Towards a Healthy Danube - Fish migration at the Iron Gate dams

W. de Bruijne
University of Wisconsin - Madison

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

de Bruijne, W., "Towards a Healthy Danube - Fish migration at the Iron Gate dams" (2014). International Conference on Engineering and Ecohydrology for Fish Passage. 58.
http://scholarworks.umass.edu/fishpassage_conference/2014/June10/58

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Outline

1. Project objectives
2. Situation Iron Gate Dams
3. Design criteria for up- and downstream migration of sturgeon and other species
4. Acoustic telemetry study sturgeon behavior
5. Preliminary conclusions
6. Initial design for upstream passage at Iron Gates I and II
1. Project objectives

- This project is a continuation of the initial FOA scoping mission, carried out in 2011.
- The project objective is to extend the opportunities for different fish species, including sturgeon, to migrate 800 km further upstream in the Danube River system.

Activities:

- Tagging and monitoring of sturgeons in order to determine the correct location for an upstream fish way at the Iron Gates II;
- Preliminary design of fish ways at Iron Gates I and II for upstream fish migration, including a cost estimate;
- Preliminary study for downstream fish migration possibilities.

- Downstream solutions are disregarded in this presentation because of limited time.
2. Situation Iron Gates
Iron gates I
- Drobeta-Turnu Severin

Iron gates II
- Dušanovac

Main HPP and weir
- Portile de Fier II

Romanian turbines and weir
- Mihajlovac

Romanian shiplocks
- Ostrovu Mare

Serbian shiplocks and turbines
- Radojewac
- Vraća
Iron Gates Hydrology

- Multi-annual flow (1840-2006) at Gruia is 5585 m3/s.
- High annual flow variation
Iron Gates I

- Head drop 20-28m
- high (daily) variation in upstream waterlevel. Tailwater constant due to Iron Gates II reservoir
- Will prove extremely challenging for pool-type pass because of upstream waterlevel fluctuations and limited space.
Iron Gates II main HPP

- Head drop 2.5-12.8 m, designed head 7.5 m
- Comparatively low annual upstream and downstream water fluctuations.
- Many space because of flood plains.
Turbines

Iron gate I turbines
- 2 x 6 double regulated vertical Kaplan units, 194.5 MW each.
- Design discharge 840 m³/s per Turbine.

Iron gate II turbines
- 2 x 8 bulb turbines in main HPP.
- 2 each in Gogosu branch and Serbian HPP.
- Design discharge 425 m³/s per Turbine
3. Design criteria: Migratory behaviour and swimming capacity

- 6 species of sturgeon, Beluga Sturgeon up to 6m.
- Very little know on Danube sturgeons, Russian studies used as reference (Volgograd river).
- Bottom dwellers, migration patterns along the shores in deep parts.
- Nocturnal behaviour.

Building code for i.e. Fishways – State building committee of the USSR (1989):

- Flow velocity characteristics for Acipenseridae:
 - $V_{\text{threshold}} = 0.15 - 0.20$ m/s
 - $V_{\text{attraction}} = 0.70 - 1.20$ m/s
 - $V_{\text{drift adults}} = 0.90 - 1.40$ m/s
 - $V_{\text{drift juveniles}} = 0.15 - 0.20$ m/s
3. Design criteria: Geometric criteria

• Fishways for sturgeons are in operation in the former U.S.S.R. and North America. Only experience with fish lifts and fish locks.
• Building code for Fishways – State building committee of the USSR (1989):
 • Head drop < 10m: Bypass channels/ pool-type fishways:
 • Width: 3.0 – 10.0 m
 • Depth: 1.0 – 2.5 m
 • Slope: 1:8 – 1:20
 • Head drop > 10m: Hydraulic or mechanical fish lifts with collection gallery:
 • Length: 60.0 m
 • Width: 6.0 m
 • Depth: 1.5 m
• Geesthacht fish way in Germany is designed (acc. DWA-M 509) to be suitable for sturgeon. Two *Acipenser baerii* (Siberian sturgeon) passed successfully (size not mentioned).
3. Design criteria: Operation time

- Fish migration calendar present migratory species (Radu Suciu - DDNI)
- ≥ 300 d/yr fishway operation time

