and maximum likelihood RAxML (Stamatakis, 2014) trees, based on 93,801 SNPs in total, were generated using iPlant apps (Goff et al., 2011). The neighbor-joining tree was generated using a Kimura two-parameter nucleotide substitution model and 1000 bootstrap replicates to assess branch support. The maximum likelihood tree was generated using default settings and the general time-reversal plus gamma (GTR + G) model. Unrooted trees were visualized with Dendroscope (Huson et al., 2007).

Calculating Timing of Population Divergence
We used DIYABC version 2.0 (Cornuet et al., 2014), which applies approximate Bayesian computation (Beaumont et al., 2002), to infer the time of divergence for the two main B. distachyon populations. Sicilian accessions constituting PCA-defined Cluster 3A (see Results section) were excluded from this analysis to reduce the effects of population substructure. We used a subset of 10,000 randomly selected SNPs with a minor allele frequency cutoff of 5%. We assumed a simple demographic model, which simulated a population that split at time t with no subsequent gene flow between the resulting populations. Our model included three parameters: the sizes of the two populations and time of divergence. The analysis using 200,000 simulations was performed on a 64-core computer server at the University of Massachusetts–Amherst. Posterior estimates of the three parameters were determined using the logistic transformation option.

F-Statistic Analysis of Population Differentiation
We estimated SNP-specific Fs between the two main B. distachyon populations and searched for outliers using the programs LOSITAN (Beaumont and Nichols, 1996; Antao et al., 2008) and BayeScan 2.1 (Foll and Gaggiotti, 2008). Because of their status as a separate clade, and to keep the analysis to two populations, Sicilian accessions in PCA-defined Cluster 3A were excluded. Sites with a minor allele frequency <5% were also removed. Heterozygous calls were recoded as missing data to decrease the impact of possible misalignment of paralogous regions; however, average Fs values calculated with or without heterozygous calls were very similar. In total, 26,897 SNPs were included. For LOSITAN, 50,000 simulations were run using default parameters and both the neutral-mean-Fs and force-mean-Fs options. Loci outside the 95% confidence interval were considered outliers. For BayeScan, prior odds for the neutral model were set to 1, which assumes that the neutral model is as likely as a model with selection. False discovery rate was set to 0.05, and outlier detection was performed with an R function provided by BayeScan. The SNPs identified as outliers or as fixed by both programs were considered the best candidates for underlying population divergence. Putative fixed SNPs further filtered out loci that had any (recent ambiguity code calls in the original dataset. We identified the B. distachyon gene closest to each candidate SNP
and then identified rice homologs from the top hit using BLASTx for protein similarity (Camacho et al., 2009). These rice homologs were examined for gene ontology (GO) term enrichment, as GO term annotation was insufficient for analyses in B. distachyon. We used the full MSU7.0 Oryza sativa nontransposable-element gene identifier as background for term enrichment analysis in agriGO (Du et al., 2010). Significance was evaluated using a hypergeometric statistical test with a Hochberg false discovery rate multiple comparison correction; the minimum number of mapping entries was set to two.

Calculating Linkage Disequilibrium

Decay of linkage disequilibrium (LD) with distance was calculated separately for the STRUCTURE-defined B. distachyon Populations 1 (n = 57) and 2 (n = 23), excluding Sicilian accessions in PCA Cluster 3A to avoid overestimation of LD resulting from population substructure as well as for the full set of B. distachyon (n = 84) using TASSEL 4.0 (Bradbury et al., 2007). Ambiguity codes were changed to N, and sites with more than 10% missing data were dropped. For the full set and Population 1, SNPs with a minor allele frequency of <5% were discarded. For Population 2, because of the smaller sample size, a minor allele frequency cutoff of 8.5% was used. Between 17,640 and 28,393 SNPs were used for the LD calculations. The LD was evaluated with a sliding window 200 SNPs wide. A mean LD r^2 value was taken from all LD measures in each 1 kb bucket. Plots were generated using the ggplot2 package in R (Wickham, 2009; R Development Core Team, 2014) and fitted with a generalized additive model curve. Further r^2 means were calculated for other genomic distances (Table 1).

Flowering-Time Measurements

In Supplemental Data S10, the 63 accessions for which flowering time was quantified are listed. Seed availability permitting, three or four seeds per accession per treatment were surface sterilized as described above and placed at 4°C for 2 or 6 wk. Although some seeds—particularly those cold-treated for 6 wk—germinated in the cold, seedling growth was minimal at 4°C. Cold treatments were staggered so that seeds were all sown in the greenhouse on the same day. Pots were arranged in a randomized block design, and flats of pots were rotated once a week. Flowering time was measured, from August to January, as the number of days from sowing to initial emergence of the inflorescence, that is, when the awn of the top-most flower was first visible. This stage corresponds to the start of heading, stage 51 on the Biological Bundesanstalt Bundessortenamt and Chemische Industrie scale (Hong et al., 2011), and is consistent with prior measurements of flowering time at stage 50 on the Zadoks scale (Ream et al., 2014). Natural light intensity varied over the course of our flowering-time experiment at our greenhouse location in Amherst, MA (approximately 42°23’30.9” N, 72°31’55.1” W). Supplemental lighting was used to maintain irradiance at or above 450 W m⁻² for 16 h d⁻¹. For purposes of calculation, plants that had not flowered by the end of the experiment at 149 d were assigned a flowering time of 150 d.

Table 1. Analysis of linkage disequilibrium for the full set of 84 Brachypodium distachyon accessions and subsets corresponding to Populations 1 and 2.

<table>
<thead>
<tr>
<th>Range (kb)</th>
<th>Full set Measures</th>
<th>Population 1 Measures</th>
<th>Population 2 Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>101682 0.141</td>
<td>93890 0.126</td>
<td>90430 0.175</td>
</tr>
<tr>
<td>1–10</td>
<td>40004 0.327</td>
<td>24077 0.409</td>
<td>18151 0.408</td>
</tr>
<tr>
<td>10–20</td>
<td>38667 0.293</td>
<td>23915 0.360</td>
<td>16979 0.350</td>
</tr>
<tr>
<td>20–30</td>
<td>37868 0.273</td>
<td>23152 0.326</td>
<td>16366 0.331</td>
</tr>
<tr>
<td>30–50</td>
<td>72706 0.264</td>
<td>43151 0.301</td>
<td>31195 0.305</td>
</tr>
<tr>
<td>50–70</td>
<td>71140 0.248</td>
<td>42269 0.267</td>
<td>30496 0.284</td>
</tr>
<tr>
<td>70–100</td>
<td>106461 0.233</td>
<td>62861 0.236</td>
<td>45629 0.270</td>
</tr>
<tr>
<td>100–200</td>
<td>348034 0.213</td>
<td>202529 0.194</td>
<td>146946 0.250</td>
</tr>
<tr>
<td>200–300</td>
<td>343430 0.191</td>
<td>195570 0.151</td>
<td>142376 0.227</td>
</tr>
<tr>
<td>300–400</td>
<td>334274 0.178</td>
<td>186478 0.128</td>
<td>138778 0.217</td>
</tr>
<tr>
<td>400–500</td>
<td>335245 0.168</td>
<td>186152 0.113</td>
<td>138968 0.203</td>
</tr>
<tr>
<td>500–600</td>
<td>332148 0.164</td>
<td>183407 0.104</td>
<td>136280 0.197</td>
</tr>
<tr>
<td>600–700</td>
<td>330413 0.159</td>
<td>182499 0.097</td>
<td>136301 0.188</td>
</tr>
<tr>
<td>700–1000</td>
<td>958789 0.155</td>
<td>523570 0.089</td>
<td>402062 0.184</td>
</tr>
<tr>
<td>1000–5000</td>
<td>2164688 0.168</td>
<td>1924432 0.078</td>
<td>1923235 0.188</td>
</tr>
</tbody>
</table>

