Jun 22nd, 11:40 AM - 11:55 AM

Session B1: Lessons Learned from Tropical Storm Irene 2.0: How Flood Resiliency Benefits of Stream Simulation Designs Are Changing Policy within the U.S.

Nathaniel Gillespie
United State Department of Agriculture, Forest Service

Robert Gubernick
USDA Forest Service

Dan Cenderelli
USDA Forest Service

Mark Weinhold
USDA Forest Service

Brian C. Austin
USDA Forest Service

See next page for additional authors

Follow this and additional works at: http://scholarworks.umass.edu/fishpassage_conference

Part of the Aquaculture and Fisheries Commons, and the Hydraulic Engineering Commons

Gillespie, Nathaniel; Gubernick, Robert; Cenderelli, Dan; Weinhold, Mark; Austin, Brian C.; McKinley, Daniel; Unthank, Amy; and Gernerd, Kurt, 'Session B1: Lessons Learned from Tropical Storm Irene 2.0: How Flood Resiliency Benefits of Stream Simulation Designs Are Changing Policy within the U.S.' (2015). International Conference on Engineering and Ecohydrology for Fish Passage. 22. http://scholarworks.umass.edu/fishpassage_conference/2015/June22/22
Presenter Information
Nathaniel Gillespie, Robert Gubernick, Dan Cenderelli, Mark Weinhold, Brian C. Austin, Daniel McKinley, Amy Unthank, and Kurt Gernerd
Lessons Learned from Tropical Storm Irene in Vermont 2.0: How Flood Resiliency Benefits of Stream Simulation Designs Are Changing Policy within the U.S.

Nathaniel Gillespie
United State Department of Agriculture,
Forest Service

Co-authors:
Robert Gubernick,
Dan Cenderelli, Mark Weinhold,
Brian C. Austin, Daniel McKinley,
Amy Unthank, Kurt Gernerd
USDA Forest Service
Outline

• Background: Culverts, Aquatic Organism Passage and Flood Damage
• Tropical Storm Irene – Impacts and Lessons Learned
• Linking Flood Resiliency and Societal Benefit to Aquatic Organism Passage
• Policy Implications
Typical Barriers to Aquatic Organism Passage on U.S. National Forest Lands
Undersized Culverts = Flood Damage
Case Study approach: Upper White River Watershed

- Green Mountain National Forest represents 40% of the Upper White River Watershed.
- 70% of damages caused by debris plugging culverts.
- Substantially more damages within the 5 towns.
- Interviewed town leaders and road engineers.
How and Why Road-Stream Crossings Fail

How Structures Fail

- Hydraulic capacity exceeded
- Sediment “Slug”
- Debris flow (wood, etc.)

Why Structures Fail

- Undersized hydraulic capacity
- Abrupt transitions
- Poor vertical alignment with channel
- Poor stream to structure geometry
- Poor geomorphic location/design not account for diversion potential
Stream Simulation Designs Proved Resilient

- 24 Forest Service System Roads (40 km)
- Estimates repair costs = $6.4+ million
- 11 stream crossing failures
- No stream simulation design failures (3)
Stream Simulation Design Principles

- Combines engineering, geomorphic and ecological analyses
- 100+ Recurrence Interval with freeboard or room for debris
- Mimics natural channel structure, sediment characteristics, water velocity & depths, and resting areas for aquatic organisms

Simulated high gradient channel
Mitkof Island, AK. Tongass NF

At bankfull flow
Analytically Driven Stream Simulation Design

Design the channel considering geomorphic risk, long term channel changes, and engineering constraints then build the structure around it. The reference reach provides the standards.

Geomorphic Risks Analysis

- ✓ Channel Stability
- ✓ Vertical Adjustment Potential
- ✓ Headcut Potential
- ✓ Lateral Migration Potential
- ✓ Floodplain Conveyance/Connectivity
Jenny Coolidge Brook Stream Simulation Design

Forest Road 17A over Jenny Coolidge Brook

Original Structure Pre-reconstruction

Aggradation Woody debris

Post TS Irene

Post Reconstruction Pre-TS Irene
Sparks Brook Stream Simulation Design

Original Q25 Hydraulic Design

Stream Simulation Design with >Q100 Design

Height of Tropical Storm Irene Flood Level
The Link between Aquatic Organism Passage (AOP) and Flood Resiliency

- Of 43 Road-Stream Crossings identified by Vermont FWD as barriers to fish movement in Upper White River Watershed, 15 failed. Average bankfull width/culvert width ratio of 0.54.

