Jun 22nd, 3:15 PM - 3:40 PM

Session B2: An Overview of the Ice Harbor Turbine Replacement Project

Martin Ahmann
U.S Army Corps of Engineers

Robert Davidson
Engineering Research and Development Centre

Jason Foust
Voith Hydro

Thomas Freeman
HDC

Jon Renholds
U.S Army Corp of Engineers

See next page for additional authors

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference
Part of the [Aquaculture and Fisheries Commons](https://scholarworks.umass.edu/aquaculture), and the [Hydraulic Engineering Commons](https://scholarworks.umass.edu/hydraulic_engineering)

Ahmann, Martin; Davidson, Robert; Foust, Jason; Freeman, Thomas; Renholds, Jon; Trumbo, Bradly; and Crum, Kevin, "Session B2: An Overview of the Ice Harbor Turbine Replacement Project" (2015). *International Conference on Engineering and Ecohydrology for Fish Passage*. 28.
https://scholarworks.umass.edu/fishpassage_conference/2015/June22/28

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
Presenter Information
Martin Ahmann, Robert Davidson, Jason Foust, Thomas Freeman, Jon Renholds, Bradly Trumbo, and Kevin Crum

This event is available at ScholarWorks@UMass Amherst: https://scholarworks.umass.edu/fishpassage_conference/2015/June22/28
Ice Harbor Turbine Replacement - Overview

Martin Ahmann
Hydraulic Engineer, P.E.
USACE Walla Walla District

Robert Davidson – ERDC
Jason Foust – Voith Hydro
Thomas Freeman – HDC
Jon Renholds – NWW
Bradly Trumbo – NWW
Kevin Crum - NWW

Walla Walla District
US Army Corps of Engineers
BUILDING STRONG.
Background

USACE operates 8 major hydropower dams on the lower Snake and Columbia Rivers – Part of the Federal Columbia River HydroPower System (FCRPS)

Construction of the 8 dams began in the early 1930’s and was completed in the late 1970’s

Total 94 Kaplan turbines

7.1 m to 8.4 m in diameter

Total system capacity – 10,394 MW

Impact has forced strict management practices to support both upstream and downstream migration of endangered anadromous fish species.
Background

Turbines within the FCRPS are nearing end of design life - experiencing increased rate of failure

Rehabilitation and replacements are critical to maintaining system reliability

Provides opportunity to improve turbine designs for fish passage and increased efficiencies.

Concern for endangered fish species and reliable generation led to development of the Turbine Survival Program (TSP) and the **Ice Harbor Test Turbine Project**
Turbine Survival Program

A USACE Program Established in 1995

TSP Goals and Objectives:

- Improve our understanding of turbine passage
- Determine effects of turbine passage on juvenile salmonids
- Develop design criteria/guidelines to improve turbine design and operation for safer fish passage.

Focused on large propeller (Kaplan) style turbines.

Program efforts included:

- Field Studies
- Physical hydraulic models
- Numerical hydraulic analyses
- Laboratory Research
TSP – Field Studies

Turbine Survival Studies
Direct turbine survival – Balloon (HiZ) tag studies
Total turbine passage – Telemetry based studies
Vertical distribution / Depth acclimation studies

Turbine Characterization
Sensor Fish Data Collection
Turbine Pressure Acceleration
Laboratory Research (PNNL)

Pressure studies
 Simulated turbine pressures on juvenile Chinook salmon
 Primary variables:
 Acclimation depth
 Nadir pressure

Shear Studies

Criteria for new designs
Survival of Juvenile Salmonids Through Turbines

Mortality of turbine passed juvenile salmonids generally ranges from ~5 to ~25 percent (75 to 95 percent survival)

Direct mortality caused by blade strike, impact, pinching and shear ranges from ~4 to ~8 percent

Exposure to sub-atmospheric pressures can be lethal depending on fish acclimation depth prior to turbine passage, and Nadir pressure.

Predation on turbine passed fish within the immediate tailrace can be high

Combined mortality from consecutive dam passages is significant.
Computational Fluid Dynamics

Flow lines
Velocity
Pressure
Turbulent Kinetic Energy
Efficiency Estimates
ERDC Turbine Model

1:25 Froude Scale
Observations of hydraulic conditions
High speed digital imaging of neutrally buoyant beads
Laser velocity measurements
Ice Harbor – Stay Vane /Wicket Gate
Ice Harbor – Tip Release
TSP Design Guidance

• Align and minimize the gaps between the stay vanes and wicket gates.
• Minimize runner blade gaps at hub and periphery.
• Target a minimum turbine design pressure of 1 atm (14.7 psia) but not less than 10 psia.
• Minimize blade strike on leading edge, blade surfaces and trailing edge.
• Minimize swirl and turbulence below the runner blades.
• Streamline flow through the draft tubes.
• Incorporate the ERDC turbine models into the design and evaluation process.
Ice Harbor Lock and Dam

Location - Lower Snake River near the confluence with the Columbia river – Washington State – USA

Original construction completed in mid 1960’s

Prominent Features
Powerhouse - 6 Kaplan turbine units
10 gated spillway bays
Navigation Lock
North and south shore adult fish ladders
Juvenile fish by-pass facility

Unit 2 and Unit 3 chronic oil leaks. Hub Oil removed and blades welded to fix position.

Selected as TSP Test Project.
Ice Harbor Test Turbine

Goal – Validate the new TSP design process and criteria. Replace failing units.

2010 - Contract awarded to **Voith Hydro**
Design and Supply two new turbine runners
- One Fixed Blade Propeller
- One Adjustable Blade (MGR) Propeller

Design for **Safe Fish Passage** and Increased Efficiency.

Installation of the first runner will begin in 2016 with field testing in 2017
New Turbine Design

- **Turbine Runners**
 - Designed to reduce blade strike and increased pressures.
- **Stay vane leading and trailing edge extensions**
 - Improve alignment with flow
 - Minimize gaps between stay vane & wicket gate
- **Draft tube modifications (roof fill)**
 - Reduce turbulence
 - Streamline flow
 - Improve exit conditions
Bio-Testing the New Turbines

• Acoustic Telemetry Tag Method
 – **Total Turbine Passage Survival** including Immediate Tailrace
• Balloon Tag Methods (HiZ)
 – **Direct Turbine Effects** - injury and mortality of the immediate turbine passage
• Sensor Fish data collection
 – **Pressure and Acceleration** data
 • Estimates probabilities of exposure to low pressure
 • Estimates probabilities of strike and exposure to shear
 – Will compare to Baseline (Existing Turbine) data
Ice Harbor Test Turbine

- Established a contract that incorporates TSP criteria, guidance and evaluation methods into the design process
- Focused design on fish passage as a primary goal, efficiency as a secondary goal
- Used a Collaborative Team approach to support the design and make trade-off decisions. *Fish / Power / Cost*
Questions