Genome-Wide Association Studies

Analysis of Flowering Time in Brachypodium distachyon Accessions

Genome-wide association studies analysis was performed using TASSEL 3.0 (Bradbury et al., 2007) for the 54,392 SNPs in the B. distachyon-only set, including individuals from Populations 1, 2, and 5 together with the flowering-time data from plants that had received 6 wk of vernalization as described above. We performed both general linear model (GLM; Bradbury et al., 2007) and mixed linear model (MLM; Zhang et al., 2010) analyses via TASSEL. We used a 5% minor allele frequency cutoff and verified that results were similar with a 10% cutoff. A kinship matrix, generated within TASSEL, was added as part of the MLM analysis to factor in relatedness between accessions (Yu et al., 2006), and a Q + K model was used. For the GLM, 1000 permutations were performed. The MLM with the preset optimum level of compression was used; variance components were estimated after each marker. Quantile-quantile plots were compared to determine if MLM or GLM displayed a tighter adherence to expected p-values.

To reduce Type I error rates that result from testing with multiple SNPs, an adjusted significance threshold was calculated. Because of our small population size, we used a highly conservative method of dividing a traditional 0.05 p-value threshold by the total number of SNPs tested. This adjusted significance threshold was used as the genome-wide cutoff. The SNPs that crossed
this threshold were considered to represent significant marker–trait associations (MTAs) (Supplemental Table S4). To determine if candidate flowering-time regulators were within or near the significant MTAs, we identified genes 250 kb upstream of the left border and 250 kb downstream of the right border of each significant MTA within the *B. distachyon* v1.0 reference genome. These boundary genes were subsequently used to anchor MTA intervals to the *B. distachyon* v3.1 gene annotation. We explored the available annotation for all genes within these regions including for the v3.1 annotation; resulting candidates for regulating flowering time in *B. distachyon* are reported in Supplemental Table S4.

Results

Diverse Germplasm Was Characterized via Genotyping-by-Sequencing

Our study encompasses 94 *Brachypodium* accessions from a broad geographic range and includes reference lines for *B. hybridum* and *B. stacei*, as well as *B. distachyon* (Fig. 1; Supplemental Table S1). Many of the samples were newly collected and developed for this study and include countries for which *Brachypodium* germplasm has not yet been characterized such as Italy, Albania, Armenia, and Georgia. While some collection sites are represented by a single accession, at other sites, seeds were harvested from two to five different individuals. To maximize diversity, both newly harvested germplasm and established inbred lines were included. Names of accessions and collection sites are listed in Supplemental Table S1.

Genotyping-by-sequencing (Elshire et al., 2011) of these accessions yielded 99,872 high-quality SNPs for the full set of 94 *Brachypodium* lines characterized (Supplemental Data S1). These SNPs were fairly evenly distributed across the five nuclear chromosomes of *B. distachyon*, with one SNP approximately every 2.6 to 3.0 kb. However, as expected, the frequency of SNPs was reduced near centromeres; ApeKI, the restriction enzyme used to digest our genomic DNA samples, is partially methylation-sensitive and therefore unlikely to cut within regions of repetitive DNA.

As a control, Bd21, the source of the fully sequenced *B. distachyon* reference genome, was subjected to GBS with the other 93 accessions. Only 111 SNPs were identified between our Bd21 sample and the reference genome, suggesting a low likelihood of false-positive SNP calls. The few SNPs that were identified in our GBS analysis of Bd21 probably are due to a combination of sequencing errors either in the reference or our data and remaining trace heterozygosity in Bd21, as has been reported (Gordon et al., 2014). For the other accessions, GBS detected from 3380 to 42,345 clear differences from the reference (Supplemental Data S2).

The three known *B. stacei* lines had by far the highest number of differences compared with Bd21, that is, more than 40,000 SNPs per line. All other accessions had fewer than 18,500 SNPs compared to the Bd21 reference (Supplemental Data S2). Pairwise comparisons of SNP calls likewise emphasized the distinct nature of the *B. stacei* lines ABR114, Ita-Sic-QV11, and Ita-Sic-VMO1. Although these lines were distinguished from each other by no more than 1200 SNPs, upward of 35,000 SNPs often separated *B. stacei* from other accessions. Exceptions to this general trend included the reference *B. hybridum* lines ABR100 and ABR113, which differed from ABR114 by 7015 and 7161 SNPs respectively (Supplemental Data S3).

Fig. 1. Geographic distribution of *Brachypodium* accessions used in this study. Each dot represents an individual accession, with the color of the outer ring representing inferred species (*B. distachyon* in dark blue, *B. stacei* in red, and *B. hybridum* in purple). The inner pie chart represents the inferred ancestries of each accession as determined by STRUCTURE analysis (Population 1 in dark blue, Population 2 in cyan, Population 3 in red, Population 4 in yellow, and Population 5 in black). 1, the exact location of this collection site in Iraq is unknown; 2, the collection site is Kalafabad, Iran (not shown). Detailed collection site information is listed in Supplemental Table S1. Species assignments and STRUCTURE analysis are discussed in the main text.
In addition, we examined the level of heterozygosity in each accession (Fig. 2). The majority of accessions (87 out of 94, or 93%) had two alleles at <6% of the SNP loci; in fact, 89% of the accessions had <2% heterozygosity. This high level of homozygosity is consistent with previous characterizations of Turkish and Spanish germplasm using SSR markers as well as an extremely high frequency of inbreeding reported for *B. distachyon* (Vogel et al., 2009; Mur et al., 2011; Giraldo et al., 2012). In the seven remaining accessions in our study, heterozygosity was markedly higher, ranging from 21 to 38% (Fig. 2). Both of the *B. hybridum* reference lines, ABR100 and ABR114, had high levels of nucleotide ambiguity codes, leading us to hypothesize that the other five lines in this group (Alb-AL_1D and Spa-Nor-S1A, -S2C, -S7C, and -S10C) might also be *B. hybridum*.

