Session A5: Dam Removal: Enhancing or Degrading Ecological Integrity?

Birgitta Malm Renöfält
Umea University

Anna Lejon
Umea University

Christer Nilsson
Umea University

Micael Jonsson
Umea University

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference
Part of the [Aquaculture and Fisheries Commons](http://scholarworks.umass.edu/aquaculture), and the [Hydraulic Engineering Commons](http://scholarworks.umass.edu/hydraulic_engineering)

http://scholarworks.umass.edu/fishpassage_conference/2015/June23/6

This Event is brought to you for free and open access by the The Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Dam removal: enhancing or degrading ecological integrity?

Birgitta Malm Renöfält, Anna Lejon, Christer Nilsson, Micael Jonsson
NÄTRAÅN
The Kuba dam

- Approx. 2.5 m
- Damming effect 1000m
- No flow regulation

Succession study (3 years), vegetation

NISSAN
The Unnefors dam

- 2.3 m
- Damming effect 4500m
- No flow regulation

Before and after, vegetation & invertebrates

Purpose of removal
- Avoid maintenance
- Improve fish migration
- Regain spawning areas
- Removed late autumn 2007

Purpose of removal
- Freshwater pearl mussel
- Improve fish migration
- Regain spawning areas
- Removed early spring 2007
Project design

Riparian vegetation
Invertebrates

Reference

New rapid (Nätraån)

Impoundment

Downstream
Riparian vegetation
Invertebrates
Sampling design vegetation

- 30 plots on each reach type
 - Vascular plant species
 - Presence
 - % cover
 - Total Veg. Cover (%-classes)
 - Substrate composition
 - Bare soil (%cover)
 - Soil moisture (%)
 - Over story cover (none, low, medium, high)
 - Elevation

- Polystyrene cubes
 (disturbance)

- Astroturf mats
 (sediment traps)

- Temperature logger
Sampling design invertebrates

1 x 0.35 m²
mesh size 0.5 mm

Reference reach 550 m, six replicates
Downstream reach 1400 m, 12 replicates

Sampled 2007 (before)
2008 (after)
2011 (after)
<table>
<thead>
<tr>
<th>Location</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Former rapid</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Downstream</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Reference</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>
Species composition former reservoir

Reservoir
- 2007
- 2008
- 2009

Reference
- 2007
- 2008
- 2009
Species composition former rapid

- Former rapid:
 - 2007
 - 2008
 - 2009

- Reference:
 - 2007
 - 2008
 - 2009
Species composition downstream
High proportion of trees and shrubs due to a high number of saplings.
Oligochaeta
Ephemeroptera
Plecoptera
Trichoptera
Simuliidae
Diptera
Coleoptera

Taxon richness and density

Renofalt et al. Fig. 2, top.

Renofalt et al. Fig. 3, top.
Sediment deposition

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean before removal (g m(^2)-1)</th>
<th>Mean after removal (g m(^2)-1)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>1395.5</td>
<td>1286.25</td>
<td>0.663</td>
</tr>
<tr>
<td>Downstream</td>
<td>1918.75</td>
<td>8280.5</td>
<td>0.021</td>
</tr>
<tr>
<td>Upstream</td>
<td>397.75</td>
<td>283.75</td>
<td>0.809</td>
</tr>
</tbody>
</table>

Taxon composition downstream
• Depends on what type of organism you look at

• Depends on whether you look at downstream effects or effects in the former reservoir
Thank you!

Questions?