- VT FWD inventoried 43 culverts >2.3 m bankfull width for fish passage in watershed, 15 failed.

- These 15 failed culverts provided reduced or no aquatic passage.

- Of the failed culverts, ratio of culvert width to bankfull width averaged 0.54, ranging from 0.27 to 0.90.
Other Examples of Flood Resiliency of Stream Simulation Designs

- **Tongass National Forest in Alaska**: Of 93 crossings installed for AOP since 1998, 98% provide fish passage to State Standards, NO failures with floods estimated in 25 to 50 year recurrence interval.

- **Siuslaw National Forest in Oregon**: 8 crossings installed for AOP since 2003 have survived 25 year recurrence interval floods with no damage.
The Continuum of Ecological Connectivity & Flood Resiliency
Recommendations and Lessons Learned

• Prioritize upgrades for AOP that have multiple benefits – high ecological gain and roads with high social significance (high volume traffic, major commuting delays, provision of emergency services, high cost from failure)
• Work with FEMA and other federal funding sources for greater flexibility in helping meet the match requirement through investment in more flood resilient crossing designs
• Support long-term sustainability by expanding the time scale of analysis – Move from year 0 to 50 to 75 years
• Expand multi-disciplinary workshops targeting federal, state and local designers, engineers and decision-makers
In the Context of Climate Change- How to Best Evaluate the Avoidance of Catastrophic Failure?
Cost Comparison

• Green Mountain National Forest examples demonstrate real costs for upgrading to Stream Simulation Design Standards ranged from 9-22% above conventional hydraulic design

• Similar data suggest that a 50% increase in structure width results in 20% to 33% increase in total project cost (Gubernick 2011) from across U.S. Forest Service Lands

• Most cost comparisons are made a Year 0, not extended out to the 50-75 year time frame.
True Life Cycle Cost Analyses

• A culvert failure can result in significant costs to state/towns including replacement costs and other damaged infrastructure.
• Emergency replacement costs are generally higher than normal replacement costs*
• Temporary or long term loss of emergency services, business or recreational access need consideration*
• If a culvert remains undersized, these costs may be incurred multiple times during its life cycle*
• Maintenance costs over time to remove debris, repair erosion, protect headwall, etc. need consideration.

A New Dialogue in “Fish Passage”
Social and Economic Benefits

- To the extent that we can quantify costs and benefits of a given investment in economic terms, we can build a better understanding of the true implications of our actions (or inactions) in a climate resiliency-based context.

- The link has been made successfully between AOP and flood resilience across a number of New England and Midwestern and Pacific Northwestern States.
Investments in Ecosystem Services: Denver Forests to Faucets

- Improve watershed conditions through proactive forest management
- $16.5 million/year over 5 years between the Denver Water Utility and USFS
- Projects in the Upper South Platte headwaters to enhance resiliency to wildfire
Expanding Research into Risk and Ecosystem Service Analyses

- Ongoing FS research about survival and failure of culverts from Hurricane Sandy 2013, particularly examining risk associated with culvert diameter vs. bankfull width & location of culvert and valley slope
Changes in Policy Standards

- Several states have begun changes to state standards in the wetlands and water quality regulations for AOP for road-stream crossings to increase conveyance capacity of culverts, e.g. MA, VT, NY

- The Federal Highway Transportation Bill has language about flood resiliency, climate change and fish passage.

- President Obama’s 2013 Executive Order: “Preparing the United States for the Impacts of Climate Change”
 - To improve the resilience of communities and federal assets to the impacts of flooding. "Where possible, an agency shall use natural systems, ecosystem processes, and nature-based approaches when developing alternatives for consideration."
Changes in Leveraged Funding

- New York’s Lake Champlain Basin: Focus by the Adirondack Chapter The Nature Conservancy (TNC) has raised $850,000 in public and private grant funding for upgrading 5-7 high priority culverts for flood resiliency and fish passage.

- In 2014, State of Maine passed a “Clean Waters and Safe Communities Act” providing $5.4 million for culvert upgrades. TNC has assessed 15,000 culverts across state.

- In Massachusetts, Vermont and New Hampshire, American Rivers, TNC, and Trout Unlimited have surveyed 1000’s of culverts, and using this to prioritize culverts – key to working with local and state road and highway departments.
Questions?