The presence of both *B. stacei*-like and *B. distachyon*-like sequences for homeologous loci in the allotetraploid could result in the appearance of heterozygosity for those loci. To confirm this possibility, we focused on SNPs for which all three *B. stacei* lines lacked sequence information. In this subset of 40,959 out of 99,872 high-quality SNPs, ambiguity codes were found for no more than 1.7% of the positions in any of the seven putative *B. hybridum*. This observation is consistent with *B. hybridum* merely appearing to be highly heterozygous because its genome is derived from divergent *B. stacei*-like and *B. distachyon*-like parents. Together, the results on levels of missing SNP data and heterozygosity (Fig. 2) were the first indication that the GBS data clearly distinguished between the three species (*B. stacei*, *B. hybridum*, and *B. distachyon*) at a genome-wide level.

Brachypodium hybridum Is Intermediate to *Brachypodium stacei* and *Brachypodium distachyon* in Population Structure Analyses

To elucidate the population structure in our sample, we investigated the complete set of 99,872 SNPs using the distance-based method of PCA (Patterson et al., 2006; Price et al., 2006). The 94 *Brachypodium* accessions formed three clusters well separated from each other along the first principal component, which explains the largest percentage of the variation in the data (Fig. 3). Because reference lines for *B. stacei*, *B. hybridum*, and *B. distachyon* separated into PCA Clusters 1, 2, and 3, respectively, we hypothesized that species identity explains the greatest amount of variation between the accessions. Interestingly, the putative *B. hybridum* cluster (Cluster 2) was centrally located between the *B. stacei* and *B. distachyon* clusters along the first principal component (Fig. 3). This result hints at the mixed parentage of the allotetraploid. In addition, the 84 accessions in Cluster 3 formed three subgroups separating along the second principal component, which explains the next largest percentage of the variation (Fig. 3). While Cluster 3A consisted of four Italian accessions, Clusters 3B and 3C were of mixed geographic origin; Albania, Georgia, Italy, Spain, Turkey, and Ukraine were represented in Cluster 3B and Armenia, Georgia, Iraq, Spain, and Turkey were represented in Cluster 3C. The PCA thus suggests that the accessions in Cluster 3 are all *B. distachyon* but that membership in the subclusters is determined by a factor other than geography. Accessions comprising each cluster, with the corresponding values for the first 10 principal components, are listed in Supplemental Data S4.

To further clarify the population structure, we analyzed the SNP data with STRUCTURE, a model-based
The clustering method (Pritchard et al., 2000; Falush et al., 2003; Evanno et al., 2005; Falush et al., 2007; Hubisz et al., 2009), and found a clear peak in ΔK for $K = 5$ populations (Supplemental Data S5). A striking feature of the inferred ancestry is that the putative B. stacei accessions appeared to comprise a single population (Population 3, color-coded red in Fig. 4; Supplemental Data S6). Moreover, this population was almost undetectable in the inferred ancestries of B. distachyon individuals. In B. distachyon, alleles from three populations—Population 1 (dark blue), Population 2 (cyan), or Population 5 (black)—tended to predominate (Fig. 4). Population 4 (yellow) contributed a relatively small proportion of alleles to some accessions. The seven lines known or hypothesized to be B. hybridum on the basis of the PCA all exhibited mixed ancestries derived to varying degrees from the B. stacei-like Population 3 plus B. distachyon-like populations (Fig. 4). Population 2, in particular, was prominently represented in the inferred ancestries of all the B. hybridum lines tested. This mosaic ancestry demonstrates, with the resolution achieved by thousands of SNPs distributed across the chromosomes, that the B. hybridum genome is a mixture of B. stacei-like and B. distachyon-like sequences.

Genotyping-by-Sequencing Yields Unambiguous Species Assignments Confirmed by Sequencing of the DNA Barcoding Locus trnLF

To confirm the distinctions between species observed with our GBS data, we employed the DNA barcoding method established by López-Alvarez and colleagues for the plastid trnLF locus (López-Alvarez et al., 2012). The noncoding trnLF region, located between the chloroplast trnL and trnF genes, is maternally inherited and distinct between B. stacei and B. distachyon (López-Alvarez et al., 2012). In most of the B. hybridum examined, the maternal parent appears to have been B. stacei-like (López-Alvarez et al., 2012). Therefore, the presence of a B. stacei trnLF sequence in a Brachypodium plant indicates that the species is not B. distachyon, but could be either B. stacei or B. hybridum. For a small percentage of B. hybridum individuals examined to date, the maternal parent seems to have been B. distachyon-like (López-Alvarez et al., 2012). Thus, identification of a B. distachyon-like trnLF sequence could be consistent with a species assignment of either B. distachyon or B. hybridum.

Figure 5 shows a neighbor-joining tree of trnLF sequences for accessions analyzed by GBS including reference B. stacei, B. hybridum, and B. distachyon. The nucleotide sequences clearly formed two separate clades each with 100% bootstrap support. The smaller clade consisted of B. stacei-like sequences and included the type B. stacei line ABR114 as well as the established B. hybridum lines ABR100 and ABR113. Also in this small clade were two Italian accessions (Ita-Sic-QVL1 and...
tyler et al.: b. distachyon populations differ in flowering

- VMO1) previously described as B. stacei (López-Alvarez et al., 2012) and four Spanish lines (Fig. 5). These four Spanish accessions—like the B. hybridum reference lines—were in PCA Cluster 2; their membership in the smaller trnLF clade is consistent with a B. stacei-like maternal parent for the hybrid species (Fig. 5). The larger clade in the tree consisted of B. distachyon-like sequences and included the reference B. distachyon lines Bd21, Bd1-1, and Bd21-3 in addition to the remaining accessions for which clear trnLF sequence was available (Fig. 5). Overall, the trnLF tree (Fig. 5; Supplemental Table S1) supported the idea that accessions separated along the first principal component (Fig. 3) based on species and that population structure captures species designations (Fig. 4). When other researchers had made previous species assignments, our combined PCA, trnLF, and STRUCTURE results agreed with the earlier assignments (Filiz et al., 2009; Vogel et al., 2009; López-Alvarez et al., 2012). Thus, our analysis of thousands of SNPs not only reliably distinguished between species but also provided a deeper understanding of the genomic composition of individuals within these species.

