Jun 11th, 10:40 AM - 11:00 AM

Advancing Fish Passage in the Menomonee River Watershed

C. Nenn
University of Wisconsin - Madison

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Nenn, C., "Advancing Fish Passage in the Menomonee River Watershed" (2014). International Conference on Engineering and Ecohydrology for Fish Passage. 14.
http://scholarworks.umass.edu/fishpassage_conference/2014/June11/14

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Addressing Fish Passage Impediments in the Menomonee River Watershed
Menomonee River Watershed

• 136 Square Miles; 55 Miles of Rivers/Streams; 28 Miles Mainstem

Little Menomonee River
Honey Creek
Underwood Creek
Dousman Ditch
Willow Creek
Little Menomonee Creek
Butler Ditch
Lilly Creek
Nor-X-Way Channel
Grantosa Creek
Menomonee River Watershed

- 335,000 Residents (2463/sq. mile)
- 16 Municipalities:
 - Brookfield
 - Greenfield
 - Mequon
 - Milwaukee
 - New Berlin
 - Wauwatosa
 - West Allis
 - Brookfield
 - Germantown
 - Lisbon
 - Richfield
 - Butler
 - Elm Grove
 - Greendale
 - Menomonee Falls
 - West
 - Milwaukee
Menomonee River Watershed

Current Land Use:

- agriculture in N. 1/3, densely urban in lower 1/3, and rest is rapidly urbanizing
- 60% Urban, 40% rural
- 90% of the population receives sanitary sewer service
Land Use Changes

• Land use changes and increased imperviousness in the watershed has caused habitat degradation and stagnated fish diversity.

• Development has created many impassable culverts, has filled in/ altered habitat, and created other artificial barriers like small dams and drop structures.
Menomonee River Watershed Elevation Profile

Men River - Near Future Cond (8-16-05) Plan: Near Future 8-2005

Main Channel Distance (mi)
Elevation (ft)

Legend

Ground
Menomonee River Watershed

Major Pollutants:

- Urban stormwater
 - Wildlife, pets & lawns
 - Construction site erosion
 - Illicit Discharges

- Rural nonpoint sources
 - Eroding agricultural lands
 - Eroding streambanks

- Sanitary & combined sewer overflows
Riparian Corridors Conditions

- Greater than 75 feet
- 51 - 75 feet
- 26 - 50 feet
- Less than 25 feet
- Enclosed conduit
Wetlands

- Filling, dredging, channel relocation, and engineering have destroyed most of the spawning wetlands in the lower portion of the river as well as the ecological functions they once provided.
- Wetland fish spawning habitat for northern pike and marsh spawning walleye are absent from the lower reaches of the Menomonee River and Milwaukee Estuary;
- Habitat suitable for sustaining potadromous fish populations is present throughout the upper Menomonee River and some of its major tributaries (estimated at 3,700 acres of riparian wetlands).
Stream Condition--SEWRPC
Menomonee Fish

- Central stoneroller
- Hornyhead chub
- White sucker
- Black bullhead
- Northern pike
- Largemouth bass
- Johnny darter
- Bluegill
- Pumpkinseed
- Green sunfish
- Black crappie
- Central mudminnow
- Rock bass
- Creek chub
- Bluntnose minnow
- Blacknose dace
(SEWRPC_TR-39) Menomonee River Biological Conditions

Fish Community

Macroinvertebrates - Aquatic Bugs
Fish Passage Project Goals

- Removing artificial barriers to aquatic life passage will increase access for Lake Michigan and other native fish to pass to upstream spawning habitats (e.g., vegetated wetlands, etc.);
- Improve fish productivity;
- Enhance recreational opportunities; and
- Provide a more cost-effective alternative to restoring degraded habitats or creating new ones further downstream.
Menomonee River Watershed Inventory
<table>
<thead>
<tr>
<th></th>
<th>Milwaukee</th>
<th>Ozaukee</th>
<th>Washington</th>
<th>Waukesha</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam / Weir</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Low Water Crossing</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Railroad Culvert Barrier</td>
<td>1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Road Culvert Barrier</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Rocky Debris Major</td>
<td>2</td>
<td></td>
<td>1</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Sediment Debris Major</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Waterfall / Cascade</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Woody Debris Major</td>
<td>43</td>
<td>13</td>
<td>4</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>Total Impediments</td>
<td>62</td>
<td>19</td>
<td>12</td>
<td>25</td>
<td>118</td>
</tr>
<tr>
<td>"Passable/Minor" Impediments</td>
<td>140</td>
<td>74</td>
<td>35</td>
<td>15</td>
<td>264</td>
</tr>
<tr>
<td>Total Survey Points</td>
<td>202</td>
<td>93</td>
<td>47</td>
<td>40</td>
<td>382</td>
</tr>
</tbody>
</table>
Example Barrier Survey Form (from our Microsoft Access Database)