<table>
<thead>
<tr>
<th>English name</th>
<th>Romanian name</th>
<th>Scientific name</th>
<th>Habitat-directive</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beluga sturgeon</td>
<td>morun</td>
<td>Huso huso</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Russian sturgeon</td>
<td>nisetru</td>
<td>Acipenser gueldenstaedtii</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Sterlet</td>
<td>cega</td>
<td>Acipenser stelatus</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Ship sturgeon</td>
<td>viza</td>
<td>Acipenser rudiventris</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Pontic shad</td>
<td>scrumbia de Dunare</td>
<td>Alosa imaculata</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Black Sea salmon</td>
<td>somon de Marea Neagra</td>
<td>Salmo labrax</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Sichel</td>
<td>sabita</td>
<td>Pelecus cultratus</td>
<td></td>
</tr>
<tr>
<td>Vimba bream</td>
<td>morunas</td>
<td>Vimba vimba</td>
<td></td>
</tr>
<tr>
<td>European catfish</td>
<td>somn</td>
<td>Silurus glanis</td>
<td></td>
</tr>
<tr>
<td>Pike-perch</td>
<td>salau</td>
<td>Sander luciopeca</td>
<td></td>
</tr>
<tr>
<td>Burbot</td>
<td>mihait</td>
<td>Lota lota</td>
<td></td>
</tr>
<tr>
<td>Eel</td>
<td>anghila</td>
<td>Anguilla anguilla</td>
<td></td>
</tr>
<tr>
<td>Ide</td>
<td>vaduvita</td>
<td>Leuciscus idus</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>avat</td>
<td>Leuciscus aspius</td>
<td></td>
</tr>
<tr>
<td>Volga pikeperch</td>
<td>salau vargat</td>
<td>Sander volgensae</td>
<td></td>
</tr>
<tr>
<td>Zingel</td>
<td>pietrar</td>
<td>Zingel zingel</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Barbel</td>
<td>mreana alba</td>
<td>Barbus barbus</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Common nase</td>
<td>scobar</td>
<td>Chondrostoma nassus</td>
<td></td>
</tr>
<tr>
<td>Wild carp</td>
<td>crap slabatic</td>
<td>Cyprinus carpio</td>
<td></td>
</tr>
</tbody>
</table>

- Diadromous species
- Potadromous species
- Anadromous species
- Important period for upstream migration
- Important period for downstream migration of adults
- Important period for downstream migration of juveniles
- Important period for spawning in the Danube River
4. Acoustic telemetry study sturgeon behavior
First results

- One 2m young beluga male sturgeon caught. Tagged already Nov. 2013.
- Four juvenile stellate sturgeons (too small to tag).
- Beluga was released upstream of Gogosu Branch and was detected one day later at 800m downstream of the main HPP at 6.5 m depth.
- Later several detections at the mouth of the Gogosu Branch, leaving the IG II site.
- First tagged beluga sturgeon detected at the IG II site ever.
5. Preliminary conclusions for fish way design

- Limited design criteria for locks & lifts from Russia, France, USA
- State-of-the-art design criteria pool-type fishways for anadromous and potamodromous species
- Limited design criteria for pool-type fishways for Sturgeon
 - entrance location and water depth
 - passability, i.e. hydraulic & geometric criteria
 Very limited criteria as to surplus attraction flow.
- Good info on migration periods/operation time
- Recommendation for upstream passage restoration:
 Iron Gates I: fish lift (or lock)
 Iron Gates II: pool-type fishway
- Downstream passage restoration:
 IG I & II: no viable technology for this size/discharges
6. Initial design for upstream passage at Iron Gates II

Double Vertical Slot Fishway designed acc. to DWA-M 509 (adopted by EIFAAC)
- located on left bank at HPP
- clear pool length: 9 m
- clear pool width: 13.50 m
- min. water depth: 2.50 m
- 2 slots 1.20 m wide
- head drop per baffle: 0.09 m
- max. flow velocity in slot: 1.35 m/s
- fish pass design flow: 7.50 m³/s
- 3 entrances in tailwater (at turbine outflow/ turbulent zone, below turbulent zone, and in calm river bank zone) parallel to main current and connected to river/ bank bottom

Attraction flow
- provided by a SHPP (Q_{max} \sim 45 \text{ m}^3/\text{s}, P_{el} \sim 3 \text{ MW}, Output \sim 25,500 \text{ MWh})
- attraction flow: 30 - 53 \text{ m}^3/\text{s} (= 3 \times 10 - 17.5 \text{ m}^3/\text{s} per entrance depending on downstream water level)
- attraction flow velocity: 0.8 - 1.0 \text{ m/s at entrance}
Initial design for upstream passage at IGII
Initial design for upstream passage at Iron Gates I

Mechanical or hydraulic fish lift
- located on left bank next to lock in former sluice section
- overall dimensions: ~43 x 20 m
- Lift height: +30 m
- Facility includes: outlet with gate, crowding device, holding pool, 2 side pools for attraction flow separated with fine screens, lift shaft, supply pool for lift, 2 dissipation chambers for attraction flow, shute or canal to reservoir
- Hopper dimensions: ~7 x 9 m (V ~ 100 m³)

Attraction flow
- provided by pipes from upstream
- Turbined attraction flow
- attraction flow velocity: 0.8 m/s at entrance (may be variable depending migration times of on target species)
Initial design for upstream passage at Iron Gates I
Imagine the result

Contact:
Marq Redeker, ARCADIS Germany, m.redeker@arcadis.de
Wilco de Bruijne, ARCADIS Netherlands, wilco.debruijne@arcadis.nl