Geographic Origin Does Not Fully Explain the Population Structure Observed within Brachypodium distachyon

Within the 84 B. distachyon accessions, the three sub-groupings revealed by PCA and STRUCTURE did not correlate broadly with geographic origin (Supplemental Data S4, S6). The divergent genomic signatures are particularly apparent in Fig. 4 (see also Fig. 1), in which the B. distachyon accessions are ordered by country of origin roughly from west to east. Notably, representatives of STRUCTURE Populations 1 and 2 are present in both the western and eastern edges of the geographic distribution (Fig. 4), although Population 1 does predominate in Spain. Additionally, in several instances, accessions harvested from the same location had dramatically different inferred ancestries. For example, Ita-Sic-SLZ2 and SLZ4 originated from different individuals at the same site in Schilizzi near Palermo, Sicily (Supplemental Table S1); however, STRUCTURE Populations 2 and 5 represented 91 and 92% of the inferred ancestry in Ita-Sic-SLZ2 and Ita-Sic-SLZ4, respectively. Similarly, Geo-G31i2, -G31i4, and -G31i6 all originated from a single site in southeastern Georgia but exhibited alleles primarily from STRUCTURE Population 2 in Geo-G31i2 and Population 1 in Geo-G31i4 and -G31i6. Other accessions with the same geographic origin but contrasting genomic profiles.

Fig. 4. STRUCTURE analysis reveals distinct genomic signatures for *Brachypodium stacei*, *B. hybridum*, and *B. distachyon*. The results of a representative replicate for *K* = 5 populations are shown. Each of the 94 accessions is represented by a vertical bar. Color coding along the *y*-axis indicates the proportion of the individual’s ancestry inferred to be derived from Population 1 (dark blue), 2 (cyan), 3 (red), 4 (yellow), or 5 (black). Accessions are ordered from left to right with *B. stacei* first, *B. hybridum* second, and then *B. distachyon* accessions grouped by country of origin.
A neighbor-joining phylogenetic tree constructed for *B. stacei* and *B. distachyon* with the full SNP set revealed local geographic structure within major *B. distachyon* groups, but no geographic structure between major groups (Supplemental Fig. S1). The two major clades were monophyletic with high support and were consistent with the division of most *B. distachyon* accessions into PCA Clusters 3B and 3C or STRUCTURE Populations 2 and 1. Tree analysis further supported the distinction of PCA Cluster 3A or STRUCTURE Population 5 as a separate clade of Italian accessions more closely related to STRUCTURE Population 2 (Supplemental Fig. S1). Major clades tended to represent multiple geographic origins, though some of the subclades represented single regions such as Albania, Italy, northern Spain, and Turkey, indicating local relatedness among many *B. distachyon* samples (Supplemental Fig. S1).

To investigate whether species identity was obscuring the true population structure within *B. distachyon*, we excluded *B. stacei* and *B. hybridum* accessions and repeated the PCA using the 54,392 SNPs polymorphic.
for *B. distachyon*. This PCA separated the *B. distachyon* accessions into three well-defined groups for the first two principal components (Supplemental Data S7), consistent with the all-*Brachypodium* analysis: the four Italian accessions Ita-Sic-CSR6, -CSR7, -LPA3, and -SLZ4 formed a distinct cluster (3A); 23 accessions from six countries comprised a second cluster (3B); and 57 *B. distachyon* accessions from five countries comprised the third cluster (3C; Supplemental Data S7). Only along the third vs. fifth principal components did accessions begin to form clusters consistent with geographic origin. Turkish accessions separated from Spanish ones along the fifth principal component (Supplemental Data S7). Thus, although evidence of relatedness as a result of similar geographic origin was apparent, geography was not the primary, defining feature of the population structure.

We also analyzed 9907 SNPs selected from the *B. distachyon*-only set with STRUCTURE. In this case, ΔK exhibited a peak for two populations, and PCA-defined subgroups 3A and 3B were combined, consistent with their sister-clade designation in the phylogenetic trees. However, subgroups 3A and 3B remained clearly separated from 3C and included accessions from multiple countries as above (Supplemental Data S8, S9).

Flowering Time Differences Are Largely Consistent with the Brachypodium distachyon Population Structure

Observing *B. distachyon* clusters of mixed geographic origin prompted us to look for another factor that might more fully explain population structure. Although limited phenotypic information was available for most of the accessions, the reference Bd lines were known to have contrasting flowering times. Notably, Bd21, Bd21-3, and Bd3-1—all of which derived most of their ancestry from the all-*Brachypodium* STRUCTURE Population 1 (dark blue)—are consistently early flowering, while Bd1-1, assigned to Population 2 (cyan), is late-flowering (Vogel et al., 2009; Schwartz et al., 2010; Ream et al., 2014). In addition, whereas many Turkish accessions, including Adi-4 and BdTR9m, flower relatively early, a few, such as Tek-9, are extremely late flowering (Filiz et al., 2009; Vogel et al., 2009). Bd1-1 and Tek-9 were the only Turkish lines in our collection assigned primarily to Population 2 (cyan) (Fig. 4). Interestingly, our line Ukr-Nv1, with alleles predominantly from Population 2, originated from the same seed stock as Bd29-1, which has been characterized as delayed flowering similar to Bd1-1 (Ream et al., 2014). Moreover, as plants were growing for tissue and seed harvesting, we noticed that *B. distachyon* accessions with either Population 2 (cyan) or Population 5 (black) comprising most of the inferred ancestry tended to flower late. To determine whether this trend held, we quantified the flowering time for three-fourths of the *B. distachyon* accessions.

At the time of testing, sufficient seed was available for 48 of 57 (84%) of the Population 1 accessions (dark blue), 12 of 23 (52%) of the Population 2 accessions (cyan), and three of four (75%) of the Population 3 accessions (black). Three or four seeds for each accession were cold treated for 2 or 6 wk and then sown in soil and grown with a photoperiod of 16 h. Figure 6 shows the resulting flowering times. Supplemental Data S10 includes the full data set.

As has been reported previously (Vogel et al., 2009; Schwartz et al., 2010; Ream et al., 2014; Tyler et al., 2014), extended cold treatment tended to trigger earlier flowering in most accessions (Fig. 6A, 6C; Supplemental Data S10). For example, Bd21-3 cold treated for 6 wk flowered 31.2 d earlier than with the 2-wk cold treatment. Dramatic variation in flowering times between accessions was also observed (Fig. 6B, 6C), with Bd3-1 flowering at 18 d and several late-flowering accessions, such as Ita-Sic-SLZ2 and Tek-9, remaining vegetative over the course of the experiment even after 6 wk of cold treatment (Fig. 6; Supplemental Data S10). Because a day length of 20 h can further promote flowering (Ream et al., 2014), the 16-h photoperiod used for this study likely accentuated differences in vernalization responsiveness.