![Image of a barrier survey form]

Menomonee Fish Passage Barrier Survey

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Stream</th>
<th>Road</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1723-155</td>
<td>Butler Creek</td>
<td>Campbell Dr.</td>
<td>8/1/2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alt ID</th>
<th>Type</th>
<th>Pass Method</th>
<th>Outlet drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCSB65</td>
<td>Road Culvert Barrier</td>
<td>0</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Scour Pool</th>
<th>Upstream Pond</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shape</th>
<th>Condition</th>
<th>Material</th>
<th>Drop</th>
<th>Slope</th>
<th>Plugged</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellipse</td>
<td>New</td>
<td>Metal</td>
<td>0.2</td>
<td>0.009</td>
<td>1%</td>
<td>144.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>7.1</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
3 large metal corrugated culverts (perched), 3 small concrete stormwater outfalls. Rock blockage upstream of inlet.

![Images of the barrier from different angles]
Stream Crossing Data Sheet

Site ID: 1723-155 **Date:** 8-1-2012

Surveyed by: Joe Zack **Culvert(s):** Bridge

Stream Name: Butler Creek **Dem:** Ford

Road Name: Campbell Dr **Ford:**

GPS Waypoint: Lat: Long:

Outcome: Full survey **Passage No survey**

No crossing **No stream** **No access**

Notes: 3 culverts perched; also 3 small stone culverts, rock blockage upstream of inlet.

Photos: Inlet: x **Outlet:** x

Upstream: x **Downstream:** x

Other: x

Exotic Species:

Structure 1

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>Round Arch</th>
<th>Rectangular Open bottom</th>
<th>Elliptical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Metal</td>
<td>Concrete</td>
<td>Plastic</td>
</tr>
<tr>
<td>Interior Surface</td>
<td>Smooth</td>
<td>Corrugated</td>
<td>Corrugated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plugged</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed</td>
<td>%</td>
</tr>
<tr>
<td>Rusted</td>
<td>%</td>
</tr>
</tbody>
</table>

Inlet Elev. (ft): 22.5

Outlet Elev. (ft): 23.8

Structure 2

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>Round Arch</th>
<th>Rectangular Open bottom</th>
<th>Elliptical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Metal</td>
<td>Concrete</td>
<td>Plastic</td>
</tr>
<tr>
<td>Interior Surface</td>
<td>Smooth</td>
<td>Corrugated</td>
<td>Corrugated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plugged</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed</td>
<td>%</td>
</tr>
<tr>
<td>Rusted</td>
<td>%</td>
</tr>
</tbody>
</table>

Inlet Elev. (ft): 22.64

Outlet Elev. (ft): 23.5

Structure 3

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>Round Arch</th>
<th>Rectangular Open bottom</th>
<th>Elliptical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Metal</td>
<td>Concrete</td>
<td>Plastic</td>
</tr>
<tr>
<td>Interior Surface</td>
<td>Smooth</td>
<td>Corrugated</td>
<td>Corrugated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plugged</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed</td>
<td>%</td>
</tr>
<tr>
<td>Rusted</td>
<td>%</td>
</tr>
</tbody>
</table>