To determine whether flowering time was correlated with the observed population structure, we averaged the flowering times of accessions in PCA Cluster 3C–STRUCTURE Population 1 and compared them with flowering times of accessions in Cluster 3B–Population 2 for the 6-wk cold treatment (Fig. 6D). Cluster 3A–Population 5 was omitted because of its small sample size. Strikingly, although the variability within each cluster was high, Population 1 accessions had an average flowering time of 58.2 d compared with 122.2 d for Population 2 accessions (Fig. 6B). A single-factor analysis of variance (ANOVA) indicated that this difference between populations was statistically significant at $P = 7.63 \times 10^{-6}$. However, outliers occurred; for example, the Armenian accessions Arm-3A, -3G, and -3i as well as the Georgian accession Geo-G34i6, all of which were assigned to Population 1 (blue), required 130 d or more to flower (Supplemental Data S10). The earliest-flowering Population 2 accession was Spa-Nor-S6D. With an average flowering time of 27.7 d (± 2.5 d SD), Spa-Nor-S6D flowered even earlier than many Population 1 accessions. Interestingly, two other accessions, Spa-Nor-S6B and -S6E, which originated from the same site as Spa-Nor-S6D, were relatively early flowering and had Population 1-type genomic signatures. In summary, in spite of the intriguing exceptions, flowering time differences are a major distinction between the main *B. distachyon* populations.

Many Single-Nucleotide Polymorphism Are Highly Differentiated or Fixed between Brachypodium distachyon Populations 1 and 2

We examined the degree of divergence between the two principal *B. distachyon* populations with F-statistic (F_{ST}) analyses using the programs LOSITAN and BayeScan.
Fig. 6. Vernalization responsiveness and flowering time vary between accessions. Flowering time was measured after seeds had been cold treated for 2 or 6 wk. (a) Plants of the Population 1 accession Spa-Nor-S11B were photographed after 8 wk of growth; the plants on the left and right experienced 6 and 2 wk of cold treatment, respectively, before sowing. (b) Plants that had been cold treated for 6 wk as seeds were photographed after 9 wk of growth; Bd3-1 is from Population 1 (blue), Alb-AL1A from Population 2 (cyan), and Ita-Sic-LPA3 from Population 5 (black). The scale bars in (a) and (b) represent 10 cm. (c) Flowering time is shown as the average number of days required for flowering for two to four plants per accession per treatment. Plants that had not flowered by the end of the experiment were assigned a flowering time of 150 d. Most accessions are represented by black lines; select accessions are highlighted as follows: Irq-Bd3–1, solid, dark blue line; Irq-Bd21, dotted, blue line; Irq-Bd21-3, dashed, blue line; Tur-Bd1-1, solid, cyan line; and Tur-Tek-9, dashed, cyan line. (d) On average, after 6 wk of cold treatment, Population 1 accessions flowered earlier than Population 2 accessions. The black triangles indicate the average flowering time in days. The shaded boxes represent the second and third quartiles, while the whiskers indicate the maximum and minimum flowering times for accessions in the two populations. The median is represented by a horizontal black line across the shaded box for Population 1 and is at 150 d for Population 2. Sample sizes are 48 and 10 accessions for Populations 1 and 2, respectively.
(Beaumont and Nichols, 1996; Antao et al., 2008; Foll and Gaggiotti, 2008). The estimated \(F_{ST} \) for the dataset was high for both programs (0.51 and 0.62, respectively), indicating extensive differentiation across the genome between populations of *B. distachyon*. In total, LOSITAN identified 632 loci as fixed \(F_{ST} = 1 \) and 2772 loci as high \(F_{ST} \) outliers; BayeScan identified 686 loci, including fixed loci, as outliers (Supplemental Data S11, S12). We focused on the 218 fixed loci between Populations 1 and 2, which occur on all five *B. distachyon* chromosomes. In addition, 14 SNPs on chromosomes 1, 2, and 3 were identified by both programs as highly differentiated (Supplemental Data S13). Besides indicating the types of loci that differentiate the two populations, this set of SNPs could be useful for genotyping new germplasm to determine likely membership in Population 1 vs. 2.

We determined the identity of the *B. distachyon* gene nearest each of these highly divergent or fixed SNPs and then identified the closest rice homologous gene (Supplemental Table S2). Gene ontology term analysis of the rice orthologs revealed 20 biological process terms significantly overrepresented in our dataset (Table 2; Supplemental Table S3; Supplemental Fig. S2). Remarkably, the majority of these terms are related to reproduction and developmental processes including flower development (Table 2; Supplemental Fig. S2). Inspection of the individual annotations for the rice and closest *A. thaliana* orthologs likewise revealed various genes associated with flowering, organ development, and meristem maintenance including a DELLA-domain GRAS transcription factor gene, a gibberellin-receptor-like *GID1L2* gene, *AINTEGUMENTA, APETALA1, FERTILIZATION-INDEPENDENT ENDOSPERM, AUXIN RESPONSE FACTOR10, BRASSINOSTEROID INSENSITIVE1, HECATE, LATERAL SUPPRESSOR, PERIANTHIA, SEPALLATA1, REPLUMLESS, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE9, LOST MERISTEMS3, FILAMENTOUS FLOWER,* and *TARGET OF MONOPTEROS* (Ikeda et al., 2001; Greb et al., 2003; Malcomber and Kellogg, 2005; Nole-Wilson and Krizek, 2006; Gremski et al., 2007; Schwarz et al., 2008; Mosquera et al., 2009; Ding and Friml, 2010; Li et al., 2010; Schlereth et al., 2010; Schulze et al., 2010; Maier et al., 2011; Jiang et al., 2014; Pabon-Mora et al., 2014) (Supplemental Table S2). These results suggest that genes involved in flowering and developmental programming are among the most highly differentiated between the two *B. distachyon* populations. It is possible that differences in at least some of these genes may play a role in the flowering time differences observed between populations under our common garden conditions.

Given the high levels of differentiation between *B. distachyon* populations, we attempted to determine when they had diverged from each other using DIYABC (Cornuet et al., 2008, 2014). The median of the posterior distribution for the estimated time of divergence was 5920 generations (95% confidence interval: 1290–9620) (Supplemental Fig. S3). Because *B. distachyon* is annual, with likely one generation per year, this result indicates that divergence between *B. distachyon* populations occurred <10,000 yr ago. In contrast, the *B. stacei* and *B. distachyon* lineages split an estimated 9.9 and 4.3 million yr ago from the common ancestor, respectively (López-Alvarez et al., 2012). The relatively recent divergence observed here for *B. distachyon* populations, after the end of Pleistocene glaciations, suggests that differences in flowering phenology evolved rapidly among *B. distachyon* populations.

Linkage Disequilibrium Declines More Quickly in Population 1 than Population 2

Having detected broad flowering time differences and highly differentiated SNPs between Populations 1 and 2, we next examined LD to assess the resolution of association mapping in these populations of *B. distachyon*. Linkage disequilibrium describes the degree of association between alleles at different loci; rapid decay of LD within a short genomic distance is favorable for GWAS, as it decreases the number of markers associated with a phenotype of interest and allows much finer resolution when mapping. We examined the decay of LD with distance in Population 1, Population 2, and the full set of *B. distachyon* accessions. Figure 7 shows how LD measures change with distance; Table 1 summarizes the results of this analysis in bins ranging from 10 to 5000 kb. Linkage disequilibrium decay is not particularly rapid in *B. distachyon*; in the full set, average \(r^2 \) levels of 0.1 are not reached by 5 Mb. This is in contrast to maize, where \(r^2 \) levels of 0.1 are reached on average by 2 to 5 kb (Yan et al., 2009), or *A. thaliana*, where levels of 0.2 are reached by about 10 kb (Kim et al., 2007). The highly selfing nature of *B. distachyon* (Vogel et al., 2009) can lead to high levels of LD; however, LD levels in *B. distachyon* can also be affected by the strong population structure within the species. When Populations 1 and 2 are examined separately, LD decay occurs more rapidly. In particular, LD decay is most rapid in Population 1, where \(r^2 \) levels close to 0.1 are reached by ~500 kb, and half-maximum values are reached by 100 to 200 kb, similar to what is observed in some varieties of cultivated rice (Mather et al., 2007; Xu et al., 2012). In contrast, LD decay is quite slow in Population 2, with levels of \(r^2 \) of 0.1 again not reached by 5 Mb and half-maximum values reached by 400 to 500 kb. Extensive LD within this population may be due to the moderate sample size \((n = 23) \). Together, these results suggest that GWAS will have greater resolution if mapping is performed within Population 1. Nevertheless, increased mapping resolution could be achieved if the LD rate of decay were increased, perhaps through sampling of more accessions, even in this population.
Genome-Wide Association Mapping Reveals Significant Associations for Flowering Time after Six Weeks of Vernalization

For many of the accessions tested, vernalization of 2 wk was insufficient to trigger flowering before the experiment ended (Supplemental Data S10). Therefore, to test the performance of GWAS in \textit{B. distachyon}, we searched for significant MTAs between our high-density SNP data and time of flowering for 60 accessions after 6 wk of vernalization. We initially attempted GWAS using Population 1 only because of the relatively low LD within this group and to limit the effects of population structure. After correcting for multiple tests, no significant MTAs were identified within this small sample of accessions. Accordingly, we used the complete set of phenotyped accessions despite the risk of false negatives as a result of an association of flowering time with population structure (Brachi et al., 2011). Comparison of quantile-quantile plots demonstrated that the MLM displayed a tighter adherence to expected P-values than the GLM, though even with the MLM, P-values were still somewhat inflated (Supplemental Fig. S4). Focusing on results from the MLM analysis, we used a conservative adjusted significance threshold by dividing the 0.5 significance threshold by the number of SNPs tested, resulting in a genome-wide significance cutoff of 1.62×10^{-6}. We identified nine distinct regions of MTAs comprised of one or more significantly associated SNPs (Fig. 8). Four of the nine MTAs consisted of a single SNP, while the remaining MTAs contained multiple SNPs (Supplemental Table S4). Clear phenotypic differences were observed between individuals carrying alternative alleles at each MTA (Supplemental Fig. S5). Thus, these nine MTAs represent genomic loci that may significantly influence flowering time following 6 wk of vernalization.

The genetics of flowering time has been extensively studied in numerous species, including grasses, and 163 predicted flowering-time genes have been described in \textit{B. distachyon} (Higgins et al., 2010; Ream et al., 2014). We therefore compared locations of these \textit{B. distachyon} genes with MTAs (Fig. 8; Supplemental Table S4). As a conservative cutoff for distance, based on the decay of LD in Population 1, we chose 250 kb. In five cases, candidate genes lay within 250 kb of a significant MTA or

Table 2. Significantly overrepresented biological process gene ontology (GO) terms among genes near highly divergent SNP markers.

<table>
<thead>
<tr>
<th>GO term</th>
<th>Description</th>
<th>Input count</th>
<th>Genome total count</th>
<th>p-value</th>
<th>False discovery rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0006807 Nitrogen compound metabolic process</td>
<td>43 3898 0.00046 0.0077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0022414 Reproductive process</td>
<td>15 732 0.00013 0.0077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0000003 Reproduction</td>
<td>22 1449 0.00028 0.0077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0006139 Nucleobase, nucleoside, nucleotide and nucleic acid metabolic process</td>
<td>43 3898 0.00046 0.0077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0048506 Anatomical structure development</td>
<td>19 1250 0.00074 0.0099</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0009058 Biosynthetic process</td>
<td>53 5311 0.00093 0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0009908 Flower development</td>
<td>10 469 0.0031 0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0048608 Reproductive structure development</td>
<td>10 474 0.0015 0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0030306 Reproductive developmental process</td>
<td>10 474 0.0015 0.011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0030154 Cell differentiation</td>
<td>10 534 0.0034 0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0048699 Cellular developmental process</td>
<td>10 534 0.0034 0.021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0032501 Multicellular organismal process</td>
<td>29 2463 0.0048 0.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0009653 Anatomical structure morphogenesis</td>
<td>13 886 0.0068 0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0007275 Multicellular organismal development</td>
<td>28 2591 0.0071 0.034</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0009791 Post-embryonic development</td>
<td>18 1441 0.0079 0.035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0016049 Cell growth</td>
<td>8 465 0.013 0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0090066 Regulation of anatomical structure size</td>
<td>8 465 0.013 0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0032502 Developmental process</td>
<td>29 2806 0.011 0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO:0008361 Regulation of cell size</td>
<td>8 465 0.013 0.045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 8. Manhattan plot showing single-nucleotide polymorphism marker associations with flowering time following 6 wk of vernalization across the five chromosomes of Brachypodium distachyon. The chromosomal locations of B. distachyon homologs of previously characterized flowering time, circadian rhythm, and photoperiod genes are indicated. A horizontal gray dashed line represents the adjusted genome-wide significance threshold.

associated interval. For example, BdCONSTANS1 (CO1), a homolog of A. thaliana CONSTANS, is 27 kb outside the MTA interval on chromosome 1. In A. thaliana, CO expression in the dark activates FLOWERING LOCUS T (FT), which encodes the mobile florigen signal that initiates the floral transition (Kardailsky et al., 1999; Samach et al., 2000; Jaeger and Wigge, 2007), and a rice gene closely related to CO, Hd1/photoperiod sensitive1, influences flowering time differentially under short and long days (Yano et al., 2000). A B. distachyon homolog of the A. thaliana circadian clock gene EARLY FLOWERING3 (ELF3) lies within the boundaries of the MTA interval on chromosome 2. This gene was originally characterized in a screen for early flowering A. thaliana mutants (Zagotta et al., 1992). In barley, mutations in Praematurum-a, the barley homolog of ELF3, result in similar early flowering phenotypes (Zakhrabekova et al., 2012). On chromosome 3, one of the two MTAs is 150 kb from a gene orthologous to A. thaliana GROWTH FACTOR REGULATOR 7 (GFR7). Although GFR genes have not been shown to directly impact flowering time, they have been implicated in floral organ differentiation and meristem patterning (Pajoro et al., 2014). Two of the four MTAs on chromosome 4 are located <150 kb from BdPSEUDO-RESPONSE REGULATOR59 (BdPRR59) and BdPRR95, homologs of the A. thaliana circadian clock genes PRR5 and PRR9 (Nakamichi et al., 2005). While the role of PRRs in grasses is less well understood than in A. thaliana, in wheat, a 2 kb deletion upstream of the PRR family member Ppd-D1 resulted in early flowering in both short and long days (Beales et al., 2007).