Inlet Elev. (ft): 22.5

Outlet Elev. (ft): 23.3

*do not complete for open bottom structures.
Tier 1: Connection to Lake Michigan

Tier 2: Connection to Mainstem

Tier 3: Connection to highest quality areas

SEWRPC Prioritization
Ozaukee County Prioritization

Tributary Impediment Prioritization

<table>
<thead>
<tr>
<th>C = Impediment Ordination</th>
<th>D = Tributary Sub-Basin Fragment Length (Miles) Y</th>
<th>E = Impediment Significance Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>"Y" total miles of tributary sub-basin channel fragment(s) length isolated by the impediment</td>
<td>1</td>
<td>Reach not isolated from mainstem river</td>
</tr>
<tr>
<td>1</td>
<td>"Y"</td>
<td>2</td>
<td>Reach isolated from mainstem river by 1 impediment</td>
</tr>
<tr>
<td>2</td>
<td>"Y"</td>
<td>5</td>
<td>Reach isolated from mainstem river by 2 impediment</td>
</tr>
<tr>
<td>3</td>
<td>"Y"</td>
<td>7</td>
<td>Reach isolated from mainstem river by 3 impediment</td>
</tr>
<tr>
<td>4</td>
<td>"Y"</td>
<td>10</td>
<td>Reach isolated from mainstem river by 4 impediment</td>
</tr>
<tr>
<td>"Q"</td>
<td>"Y"</td>
<td>10</td>
<td>Reach isolated from mainstem river by "Q" number of impediments</td>
</tr>
<tr>
<td>"1000•Q"</td>
<td>"Y"</td>
<td>10</td>
<td>Reach isolated from mainstem river by 1000 times "Q" number of impediments</td>
</tr>
</tbody>
</table>

Diagram:
- **SB** indicates a stream bifurcation.
- **SR** indicates a stream crossing.
- **W** indicates a water body.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
- **W** indicates a water body.
- **N** indicates a nature preserve.
- **P** indicates a park.
- **C** indicates a conservation area.
- **P** indicates a power line.
- **H** indicates a highway.
Potential Spawning Habitat Consideration

- 75 areas of promising spawning habitat were identified.
- Major tributaries with the best potential for spawning habitat include the Little Menomonee River and Creek, Nor-X-Way Channel, and Dretzka Park Creek among others.
Instream Measures

(1) Removal of approximately 1,000 linear feet of concrete (within reach MN-18) in the vicinity of Wisconsin Avenue and IH-94 to reestablish fish passage to upstream reaches from Lake Michigan.

(2) Removal and/or retrofitting of five low-gradient structures within the vicinity North Menomonee River Parkway between Swan Boulevard and Harmonee Avenue (within Reach MN-17A).
MMSD Concrete Removal
Menomonee River
River Crossing – Fish Passage Obstructions
N. Menomonee River Pkwy between Swan Blvd & Harmonee Ave
09-14-2009 (Low Flow)
Menomonee River
East of Swan Blvd & N. Menomonee River Pkwy
09-14-2009 (Low Flow)

Second Set of Pictures

#1) Sewer Crossing @ 90th Street & N. Menomonee River Pkwy
~2 feet wide; ~4-6 inches high

#2) Hoyt Park Playground Area Dam/Grade control
~ 4 feet wide; ~2.5 feet high
Menomonee River
N. Menomonee River Pkwy
&
Hoyt Park Drive
09-14-2009 (Low Flow)

First Set of Pictures

#2) Hoyt Park Playground
Dam/Grade control
~4 feet wide; ~2-3 feet high

#3) Sewer Crossing downstream of footbridge
~4 feet wide; ~2-4 inches high
Menomonee River
N. Menomonee River Pkwy & Charles Hart Pkwy
09-14-2009 (Low Flow)

First Set of Pictures

#4) Sewer Crossing @ Charles Hart Pkwy
& N. Menomonee River Pkwy
~ 3-4 feet wide; ~1-2 feet high

#5) Old Road Crossing
~ 8 feet wide; ~2.5 feet high
Interfluve Designs

Menomonee River Fish Passage Barriers
Crossing 1—Likely Removal

Crossing #1 - Sewer Crossing

Before.....

......After
Crossing 2 (and 5)--Removal

Crossing #2 - Stone Walking Path

Before.....

......After

This image can also serve as an example of the removal of Crossing #5 – Old Stone Road.
Crossings 3 and 4 – Removal or Ramp

Plan Sketch:
Rock ramp fishway at sewer crossing #4

This approach can be also be implemented at Sewer Crossing #3.
Upstream Work
Next Steps

- Start removal of several major woody debris jams with Great Lakes CCC and volunteers-focusing on man-made debris
- Start design of 5 priority infrastructure barriers (WCMP funded)
- Meet with private and public impediment owners
- Fundraise to address impediments/work with municipalities to budget for fish passage