The remaining four MTAs—one on chromosome 3, two on chromosome 4, and one on chromosome 5—are more than 250 kb from obvious a priori candidates. These MTAs may correspond to novel, previously undetected, flowering-time-regulatory genes, or, given the slow LD decay in our B. distachyon sample, may be associated with more distant candidate genes.

Because the B. distachyon genome is compact, many potential flowering-time genes have been described, and we used a relatively large (250 kb) cutoff for loci associated with an MTA, we considered whether obtaining five
MTAs close to flowering-time candidate genes could have occurred by chance. In a random sample of 10,000 of our GBS markers, 1738 markers lie 149 kb or less from a candidate flowering-time gene listed in Higgins et al., 2010 and Ream et al., 2014. Also, 149 kb represents the greatest distance we observed for the five MTAs we considered to be close to flowering-time candidates. This suggests there is a 17.4% chance of any MTA falling close to a flowering-time gene whether or not there is a true association. In a sample of nine MTAs, we thus would have expected 1.56 to be within 149 kb of a flowering-time gene by chance. With five MTAs at distances of ≤149 kb from a flowering-time candidate, our sample does seem enriched for described flowering-time loci. Though more work is needed to confirm involvement of these genes in flowering-time variation in B. distachyon, our GWAS analysis has provided some fruitful candidates for exploration.

Discussion

By identifying SNPs adjacent to restriction enzyme sites, GBS captured a fraction of the genetic diversity in this germplasm collection. High-coverage, whole-genome resequencing would undoubtedly uncover an even greater richness of genetic variation including insertions, deletions, and rearrangements. For instance, resequencing of six core B. distachyon lines revealed upward of 1.6 million SNPs between the late-flowering line Bd1-1 and the early flowering line Bd21 (Gordon et al., 2014). In comparison, our GBS analyses detected approximately 12,000 SNPs between Bd1-1 and Bd21. The cost-effectiveness of reduced-representation sequencing, however, allowed us to survey genetic diversity across a greater number of accessions. The SNP information yielded by this broad approach made it possible to distinguish the genomic signatures of three Brachypodium species, characterize population structure within B. distachyon across its native range, and identify candidate loci potentially controlling flowering time.

In multiple analyses (PCA, STRUCTURE results, and phylogenetic trees), B. stacei, B. hybridum, and B. distachyon were clearly distinct (Fig. 3, 4; Supplemental Fig. S1). Because SNP calling involved mapping sequences to the B. distachyon reference genome, this distinction was also evident on examining levels of missing SNP data and heterozygosity (Fig. 2). A practical application of these findings is the identification of numerous candidate SNPs for use as markers in PCR-based species assignments; examination of those SNP loci for which sequence information was present for all three B. stacei accessions showed that, in many cases, the B. stacei and B. distachyon accessions carried contrasting nucleotides, while the seven B. hybridum accessions uniformly showed evidence of both B. stacei-like and B. distachyon-like alleles (Supplemental Data S1, S14). Although additional B. stacei and B. hybridum accessions must be tested to confirm the broad utility of each marker, subsets drawn from each chromosome could be used as cleaved, amplified polymorphic sequence markers (Konieczny and Ausubel, 1993) to rapidly assign species membership.

This study elucidates the differences between species across the nuclear genome at an average resolution of <5 kb. Our work thus reinforces and refines the three-species concept first revealed by fluorescence in situ hybridization and examination of organelar and nuclear loci (Hasterok et al., 2004; Idziak et al., 2011; Catalán et al., 2012; Giraldo et al., 2012; López-Alvarez et al., 2012). The PCA, summarizing information from nearly 100,000 SNPs, placed B. hybridum intermediate to B. stacei and B. distachyon along the first principal component (Fig. 3); thus, species identity is, genome-wide, the primary distinguishing factor for the 94 accessions in our collection. Additionally, STRUCTURE analysis showed the extent to which B. hybridum genomes are a mixture of alleles derived from B. stacei- and B. distachyon-like populations (Fig. 4). The diversity of individual ancestries inferred for different B. hybridum accessions (Fig. 4) is consistent with multiple origins of this allotetraploid species, as proposed by the research groups of P. Catalán and colleagues (López-Alvarez et al., 2012). The origination of these B. hybridum lines from Portugal, Spain, Albania, and Iran further supports the idea of multiple hybridization events. Strikingly, the B. hybridum accessions surveyed here all carried ancestry from B. distachyon Population 2, perhaps indicating a greater proclivity or opportunity for members of this population to cross with B. stacei. It will be interesting to determine whether a contribution from Population 2 is consistently present when larger numbers of B. hybridum accessions are examined.

The presence of only three B. stacei accessions in our study reflects both the relative scarcity of established B. stacei in Brachypodium collections, as well as our intentional focus on B. distachyon as a model. The five B. hybridum accessions newly identified in our study were initially presumed to be B. distachyon based on their morphology but clearly cluster with the reference B. hybridum lines in principal component and STRUCTURE analyses (Fig. 3, 4). These results emphasize the difficulty of making accurate species assignments for individual Brachypodium accessions based solely on morphological traits. While each species might, on average, be phenotypically distinct for a particular trait, the intraspecific variation is large (Tyler et al., 2014), and the phenotypic and geographic ranges can overlap (Mur et al., 2011; Catalán et al., 2012).

With regard to the 84 accessions confirmed to be B. distachyon, the data collected provide additional information about key reference lines and, importantly, allow the characterization of new germplasm. Our success in expanding the known genetic diversity for B. distachyon is illustrated by our identification of over 54,000 SNPs for accessions spanning the native range of this model grass. This total is more than three times the number of SNPs detected in a GBS analysis of Turkish accessions (Dell’Acqua et al., 2014). Interestingly, the inferred ancestries of Bd21 and Bd21-3 contained a relatively high
proportion of Population 2 in comparison to Bd3-1 and most other early-flowering lines (Fig. 4; Supplemental Data S6). This observation reinforces the utility of Bd3-1 as a mapping partner for crosses with Bd21 or Bd21-3. The Bd21 and Bd3-1 lines have already been used to generate a recombinant inbred population, which has proven to be a powerful tool in investigating the genetic basis of traits such as pathogen resistance (Cui et al., 2012). Our results could indicate additional promising candidates for high-coverage genome resequencing, generating recombinants, and other resource-intensive studies.

While Turkish inbred lines genotyped with 43 SSR markers had separated into distinct phylogenetic clades largely consistent with flowering time differences (Vogel et al., 2009), our GBS data showed that this distinction held across the native range of B. distachyon from Spain in the west to Georgia in the east. In terms of evolutionary history, the structuring of B. distachyon into at least two highly diverged genetic populations is intriguing, especially because the two main populations occupy similar geographic ranges and because the divergence seems to be relatively recent. In some of our samples, individuals belonging to different populations were found in the same locality or close by. This result indicates there is little gene flow between populations, consistent with high levels of self-fertilization in B. distachyon (Vogel et al., 2009). Although geographic subdivisions are evident within our main populations, the broad population structure is more strongly associated with what appears as flowering time in our common garden experiment. However, it is not intuitive why accessions could have different flowering times and yet thrive in the same locality subject to the same environmental conditions. We note, though, that the differences in flowering time observed under our greenhouse conditions do not necessarily represent true flowering times in the wild. Accessions that flower at different times in our experiments may flower concurrently in natural populations, despite divergent genetic backgrounds, as a response to local environmental conditions that act as cues for flowering. For example, the length of vernalization in many localities may exceed the lengths of time tested in our greenhouse. In fact, because most of our collections were made at a single time point, it is possible that all individuals at a single locality flower at similar times in the wild, regardless of genetic background. Nevertheless, our F_{ST} analyses strongly support the existence of some reproductive-phase morphological or developmental differences between the two main B. distachyon populations. Intriguingly, many genes close to SNPs highly differentiated between populations seem to be involved in the autonomous flowering pathway, suggesting that observed flowering time differences might be related to developmental phenotypes.

None of the fixed or high F_{ST} loci (Supplemental Table S2) between populations overlapped with MTAs detected by GWAS (Supplemental Table S4). This is expected and suggests, first, that our tests for association controlled well for confounding population structure (Brachi et al., 2011) and, second, that phenotypic diversity between populations and within populations may involve different flowering pathways. Polymorphic loci underlying flowering differences between populations are likely to display high F_{ST} and are best captured through such population analyses. That our GWAS yielded nine significant associations indicates that flowering time variation within populations is still sufficient to permit mapping of loci responsible for these differences. Additional investigation will be required to determine if any casual polymorphisms exist within the five a priori candidate genes or potential novel regulators.

Whereas GWAS has recently been used in B. distachyon to identify genetic loci associated with environmental variables (Dell’Acqua et al., 2014), to our knowledge, our findings are the first to illustrate the feasibility of linking genotype to a developmental phenotype in B. distachyon. Examination of our MTAs for known flowering-time, circadian-rhythm, and photo-period genes revealed candidate genes underlying five of the nine MTAs. Our identification of four MTAs far from any previously described candidate genes suggests that further study is needed to better understand regulation of flowering time in the grasses. Our estimates of LD decay in B. distachyon indicate that improvements to GWAS in this species can be achieved through expansion of characterized germplasm, in particular from Population 1, which may decrease the size of genomic intervals at which LD decays significantly.

Conclusions

As demonstrated for flowering time in B. distachyon, GWAS can detect large effects even in small populations. On the other hand, detecting significant MTAs of small-effect or rare variants requires large populations (Atwell et al., 2010). Further expanding B. distachyon germplasm collections is therefore crucial for increased power in future GWAS. Because flowering time is a major factor separating populations, harvesting multiple times throughout the year at a single location could enhance the diversity of the germplasm collected and increase the likelihood that accessions most useful for GWAS—early-flowering accessions from STRUCTURE-defined Population 1—would be recovered. As well as capturing additional diversity, the availability of new B. distachyon accessions would increase the resolution of GWAS and thus greatly facilitate the rapid identification of candidate genes for functional testing in this model system.

Supplemental Material

Supplemental Tables S1–S4, Supplemental Data files S1–S15 (including SNP genotypes in Supplemental Data S1 and S15), and Supplemental Fig. S1–S5 are available online: Supplemental Table S1. Summary information for accessions used in this study.

Supplemental Table S2. Annotation of genes near highly divergent SNPs.
Supplemental Table S3. Enrichment of GO terms for genes near highly divergent SNPs.

Supplemental Table S4. Significant marker-trait association intervals as determined by mixed linear model analysis for flowering time after 6 wk of vernalization.

Supplemental Data S1. High-quality SNPs for 94 Brachypodium accessions.

Supplemental Data S2. Number of SNPs compared to the Bd21 reference.

Supplemental Data S3. Number of SNPs in pairwise comparisons.

Supplemental Data S4. Principal component values for 94 Brachypodium accessions.

Supplemental Data S5. Delta K results for 94 Brachypodium accessions.

Supplemental Data S6. Inferred individual ancestry for 94 Brachypodium accessions.

Supplemental Data S7. Principal component values for 84 B. distachyon accessions.

Supplemental Data S8. Delta K results for 84 B. distachyon accessions.

Supplemental Data S9. Inferred individual ancestry for 84 B. distachyon accessions.

Supplemental Data S10. B. distachyon flowering times after cold treatment.

Supplemental Data S11. LOSITAN results for highly differentiated SNPs.

Supplemental Data S12. BayeScan results for highly differentiated SNPs.

Supplemental Data S13. SNPs highly differentiated between B. distachyon populations.

Supplemental Data S14. SNPs highly differentiated between Brachypodium species.

Supplemental Data S15. High-quality SNPs for 84 B. distachyon accessions.

Supplemental Fig. S1. Neighbor-joining tree for B. distachyon.

Supplemental Fig. S2. AgriGo graphic of GO terms for genes near highly divergent SNPs.

Supplemental Fig. S3. Timing of the B. distachyon population split.

Supplemental Fig. S4. Quantile-Quantile plots for general linear and mixed linear models for flowering time of B. distachyon accessions after 6 wk of vernalization.

Supplemental Fig. S5. Box plots of flowering time following 6 wk of vernalization for each significant MTA based on allele.

Acknowledgments

The authors thank the University of Oslo, Norway, for the Bioportal service used for STRUCTURE analysis. We are also grateful to Sherin Perera and Zhongyun Huang (University of Massachusetts–Amherst) for technical assistance and help with a bioinformatic analysis, respectively. The authors state they have no conflicts of interest to declare.

This material is based on work supported by the National Institute of Food and Agriculture (NIFA), USDA, the Massachusetts Agricultural Experiment Station, and the Biology Department of the University of Massachusetts–Amherst under project number MAS00419 to A.L.C. and S.P.H., and the Office of Science (BER) Department of Energy Grant DE-SC0006621 to S.P.H. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the USDA, NIFA, or other funding agencies.

References

TYLER ET AL.: B. DISTACHYON POPULATIONS DIFFER IN FLOWERING 19 of 20

